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Abstract— Identifying logic relationships between proteins is are sometimes fused into a single chain in the same or another
essential for understanding their function within cells. Previous organism [7][14].
studies have been done to infer protein logic relationships using Various research has been done to study functional rela-

pairwise and triplet logic analysis on phylogenetic profiles. Other . . . . . -
computational methods have also been developed using pair\Niset'Ons’h'p“3 among proteins usingfféirent types of data. Since

analysis on Rosetta Stone data to infer protein functional link- €ach type of data sources provides only partial information,
ages. In this work, we describe a Bayesian modeling framework assuming that noise and bias of various data sources are largely

for combining phylogenetic profile data via a likelihood with independent, jointly learning from multiple data sources can
Rosetta Stone data via a prior. Based on the proposed framework, result in more and better knowledge [3]. Bowers et al [5] stud-

we develop a general method for jointly learning high order . . . . . i . .
logic relationships among proteins whose presence or absence€d protein relationships with pairwise analysis by choosing an

can be identified by logic functiond. The method is applied to Optimal confidence value from four types of data. They also
analyze protein triplets and quartetson phylogenetic profile and  applied protein triplet analysis with logic functions [4] using
Rosetta Stone datasets with 140 clusters of orthologous genesphylogenetic profile data alone. However, no previous research
(COGSs). The biological meaning of the top 30 significant triplets has been done on jointly learning protein logic relationships.

are further verified using the KEGG and NCBI databases. Over In thi taB . deling f K
50% of the discovered relationships that are associated with high n this paper, we present a bayesian moaeling framewor

significant scores could not be inferred using phylogenetic profile that combines protein phylogenetic profile data and Rosetta
or Rosetta Stone data alone. Our statistical analysis shows that Stone data to study the logic relationships among protein

all significant quartets have p-values < 5.71E-04. Many of them triplets and quartets. By incorporating functional linkage in-

assign putative functional roles on uncharacterized proteins. formation from Rosetta Stone data, we can more reliably infer

Index Terms—phylogenetic profiles, Rosetta Stone method, high order logic relationships among proteins. Those logic

protein logic relationships. relationships can further aid in assigning biological function
to uncharacterized proteins.

|. INTRODUCTION The rest of the paper is organized as follows. In Section Il,

Identifying protein functions is essential for understanding® review related work. In Section Ill, we develop a Bayesian
molecular interactions. The functions of many translated prlodeling framework by combining phylogenetic profile data
teins can be predicted by homology. However, homology basé@ @ likelihood with Rosetta Stone data via a prior. In
methods can only provide a partial understanding of a pre€ction IV, we apply the proposed framework to find protein
tein’s function [5]. Alternatively, studying protein interactinglogic relationships using public phylogenetic profile [4] and
partners can provide a more complete understanding of p[%osetta Stone data [5] with 140 distinct families k_nown as
tein function. Various non-homology-based methods, such @ysters of orthologous genes (COGs). We then discuss our
phylogenetic profiles [15] and gene fusion events (also kno\,(,?,sults. In Section V, we summarize the proposed method and
as the Rosetta Stone method) [7][14], can be used to discodi§cuss future work.
functional linkages by pairwise analysis of non-homologous
proteins that are co-evolved. The protein phylogenetic profile II. ReLaTED WORK

is & numerical string of lengtN consisting of Os and 1s, which  The phylogenetic profile method for inferring protein func-
represents the presence or absence of the protein in ed¢h gfona| relationships is based on the assumption that function-
sequenced genomes. Pellegrini et al [15][16] have shown thay |inked proteins are under strong selective pressure to co-
proteins with similar profiles tend to be functionally linkedeyolve across species. The pattern that describes the presence
The Rosetta Stone method infers protein interactions using #leapsence of a protein in organisms can be obtained by search-
observation that two interacting proteins expressed separatgly its homologs acroshl organisms [4]. The sequence of a

1proteins that share the same metabolic pathway or a common structtﬁ)rg?tem IS compared with sequences ”0”.‘ reference orga_msms
complex are said to be functionally linked [15]. using BLASTP [2] If the BLAST E-valugis below a certain

2For example, using quartet logic analysis, we may discover that prdtein
may be present in a genome only if at least one progenor c is present. 3An E-value is the probability that, by chance, there is another alignment
We represent this logic function as= f(a,b,c) =avbvc. with a similarity score greater than the given sequence.



threshold, we believe that the protein is present (denoted byAL) Learning logic relationships of protein triplets

in the reference organism; otherwise, it is absent (denoted by gt S', denote a structure in which proteiris related to
0). A string of lengthN consisting of Os and 1s is called theproteins”j andk:

phylogenetic profile of the protein [9][10][15]. It is believed )

that proteins that are engaged in the same complex or common ik={i—>ik—=i}.

pathway are more likely to have similar phylogenetic profiles The lo

osterior probability 08!, given D, and Dys is:
[6]. Pellegrini et al [15][16] have shown that proteins with gp P Y P9 PP s

similar profiles strongly tend to be functionally linked. Hence, log P(Sijyk | Dpp, Drs)

the function of uncharacterized proteins can be predicted _ 10aP(Dr. Doe | St ) + l0a P(S! ) — log P(Der. D
by the function of characterized proteins within the same 9P(Dpp. Drs | i"") 9P(S}id ~10gP(Dpp. Drs)
cluster. Most previous research [12][15][21][22] has focused = !09P(Dpp,Drs|Sjy) +c¢

on finding_ pqirwise similarity bgtween profiles. However, the log P(Dys | Sij,k) +logP(Dpp | Sij’k) +cC @)
simple pairwise measurement is not adequate to describe the

complexity of a cellular network, which may involve branchy/N€recis a constant for all protein triplets, and thus can be

ing, parallel, and alternative pathways. Recently, Bowers |gpore_d. In the secopd eqqallty, we use the fact that, since
prior knowledge is available for any preferred network

al [4] has proposed a logic analysis method to study protei : . - S
trip[le]ts. Trf)e Enethod se%rches yaII combinations 01}/ Srote r_uctureS'j,k, t_he_ log prior logP(S; ) over structures;, is
triplets where one protein (called the target) is regulated piform for alli, j andk. Ir! Fhe Iast. equality, we a-lsoAassume
two other proteins (called the predictors) with 8 types atDpp- andDys are cond|t|qnally independent g'Véﬂ,k'

logic functions. They have selected all protein triplets with 1€ first term, lo>(Drs | S;y), can now be represented as:

uncertainty cofficient valges above a certain .thres_hold, and log P(Dys | Si]_ ) = log P(Sijk | Dys) + € @)
discovered 750,000 previously unknown relationships among ’ _
protein families. wherec’ is a constant for all protein triplets, sind&(S;,)

Other than phylogenetic profiles, the gene fusion meth@d P(Drs) are constantP(S;, | Drs) is the prior probability
[14] has also been widely used to study functionally linke@f the structurej — i < k given the Rosetta Stone data.
proteins. Previous work [14] showed that some pairs of intepNce the Rosetta Stone method analyzes domain fusion events
acting proteins that are expressed separately in one organfdffy On pairs of proteins, assuming that the protein functional
may fuse into a single protein chain in another organism. THBkages are conditionally independent giver, the log prior
protein chain is called the Rosetta Stone protein. This fusigficbability over the triplet structur; is decomposed as the
event in complete genomes can be identified by sequence cynmation of the pairwise log prior probabilities:
parison. Due to the fact that certain genes are fused together
with selective pressure during evolution, the analysis of geng,q p(sijk | Dys) = 10gP(j — i | Drs) + logP(k — i | Dys) (3)
fusion and division events, which is commonly known as the '

Rosetta Stone method, has been applied to identify protdfRereP(j — i| D) is the confidence level that proteiris
functional linkages [7]. Statistical analysis of identified proteiftnctionally linked with proteinj identified by the Rosetta
functional relationships can be used for protein annotatitione method. In the absence of Rosetta Stone confidence
[11]. information, we simply use the probabili§(j — i) =8 as a
prior. The default value o8 is set to 0.3 in our study.

For the second term in Eq 1, we can learn how well the
profiles of j andk predict the profile of by maximizing the log
likelihood log P(Dyp, | ;). Since the likelihood?(Dpp | Sj)
represents the probability that the structlﬂ*ﬁ explains the
dataseD,,, we choose a logic functioh, given byi = f(j, k),
that minimizes the prediction error, so as to maximize the log
likelihood log P(Dyy, | S‘j,k).

Once an optimal logic function is found for each structure,
the likelihoodP(Dpy | S‘j,k) is defined as:

I1l. B AYESIAN MODELING FRAMEWORK

In protein triplet analysis, let us assume that protgiasd
k predict protein with logic function f. We consider a single
network structureS with j — i andk — i and assign to it si
the logic functionf(j, k) that predicts the presence or absence*’
of proteini. We systematically analyze all combinations of P(Dpp | Sij,k) =U(@| f(j,K)
triplets and assign a score to them based on how well the lo iﬁ . , ) . )
functions over two proteins can predict the target protein. ere_f IS an opt|mal_ Iog|<_: fungtlon, _and the uncertainty
the analysis off-order logic relationshipsg(> 3), the network coefficient [20]U(x|y) is defined in the interval [0,1] as
structure is a directed acyclic graph (DAG) with- 1 edges
from the predictors to the target protein. We first explain the Ux1y) = [H(X) + H(y) — H(x Y)I/H(X) )
case wherg = 3, and later we expand it to higher orders. whereH(x) is the entropy of a discrete variablke[18].

We now present a Bayesian modeling framework to jointly ,

learn prOtei.n |09i9 relationships from two types of data: prote gies. To be consistent, we also use the same threshold value for the Rosetta
phylogenetic profiles§,p) and Rosetta Stone dat®;). Stone method.

As in [4], we use a threshold value of 0.3 for pairwise phylogenetic profile



Intuitively, U(x]y) is the predictability of variable« on the Let a,b and c be three proteinsa andb be the predictors
basis of variabley. x is completely predicted by if and only of ¢, and f be a logic function, where
if U(xly) = 1, whereasx is independent of if and only if =
U(xly) = 0. ThereforeU(i | f(j,K)) represents the probability ¢=f(ab)=(anb)v(anb)
that the profile of protein is predicted by the logic function Note that by simplifying the logic functiom, cis a function
over the profiles of proteing and k. of a with ¢ = a, regardless ob. In this caseb is a pseudo

In the triplet examinations described in [4], the threshold gdredictor ofc, and has no féect onc.
pairwise uncertainty cdicient is set to 0.3, and the threshold Predictors that do not influence the logic function may bias
of logically combined profiles is set to 0.6. We use ththe learning results since they have no actual links to the
same threshold values in the corresponding analysis. Giwanget protein. To determine the logic function between a target
a protein tripletj,k andi, where j and k are the predictors protein and its predictors, we only use logic functions in which
andi is the target, we only consider the triplet in which thevery predictor plays a role in predicting the target. This leads
individual pairwise uncertainty céigcient is low [U(i|j) < 0.3 to the notion of gproper function
and U(ilk) < 0.3]. The low pairwise uncertainty céicient We say thatz = f(Xg,...,Xn) IS a proper function if, for
indicates that no relationship can be identified between the 1...n, X influencesz through functionf.

predictors and the target via pairwise analysis. With n predictors, the number of proper functiopf) is
given by
B. Learning logic relationships of higher order tuples n
n _l . .
It is likely that a protein is linked to a larger set of proteins p(n) = 2" - 37 ( i ) p(i). fornx=1; @)
with logic relationships that go beyond triplets. Our Bayesian p(0) = 2. otherwise.

modeling framework can be easily extended to a more genera{/\/h ider loaic funct the input ord f th
model for jointly learning protein logic relationships with more di etn WehCOToTI e[ boglckunq |?ns, € Ift'lp: oraer OI Iet
than two predictors. predictors should not be taken into account. For example, le

L _ f _— : us assume that we ha\{e two fgnctid’m;: anbandf, = anb,
of tﬁte ?g;i:]et ;%Eeiri.’ SC/}e t()::maassitigon r’lo(r;aratei% ; ﬁig[i%f which are diferent logic functions with respect to the order
given byi = f(py py). In other word, the profile of is of their inputsa andb. The meaning of these two functions
- se++s Mn)- I} . . . . .
predicted by the logic functiorf over the profiles ofSye. imply that if one predictor is present and the other predictor

The structure by which proteinis related toS,ye is given by is absent, the target protein is present. Therefore, they should
S. ={j—i|]e Syl The log posterior prpobability of the be considered as the same function since they are equivalent
Spre preJ-

roctureS . wo dat B dD... is: to each other.

structuress, . given two data SourceSpp and brs, 1S: We say that two functions are structurally equivalent if they
log p(siSpe | Dpp» Drs) are identical functions, regardless of the order_of the input
B i oa P(S! b 5 nodes. The class of structurally equivalent functions contains
= 10gP(Dpp | Ss,,) +109P(Ss,, IDis) +€ (5) gl |ogic functions that are structurally equivalent to each

wherec is a constant value for all protein Sﬁ%r& and can other. In this paper, we also refer to the class of StrUCtUra”y

be ignored. equivalent functions as lagic type
We represent the log prior probability over the structure with Let n be the number of predictors of a logic function. In
edge-wise decomposition: triplet analysis It = 2), there are 8 logic types [4] correspond-
ing to 10 proper functions. In quartet analysis £ 3), we
logP(S5 | Dys) = Z logP(k — i | Dys) (6) have 68 logic types corresponding to 218 proper functions.
P KeSe To learn the functionf(j, k) that maximizes the likelihood

P(Dpp | Sij!k), we only consider proper functions and their

functionally linked with proteirk, as identified by the Rosettacorrequndmg logic typgs: We can find an optlmal funct_|on
that minimizes the prediction error by searching the profiles

Stone method. of proteinsi, j and k. Given the profile of a target protein
Note that the computational complexity of analysis is now b -] . P get p

. . : ; and its predictors, the time for finding an optimal function
increased due to the increased size of the proteinSget . . - .
. is linear with respect to the length of the profile. Note that
Moreover, a large number of samples (i.e., a large number Rf : . . ' .
. ) : ; . : . the optimal function may not be unique. It is possible that a
organisms) is required to precisely estimate logic functions for = ~" " . : . :
. . : rotein triplet or quartet may obeyfthrent logic relationships
higher order proteins. Therefore, the number of proteins to Be . . .
i . o m-different biological pathways. Therefore, a network structure
co-analyzed will be relatively small in this case. . : ) .
may correspond to more than one optimal logic function. Since
o o _ _ all of the optimal functions correspond to the same network
C. Maximizing the likelihood with proper functions structure with the same predictive error, a specific choice of
When finding optimal logic functions by maximizing thea logic function from those does noffect the likelihood.
log likelihood log P(Dpp | Si,e) @among all #" possible logic However, the interpretation of finding, the relation among
functions with n predictors, some of them may not reflecthe presence aymt the absence of specific proteins, will be
the actual influence of the predictors. We give the followingffected by such choice. In this paper, we only considered one

example: of these optimal logic functions, which we think that leads to

whereP(k — i | D;s) is the confidence level that proteins



TABLE |

DESCRIPTION OF PROTEINS A, B AnD C

A 110011111111111121111100111010111111121111111111001111111111011711111
B 1011010011001111111011101111111110000111011111111101011111100111000
C 1100110000001111110010011100001111011001111111001111111111100111000

A (COG0469): Pyruvate kinase
B (COGO0574): Phosphoenolpyruvate synthipgeivate phosphate dikinase
C (COG1175): ABC-type sugar transport systems, permease components

biologically plausible results. In practice, however, the expesf Aeropyrum pernixare categorized into 140 COGs. This
molecular biologists should consider all such functions amiimber is feasible for computation on a single PC in terms
choose the one that can be experimentally validated. of running timé. Note that our method can be easily imple-
Let m be the total number of proteing, the number of mented on a parallel cluster of computers to analyze protein
input variables in a logic function, aridhe length of a given logic relationships with large number of COGs. The protein-
phylogenetic profile. For a Boolean function withinputs, coding sequences of a genome are aligned using BLAST. A
there are(”?l) x m possible cases to be considered. For eaclonfidence value is then computed from the probability that
case, and for a bounded number of variables, the complexityo proteins may be found to be linked by chance, when the
of finding the optimal function is linear in the length ofRosetta Stone method is used [5]. The confidence value that
the profile. The computational complexity for inferring logigorotein j is functionally linked with protein by the Rosetta
relationships over all proteins ©m™?! - 1). For a Boolean Stone method i®(j — i | Dys).
function with number of predictors n, we needQ(2" +

nlogm) species in the phylogenetic profiles to identify the TABLE Il
Boolean function [1] Whem is |arge an overfitting problem PAIRWISE AND TRIPLET ANALYSIS OF PROTEINS COG0469, COGO0574nD
, COG1175.

may occur due to inglicient sample size. Considering the
computational complexity and the statistical overfitting issue,

. R . Pairwise U(xly)
we usen = 2 (triplet) andn = 3 (quartet) in our analysis. U(AD) 0.13
Given the structureS, and the proper functiorf that UAC) 0.22
maximizes the likelihood, we calcula®(Dpy | S},) using the { U(Alfom(BqTé')';'et vt %
entropy and uncertainty cfiggient of protein triplet profiles. Rosetta Stone Data
We use the same method to comp&@,, | Sg ). P(B — Al Drs) 0.77
pre P(C - A| Dyy) 0.30

[ Triplet Score value = -2.33 |

IV. ANALYSIS AND DiscussioN

In this section, we integrate phylogenetic profile and Rosetta
Stone data to find the logic relationships in protein triplets and ' ' _
quartets by using the previous Bayesian framework. We fifgt Joint learning on triplets of proteins

describe those two types of data sources, and then discuss thge have applied our framework, using the phylogenetic pro-

results of our analysis. file and Rosetta Stone data, to study the logic relationships on
protein triplets. We systematically analyzed all protein triplets
A. Data Sources and computed a score value for each of them using Eqg.1. The

score shows how well the two predictor proteins could predict

We have obtained the phylogenetic profile data from ghsence or presence of the target protein, given the optimal
publicly available database [4] consisting of a set of binary- P get p 9 P

I rediction function. The triplets were ranked in descending
valued vectors describing the presence or absence of each prg- ; . .
. S ) er according to their corresponding scores. Among the
tein family in 67 fully sequenced organisms. We choose 1 o :
L o L riplets with high scores, we observed that many predictors fall
distinct families from the original dataset, known as cluster

of orthologous genes (COGs), where each protein family @to two_functlonal categories: the Amino acid trgnsport and
: . etabolism category and the Coenzyme metabolism category.
annotated by one or more of 20 functional categories [4]. . : .
X T . Together they predict the profile of a target protein from
COG is a cluster that contains individual orthologous proteins ; . ;
: another functional category, the translation ribosomal structure
or orthologous sets of paralogs from at least three Imeaggnsd biogenesis category. We also observed that many proteins
[19]. A set of genes in diierent species is orthologous if the 9 gory yp

the triplets with high scores belong to the same category.

genes have been evolved from a s_mgle ancestral gene [ A'me logic relationships involve proteins from categ&@y
The set of such orthologous genes is called orthologs. Genes

that are related by duplication are known as paralogs [ge\(_ ich is annotated as unknown functional category. These

. . . . . “estimated connections make intuitive sense and could provide
Orthologs typically retain the same function during evolutio Lo . .
: . . ey insight into the functional roles of these proteins.
while paralogs may evolve into new functions.

) The Rosetta Stone data _Of theropyrum pernixspecies- 5The running time of searching and analyzing the functional linkages with
is obtained from the ProLink database [5]. The proteinsotein triplets and quartets is about 20 hours on a Pentium 4 2.53GHz PC.



TABLE Il

DESCRIPTION OF PROTEINS D, E aND F

1101100001001101111110011100010001011111110001001111101001101101000
1101110011111111111101111100010000000111011001111111101001000101000
1101100000001101111010011111111111011001110111001111111111100111000

mmo

D (COG3842):  ABC-type spermidifjgutrescine transport systems, ATPase components
E (COG1126):  ABC-type polar amino acid transport system, ATPase component
F (COG3839): ABC-type sugar transport systems, ATPase components

Our method recovers all relationshi mong protein fami TABLE IV
. U €thod recovers all rela 0 sNips among protein fami- PAIRWISE AND TRIPLET ANALYSIS OF PROTEINS COG3842, COG1126np
lies in [4]. Moreover, our method finds a number of novel rela-
. . : . . . COG3839.
tionships. We have evaluated the discovered relationships via
known annotations of linked proteins. The following examples Painwise U(Xy)
show several previously undiscovered triplet relationships. U(DIE) 0.18
We have examined the profiles of 3 proteiagCOG0469), | U(OIF) R 0.18 l
B (COG0574) andC (COG1175) which are described in O E F) r 0ag ]
Table I. The uncertainty céiécient scores are listed in Table 1. Rosetta Stone Data
In pairwise analysis, the uncertainty ¢beient scores of EEE:S:B% g-gg
U(AIB), U(AIC) are 013 and 022, respectively. Both of them l Triplet — ]

are below the threshold valu@.3. The triplet uncertainty
codlicient score is0.42 which is below threshold 0.6. The

Rosetta Stone value betweénand C is 0.3. Hence using

phylogenetic profile data or Rosetta Stone data alone, we Coﬁ{[)P—bindi.ng biosynthesis. Both of them are involved in the
not identify triplet relationships among proteids B andC. Procaryotic pathway of ABC transporters. The ancestral gene
However based on our joint learning method, the triplet th@f D (COG3842) is potA, which is in the same category
proteins B and C predict proteinA ends up with a top 2% of Amino acid transport and metabollsm as gene gInQ._The
significant score value under the logic functian b. ancestral gene potA has been also identified as playing a
The previous three COGs fall in grou (the category of functional role in the prokaryotic pathway of ABC transporters
Carbohydrate transport and metabolism). The ancestral gdh&-coli. The discovered protein triplet is validated by known
PpsA of COGO0574 is type-| polyketide synthase and is highRfOte'” function annotations. Furthermore, the above triplet
similar to others from Mycobacterium leprae. The ancestrgn not be identified using a single data source.
gene PykF of COG0469 is involved in Pyruvate metabolism, 1€ 30 most significant triplets are shown in Figure 1.
so as PpsA. The ancestral gene UgpA of COG1175 is proﬂ-eh-e proteins in this network belong to functional categories
bly the Sn-glycerol-3-phosphate transport integral membrafe (Amino acid transport and metabolismk (Inorganic
protein ABC transporter. This hypothesis is supported by!@" transport and metabolismfz (Carbohydrate transport
FASTA score® which infers that UgpA is likely to play a and metabolism) a_ntr (Energy prqducnon {and c_onversmn).
functional role in Pyruvate metabolism based on informatighMong those 30 triplets, only 4 triplet relationships could be
extracted from the NCBI database. The above biological ifécovered using phylogenetic profiles alone and 9 functional

formation supports the triplet relationships that we discoverdigkages could be recovered using Rosetta Stone data alone.
by logic analysis. Combining multiple data sources can help us reveal previously

We also examined the triplet of proteid (COG3842), unrecovered triplets. The linkages connecting uncharaterized
E (COG1126) andF (COG3839), which are described inProteins (or general function predicted proteins) with anno-

Table Il In Table IV, we list the pairwise and ternarytatEd proteins in the network suggest that these proteins are
uncertainty cofficient scores using phylogenetic profiles anfvolved in new functions. For instance, the superfamily II
pairwise scores using the Rosetta Stone data. Helicase, associated with COG1204, is connected to ABC-

Using phylogenetic profile data alone to infer logic relayP€ antimicrobial peptide transport system ATPase component
tionships amongD, E and F will end up with no findings Sal?(. It suggests that t.he proteins in this super family might
because the pairwise and ternary fioéent scores are below P€ involved in the peptide transport process.
threshold values. However, applying the proposed Bayesian
framework using two data sources, we found tRatcould C. Joint learning on quartets of proteins
be predicated by and F with a top 1% significant score
using the logic functionD = E A F. The ancestral gene
gInQ of E (COG1126) is involved in the glutamine transpor

In Egs. 5 - 7, we showed that the proposed framework can
ge easily extended to infer logic relationships with more than
- : : predictors. In this section, we study quartets of proteins
Agggérggg_blpsyr}thedqs ‘;? d theltanceltst:jal gggnet malie c;f (the target protein can be predicted by three predictors). We
( ) is involved in the maltogealtodextrin transpor obtain the scores of all possible quartet combinations and rank

6A FASTA score is a sequence alignment score using the FASTmem n Qescendmg Orderj The threshold scaexeis set to
program[17], which is used to measure the sequence similarities. -3.612 since a quartet with score3.612 has the property



Inputy, Input, | fy | f7 | fix | fis
0 0 0|0 1 1
0 1 o|1|0 1
1 0 0|1 1 0
1 1 1)1 1 1

Fig. 1. An illustration of top 30 most significant triplets that are jointly learned by phylogenetic profile and gene fusion events. Each node represents a
protein. The directed edges represent the functional linkages from the predictors to target for each triplet relationship. The edges are labeled according to the
function. Nodes with the same color mean they belong to the same category, which can be obtained from supporting material from [4].

TABLE V
DescriptioN oF PROTEINS COG0444, COGO0747, COG1136p COG3845

1111111010111111111111111100010001111000111111001111110111001101000
1111110010111111111111111100011110000001111111001110111111000101000
1111121121122122112112212121121012111211211211001111111111001111211000
1001000000001000000010011100000001111001010111000101100001101000000

oO0Ow>»

A(COGO0444):  ABC-type dipeptideligopeptid¢nickel transport system, ATPase component
B(COG0747):  ABC-type dipeptide transport system, periplasmic component
C(COG1136):  ABC-type antimicrobial peptide transport system, ATPase component
D(COG3845):  ABC-type uncharacterized transport systems, ATPase components

that th dictors cafully predict the target protein usi TABLE VI

a ree predictors ¢ y predic € target protein using TRIPLET AND QUARTET ANALYSIS OF PROTEINs COG0444, COG0747, COG1136
phylogenetic profile dataP(Dp, | SS ) 1.0), while no " COG3BAS
linkage between the predictors and the target can be discovered ’
using the Rosetta Stone methd&({ — i | Drs) = 0.3,V € Triplet UOAT.2)
Spre)- U(AIT(B.C)) 0.28

. U(AIf(B, D)) 0.02
The scores of protein quartets that are greater or equal to the UAT(C D) 509

threshold value are considered to be significant. We examined Quartet U(X[T(q. Y. 2)) ]

[

12‘0) x4 = 61,318 460 combinations of all protein quartets, [ U(Afop(B,C, D)) 045 |
and discovered 143,057 previous unknown relationships with o Afg’i;*“a Stone Dals
significant scores. P(C — A| Dys) 0.84

We examined four proteins COGO0444, COGO0747, PO > Al Dre) 084

Quartet Score value= -2.41 |

COG1136 and COG3845 with ancestral genes DppD, DdpA, |
SalX and unknown, respectively. We list the phylogenetic

profiles in Table V and pairwise, triplet and quartets analysis

results in Table VI. We can identify that both DdpA andransport pathway. COG3845 is clustered with proteins whose
DppD play functional roles in the ABC transport pathwayfunction in the ABC-type uncharacterized transport system is
The description of SalX in the KEGG database shows that tgeneral. It is highly possible that those four proteins should
ABC-type transporter is related to transport system, whidfe annotated to be involved in the ABC transport pathway.
means SalX has a very close relationship with the ABC Note that pairwise or triplet analysis among these four pro-



teins using phylogenetic profiles alone could not recover the
linkages because they resulted in poor uncertaintyficient
scores. The relationship between DppD and DdpA is missed
if we apply the Rosetta Stone value only.

The previous examples illustrate that our method can ef-
fectively reveal many quartets that are not discovered using
pairwise or triplet analysis on a single data source.

In quartet analysisn = 3), there are 68 logic types
consisting of 218 proper functions. A total of 62 logic types
were observed in quartet analysis among 140 COGs. Figure 2
shows the number of occurrences of the top 10 most frequently
observed logic types based on the optimal prediction functions
in quartet analysis. The corresponding logic functions are
shown in Table VII. The remaining 52 logic types are not
as frequently observed as those top 10 logic types. Due to
space limitation, we do not list all of them in this paper.

4 Most Frequently Observed Logic Types
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# of Observations in Quartets
= I w
= (%l N & w o S

nd
3

A B (03 D E F G H | J
Logic Type

Fig. 2. Top 10 most frequently observed logic types in quartet relationships

Example 1(Type A Logic)

COGO0517 is classified only as hypothetical or putative
protein in FOG:CBS domain in the NCBI database. In our
analysis, COGO0517 is present in a genome only if COG1121
is present, or COG3839 is not present, or COG3842 is
not present. COG1121 is an ABC-type Mn transporter
ATP-binding protein. COG3839 is an ABC-type sugar
transporter ATP-binding protein. COG3842 is a member
of the ABC-type spermidinputrescine transport systems,
ATPase components. These results suggest that the protein
associated with COG0517 may play certain functional role in
the ABC-type transport system as an ATP-biding protein.

Example 2(Type B Logic)

COG1109, a phosphomannomutase, is present in a genome
only if COG1208 or COG 1209 is present, or COG1319
is not present. COG1208 is Nucleoside-diphosphate-sugar
pyrophosphorylase involved in lipopolysaccharide biosynthe-
sigtranslation initiation factor 2B, gamnepsilon subunits
(elF-2BgammgelF-2Bepsilon). COG1209 is dTDP-glucose
pyrophosphorylase. COG1319 is Aerobic-type carbon monox-
ide dehydrogenase, middle subunit CoxMtM homologs.
The results suggest that COG1109 may have putative func-
tional linkages with pyrophosphorylase which is associated
with COG1208 and COG1209, and COG1319.

The previous two examples show that the logic analysis of
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protein quartet can also be used to hypothesize the annotationStatistical analysis results of the top 1,000, 2,000 and

of uncharacterized proteins or proteins that are assigned,800 protein quartets with significant scoresare shown

general function. in Figure 4. By analyzing the top 1,000 discovered protein
guartets associated with significant scores>( -2.52), we
found that more than 76% of them hayevalue < 5E-07,

D. Statistical Analysis and all of them havep-value < 7E-07. We further examined

The accuracy of the discovered protein functional linkagés000 most sigonificant quartets £ —2.69), and observed that
can not be exactly verified due to a limited knowledge dfore than 66% of them havp-value < 1E-06, and all of
protein interactions and pathways [13]. Furthermore, mafyem havep-value < 2E-06. In about 5,000 most significant

protein interaction databases contain spurious linkages, whiiifrtets €= —2.93), 96% of them have-value < 6.65E-06.
can not be directly used to evaluate our findings in terms Jhe results also showed that all of the 143,057 protein quartets
precision and recall. (s> —-3.612) havep-value < 5.71E-04.

In our work, we present statistical analysis to test the
significance of discovered logic relationships. We design the 100
method in three steps. First, we generate a matrix of ran- 9
domized phylogenetic profiles maintaining temeindividual sof
distributions as the actual profiles. Second, we compute the  7f
score for each protein quartet using Eq.1 on the randomized % °r
datasets and rank them in descending order according to the §
calculated scores. Finally, we repeat the previous steps 100 £ 40
times. For testing statistical significance, we used 50 nodes of

P value of significant Quartets
T

centage

501

dual-CPU (Xeon 2.8 GHz) machines, a subset of 512 nodes %] —Top 5000 Significant Result |

. | = T0p ignifican esults | |
dual-CPU clusters available at ASU-TGen. It took four hours 10 —— Top 1000 Significant Results
of CPU time, which results in a total computation time of 182507 225E-07  5asE-07  L1SE-06  246E-06  4.66E-06

P-value

400 hours. We then evaluated the statistical significance of
the discovered relationships vigvalues, ps, with respect to
the log posterior probability valus, defined by [4]

Fig. 4. p-value of the protein quartets with significant scores

_1Rs

= , (8) V. CoNcLUsION
| Al

In this paper, we presented a new approach for joint learning
where|R4| is the number of discovered logic relationships witlof protein logic relationships from both protein phylogenetic
scores> sin the random datasets, afid] is the total number profile and Rosetta Stone data. We used a Bayesian model
of quartet trials. In this experimentA| = (1;‘0) x 100. to incorporate phylogenetic profile data via a likelihood and
We applied the method to analyze the statistical significanBesetta Stone data via a prior. By extending pairwise and
over 143,057 previously unknown relationships of quartetsiplet logic analysis, we proposed a general method for
The logic relationships discovered from the original datasdtientifying high order protein logic relationships, such that
are approximately 100 times as frequent as the ones discovetes presence or absence of one protein can be predicted by
from the random datasets. Figure 3 shows, in a log scale, the profiles of two or more other proteins. We used the notion
number of identified protein quartets against the score valugfsproper function to reflect the actuaffect of the predictors

S

for the actual and random datasets. on the target protein. With our generalized definitions and
framework, the model can be easily extended to infer protein
1 _ AcwalvsRandomDataset logic relationships with larger number of proteins.
— Actual Dataset We applied our model to jointly learn the protein triplet

Random dataset with the same distribution

and quartet relationships on phylogenetic profile and Rosetta
Stone datasets over 140 COGs. We identified biologically
meaningful functional linkages, which could not be recovered
using phylogenetic profile or Rosetta Stone data alone. In
protein triplet analysis, we listed the top 30 significant protein
triplets. We also applied our method to systematically examine
all protein quartets. In joint learning of protein quartets, we re-
covered 143,057 previously unknown relationships associated
10° ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ with significant scores. We performed statistical analysis to
-36 -34 -32 -3 -28 -26 -24 -22 -2 -1.8 -16 . . . .

Score Value evaluate the significance of the discovered protein quartets.

The analysis showed that 96% of the top 5,000 quartets

Fig. 3. A plot of the cumulative number of protein quartets recovered gith significant scores have-value < 6.65E-06, and all of
a score greater than a given threshold. The number of discovered protﬁ,%r(]a 143,057 quartets havevalue <_5 71E-04 ,A selected

quartets above certain score in the actual datasets 49 times frequently e . X
as the number in the random datasets. number of significant protein triplets and quartets were further

# of Quartet Observed

=
o
-
T




studied by using the KEGG and NCBI pathway databases. Tia@ Theil, H. Statistical decomposition analysis with applications in the so-

putative functional linkages discovered by our joint learning cial and administrative scienceStudies in Mathematical and Managerial
L : . Economicsvol 14 (1972).

method can aid in the process of annotating protein databaﬁf’ Wu, J., Kasif, S. and DelLisi, C. Identification of functional links

and help us better understand the evolution of biological between genes using phylogenetic profil@oinformatics vol 19 1524-

systems. 1530 (2003). N . ‘
[22] Yanai, I. and DelLisi, C. The society of genes: networks of functional

links between genes from comparative genomi€enome Biol. vol 3
0064.1 - 0064.12 (2002).
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