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Abstract— Identifying logic relationships between proteins is
essential for understanding their function within cells. Previous
studies have been done to infer protein logic relationships using
pairwiseand triplet logic analysis on phylogenetic profiles. Other
computational methods have also been developed using pairwise
analysis on Rosetta Stone data to infer protein functional link-
ages1. In this work, we describe a Bayesian modeling framework
for combining phylogenetic profile data via a likelihood with
Rosetta Stone data via a prior. Based on the proposed framework,
we develop a general method for jointly learning high order
logic relationships among proteins whose presence or absence
can be identified by logic functions2. The method is applied to
analyze protein triplets and quartetson phylogenetic profile and
Rosetta Stone datasets with 140 clusters of orthologous genes
(COGs). The biological meaning of the top 30 significant triplets
are further verified using the KEGG and NCBI databases. Over
50% of the discovered relationships that are associated with high
significant scores could not be inferred using phylogenetic profile
or Rosetta Stone data alone. Our statistical analysis shows that
all significant quartets have p-values≤ 5.71E-04. Many of them
assign putative functional roles on uncharacterized proteins.

Index Terms— phylogenetic profiles, Rosetta Stone method,
protein logic relationships.

I. I

Identifying protein functions is essential for understanding
molecular interactions. The functions of many translated pro-
teins can be predicted by homology. However, homology based
methods can only provide a partial understanding of a pro-
tein’s function [5]. Alternatively, studying protein interacting
partners can provide a more complete understanding of pro-
tein function. Various non-homology-based methods, such as
phylogenetic profiles [15] and gene fusion events (also known
as the Rosetta Stone method) [7][14], can be used to discover
functional linkages by pairwise analysis of non-homologous
proteins that are co-evolved. The protein phylogenetic profile
is a numerical string of lengthN consisting of 0s and 1s, which
represents the presence or absence of the protein in each ofN
sequenced genomes. Pellegrini et al [15][16] have shown that
proteins with similar profiles tend to be functionally linked.
The Rosetta Stone method infers protein interactions using the
observation that two interacting proteins expressed separately

1Proteins that share the same metabolic pathway or a common structural
complex are said to be functionally linked [15].

2For example, using quartet logic analysis, we may discover that proteind
may be present in a genome only if at least one proteina,b or c is present.
We represent this logic function asd = f (a,b, c) = a∨ b∨ c.

are sometimes fused into a single chain in the same or another
organism [7][14].

Various research has been done to study functional rela-
tionships among proteins using different types of data. Since
each type of data sources provides only partial information,
assuming that noise and bias of various data sources are largely
independent, jointly learning from multiple data sources can
result in more and better knowledge [3]. Bowers et al [5] stud-
ied protein relationships with pairwise analysis by choosing an
optimal confidence value from four types of data. They also
applied protein triplet analysis with logic functions [4] using
phylogenetic profile data alone. However, no previous research
has been done on jointly learning protein logic relationships.

In this paper, we present a Bayesian modeling framework
that combines protein phylogenetic profile data and Rosetta
Stone data to study the logic relationships among protein
triplets and quartets. By incorporating functional linkage in-
formation from Rosetta Stone data, we can more reliably infer
high order logic relationships among proteins. Those logic
relationships can further aid in assigning biological function
to uncharacterized proteins.

The rest of the paper is organized as follows. In Section II,
we review related work. In Section III, we develop a Bayesian
modeling framework by combining phylogenetic profile data
via a likelihood with Rosetta Stone data via a prior. In
Section IV, we apply the proposed framework to find protein
logic relationships using public phylogenetic profile [4] and
Rosetta Stone data [5] with 140 distinct families known as
clusters of orthologous genes (COGs). We then discuss our
results. In Section V, we summarize the proposed method and
discuss future work.

II. R W

The phylogenetic profile method for inferring protein func-
tional relationships is based on the assumption that function-
ally linked proteins are under strong selective pressure to co-
evolve across species. The pattern that describes the presence
or absence of a protein in organisms can be obtained by search-
ing its homologs acrossN organisms [4]. The sequence of a
protein is compared with sequences from reference organisms
using BLASTP [2]. If the BLAST E-value3 is below a certain

3An E-value is the probability that, by chance, there is another alignment
with a similarity score greater than the given sequence.
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threshold, we believe that the protein is present (denoted by 1)
in the reference organism; otherwise, it is absent (denoted by
0). A string of lengthN consisting of 0s and 1s is called the
phylogenetic profile of the protein [9][10][15]. It is believed
that proteins that are engaged in the same complex or common
pathway are more likely to have similar phylogenetic profiles
[6]. Pellegrini et al [15][16] have shown that proteins with
similar profiles strongly tend to be functionally linked. Hence,
the function of uncharacterized proteins can be predicted
by the function of characterized proteins within the same
cluster. Most previous research [12][15][21][22] has focused
on finding pairwise similarity between profiles. However, the
simple pairwise measurement is not adequate to describe the
complexity of a cellular network, which may involve branch-
ing, parallel, and alternative pathways. Recently, Bowers et
al [4] has proposed a logic analysis method to study protein
triplets. The method searches all combinations of protein
triplets where one protein (called the target) is regulated by
two other proteins (called the predictors) with 8 types of
logic functions. They have selected all protein triplets with
uncertainty coefficient values above a certain threshold, and
discovered 750,000 previously unknown relationships among
protein families.

Other than phylogenetic profiles, the gene fusion method
[14] has also been widely used to study functionally linked
proteins. Previous work [14] showed that some pairs of inter-
acting proteins that are expressed separately in one organism
may fuse into a single protein chain in another organism. The
protein chain is called the Rosetta Stone protein. This fusion
event in complete genomes can be identified by sequence com-
parison. Due to the fact that certain genes are fused together
with selective pressure during evolution, the analysis of gene
fusion and division events, which is commonly known as the
Rosetta Stone method, has been applied to identify protein
functional linkages [7]. Statistical analysis of identified protein
functional relationships can be used for protein annotation
[11].

III. B  

In protein triplet analysis, let us assume that proteinsj and
k predict proteini with logic function f . We consider a single
network structureS with j → i and k → i and assign to it
the logic functionf ( j, k) that predicts the presence or absence
of protein i. We systematically analyze all combinations of
triplets and assign a score to them based on how well the logic
functions over two proteins can predict the target protein. In
the analysis ofq-order logic relationships (q ≥ 3), the network
structure is a directed acyclic graph (DAG) withq− 1 edges
from the predictors to the target protein. We first explain the
case whenq = 3, and later we expand it to higher orders.

We now present a Bayesian modeling framework to jointly
learn protein logic relationships from two types of data: protein
phylogenetic profiles (Dpp) and Rosetta Stone data (Drs).

A. Learning logic relationships of protein triplets

Let Si
j,k denote a structure in which proteini is related to

proteins j andk:

Si
j,k = { j → i, k→ i} .

The log posterior probability ofSi
j,k given Dpp and Drs is:

logP(Si
j,k | Dpp,Drs)

= logP(Dpp,Drs | Si
j,k) + logP(Si

j,k) − logP(Dpp,Drs)

= logP(Dpp,Drs | Si
j,k) + c

= logP(Drs | Si
j,k) + logP(Dpp | Si

j,k) + c (1)

wherec is a constant for all protein triplets, and thus can be
ignored. In the second equality, we use the fact that, since
no prior knowledge is available for any preferred network
structureSi

j,k, the log prior logP(Si
j,k) over structureSi

j,k is
uniform for all i, j andk. In the last equality, we also assume
that Dpp and Drs are conditionally independent givenSi

j,k.
The first term, logP(Drs | Si

j,k), can now be represented as:

logP(Drs | Si
j,k) = logP(Si

j,k | Drs) + c′ (2)

where c′ is a constant for all protein triplets, sinceP(Si
j,k)

and P(Drs) are constant.P(Si
j,k | Drs) is the prior probability

of the structure j → i ← k given the Rosetta Stone data.
Since the Rosetta Stone method analyzes domain fusion events
only on pairs of proteins, assuming that the protein functional
linkages are conditionally independent givenDrs, the log prior
probability over the triplet structureSi

j,k is decomposed as the
summation of the pairwise log prior probabilities:

logP(Si
j,k | Drs) = logP( j → i | Drs) + logP(k→ i | Drs) (3)

whereP( j → i | Drs) is the confidence level that proteini is
functionally linked with protein j identified by the Rosetta
Stone method. In the absence of Rosetta Stone confidence
information, we simply use the probabilityP( j → i) ≡ β as a
prior. The default value ofβ is set to 0.3 in our study4.

For the second term in Eq 1, we can learn how well the
profiles of j andk predict the profile ofi by maximizing the log
likelihood logP(Dpp | Si

j,k). Since the likelihoodP(Dpp | Si
j,k)

represents the probability that the structureSi
j,k explains the

datasetDpp, we choose a logic functionf , given byi = f ( j, k),
that minimizes the prediction error, so as to maximize the log
likelihood logP(Dpp | Si

j,k).
Once an optimal logic function is found for each structure,

Si
j,k, the likelihoodP(Dpp | Si

j,k) is defined as:

P(Dpp | Si
j,k) = U(i | f ( j, k))

where f is an optimal logic function, and the uncertainty
coefficient [20] U(x | y) is defined in the interval [0,1] as

U(x | y) = [H(x) + H(y) − H(x, y)]/H(x) (4)

whereH(x) is the entropy of a discrete variablex [18].

4As in [4], we use a threshold value of 0.3 for pairwise phylogenetic profile
studies. To be consistent, we also use the same threshold value for the Rosetta
Stone method.
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Intuitively, U(x|y) is the predictability of variablex on the
basis of variabley. x is completely predicted byy if and only
if U(x|y) = 1, whereasx is independent ofy if and only if
U(x|y) = 0. Therefore,U(i | f ( j, k)) represents the probability
that the profile of proteini is predicted by the logic function
over the profiles of proteinsj andk.

In the triplet examinations described in [4], the threshold of
pairwise uncertainty coefficient is set to 0.3, and the threshold
of logically combined profiles is set to 0.6. We use the
same threshold values in the corresponding analysis. Given
a protein triplet j, k and i, where j and k are the predictors
and i is the target, we only consider the triplet in which the
individual pairwise uncertainty coefficient is low [U(i| j) < 0.3
and U(i|k) < 0.3]. The low pairwise uncertainty coefficient
indicates that no relationship can be identified between the
predictors and the target via pairwise analysis.

B. Learning logic relationships of higher order tuples

It is likely that a protein is linked to a larger set of proteins
with logic relationships that go beyond triplets. Our Bayesian
modeling framework can be easily extended to a more general
model for jointly learning protein logic relationships with more
than two predictors.

Let Spre = {p1, . . . , pn} be a set ofn (n ≥ 2) predictors
of the target proteini. We can assign to proteini a function
given by i = f (p1, . . . , pn). In other word, the profile ofi is
predicted by the logic functionf over the profiles ofSpre.
The structure by which proteini is related toSpre is given by
Si

Spre
= { j → i | j ∈ Spre}. The log posterior probability of the

structureSi
Spre

, given two data sourcesDpp and Drs, is:

logP(Si
Spre
| Dpp,Drs)

= logP(Dpp | Si
Spre

) + logP(Si
Spre
| Drs) + c (5)

wherec is a constant value for all protein setsSpre, and can
be ignored.

We represent the log prior probability over the structure with
edge-wise decomposition:

logP(Si
Spre
| Drs) =

∑

k∈Spre

logP(k→ i | Drs) (6)

whereP(k → i | Drs) is the confidence level that proteini is
functionally linked with proteink, as identified by the Rosetta
Stone method.

Note that the computational complexity of analysis is now
increased due to the increased size of the protein setSpre.
Moreover, a large number of samples (i.e., a large number of
organisms) is required to precisely estimate logic functions for
higher order proteins. Therefore, the number of proteins to be
co-analyzed will be relatively small in this case.

C. Maximizing the likelihood with proper functions

When finding optimal logic functions by maximizing the
log likelihood logP(Dpp | Si

pre) among all 22
n

possible logic
functions with n predictors, some of them may not reflect
the actual influence of the predictors. We give the following
example:

Let a,b and c be three proteins,a and b be the predictors
of c, and f be a logic function, where

c = f (a,b) = (a∧ b) ∨ (a∧ b̄)

Note that by simplifying the logic functionf , c is a function
of a with c = a, regardless ofb. In this case,b is a pseudo
predictor ofc, and has no effect onc.

Predictors that do not influence the logic function may bias
the learning results since they have no actual links to the
target protein. To determine the logic function between a target
protein and its predictors, we only use logic functions in which
every predictor plays a role in predicting the target. This leads
to the notion of aproper function.

We say thatz = f (x1, . . . , xn) is a proper function if, for
i = 1 . . . n, xi influencesz through functionf .

With n predictors, the number of proper functionsp(n) is
given by


p(n) = 22n −∑n−1

i=0

(
n
i

)
p(i), for n ≥ 1;

p(0) = 2. otherwise.
(7)

When we consider logic functions, the input order of the
predictors should not be taken into account. For example, let
us assume that we have two functionsf1 = ā∧b and f2 = a∧b̄,
which are different logic functions with respect to the order
of their inputsa and b. The meaning of these two functions
imply that if one predictor is present and the other predictor
is absent, the target protein is present. Therefore, they should
be considered as the same function since they are equivalent
to each other.

We say that two functions are structurally equivalent if they
are identical functions, regardless of the order of the input
nodes. The class of structurally equivalent functions contains
all logic functions that are structurally equivalent to each
other. In this paper, we also refer to the class of structurally
equivalent functions as alogic type.

Let n be the number of predictors of a logic function. In
triplet analysis (n = 2), there are 8 logic types [4] correspond-
ing to 10 proper functions. In quartet analysis (n = 3), we
have 68 logic types corresponding to 218 proper functions.

To learn the functionf ( j, k) that maximizes the likelihood
P(Dpp | Si

j,k), we only consider proper functions and their
corresponding logic types. We can find an optimal function
that minimizes the prediction error by searching the profiles
of proteins i, j and k. Given the profile of a target protein
and its predictors, the time for finding an optimal function
is linear with respect to the length of the profile. Note that
the optimal function may not be unique. It is possible that a
protein triplet or quartet may obey different logic relationships
in different biological pathways. Therefore, a network structure
may correspond to more than one optimal logic function. Since
all of the optimal functions correspond to the same network
structure with the same predictive error, a specific choice of
a logic function from those does not affect the likelihood.
However, the interpretation of finding, the relation among
the presence and/or the absence of specific proteins, will be
affected by such choice. In this paper, we only considered one
of these optimal logic functions, which we think that leads to
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TABLE I

D   A, B  C

A 1100111111111111111110011101011111111111111111001111111111011111111
B 1011010011001111111011101111111110000111011111111101011111100111000
C 1100110000001111110010011100001111011001111111001111111111100111000

A (COG0469): Pyruvate kinase
B (COG0574): Phosphoenolpyruvate synthase/pyruvate phosphate dikinase
C (COG1175): ABC-type sugar transport systems, permease components

biologically plausible results. In practice, however, the expert
molecular biologists should consider all such functions and
choose the one that can be experimentally validated.

Let m be the total number of proteins,n the number of
input variables in a logic function, andl the length of a given
phylogenetic profile. For a Boolean function withn inputs,
there are

(
m−1

n

)
×m possible cases to be considered. For each

case, and for a bounded number of variables, the complexity
of finding the optimal function is linear in the length of
the profile. The computational complexity for inferring logic
relationships over all proteins isO(mn+1 · l). For a Boolean
function with number of predictors≤ n, we needΩ(2n +

n logm) species in the phylogenetic profiles to identify the
Boolean function [1]. Whenn is large, an overfitting problem
may occur due to insufficient sample size. Considering the
computational complexity and the statistical overfitting issue,
we usen = 2 (triplet) andn = 3 (quartet) in our analysis.

Given the structureSi
j,k and the proper functionf that

maximizes the likelihood, we calculateP(Dpp | Si
j,k) using the

entropy and uncertainty coefficient of protein triplet profiles.
We use the same method to computeP(Dpp | Si

Spre
).

IV. A  D

In this section, we integrate phylogenetic profile and Rosetta
Stone data to find the logic relationships in protein triplets and
quartets by using the previous Bayesian framework. We first
describe those two types of data sources, and then discuss the
results of our analysis.

A. Data Sources

We have obtained the phylogenetic profile data from a
publicly available database [4] consisting of a set of binary-
valued vectors describing the presence or absence of each pro-
tein family in 67 fully sequenced organisms. We choose 140
distinct families from the original dataset, known as clusters
of orthologous genes (COGs), where each protein family is
annotated by one or more of 20 functional categories [4]. A
COG is a cluster that contains individual orthologous proteins
or orthologous sets of paralogs from at least three lineages
[19]. A set of genes in different species is orthologous if the
genes have been evolved from a single ancestral gene [19].
The set of such orthologous genes is called orthologs. Genes
that are related by duplication are known as paralogs [8].
Orthologs typically retain the same function during evolution,
while paralogs may evolve into new functions.

The Rosetta Stone data of theAeropyrum pernixspecies
is obtained from the ProLink database [5]. The proteins

of Aeropyrum pernixare categorized into 140 COGs. This
number is feasible for computation on a single PC in terms
of running time5. Note that our method can be easily imple-
mented on a parallel cluster of computers to analyze protein
logic relationships with large number of COGs. The protein-
coding sequences of a genome are aligned using BLAST. A
confidence value is then computed from the probability that
two proteins may be found to be linked by chance, when the
Rosetta Stone method is used [5]. The confidence value that
protein j is functionally linked with proteini by the Rosetta
Stone method isP( j → i | Drs).

TABLE II

P      COG0469, COG0574

COG1175.

Pairwise U(x|y)
U(A|B) 0.13
U(A|C) 0.22

Triplet U(x| f (y, z))
U(A| fopt(B,C)) 0.42

Rosetta Stone Data
P(B→ A | Drs) 0.77
P(C→ A | Drs) 0.30

Triplet Score value = -2.33

B. Joint learning on triplets of proteins

We have applied our framework, using the phylogenetic pro-
file and Rosetta Stone data, to study the logic relationships on
protein triplets. We systematically analyzed all protein triplets
and computed a score value for each of them using Eq.1. The
score shows how well the two predictor proteins could predict
absence or presence of the target protein, given the optimal
prediction function. The triplets were ranked in descending
order according to their corresponding scores. Among the
triplets with high scores, we observed that many predictors fall
into two functional categories: the Amino acid transport and
metabolism category and the Coenzyme metabolism category.
Together they predict the profile of a target protein from
another functional category, the translation ribosomal structure
and biogenesis category. We also observed that many proteins
in the triplets with high scores belong to the same category.
Some logic relationships involve proteins from categoryS
which is annotated as unknown functional category. These
estimated connections make intuitive sense and could provide
key insight into the functional roles of these proteins.

5The running time of searching and analyzing the functional linkages with
protein triplets and quartets is about 20 hours on a Pentium 4 2.53GHz PC.
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TABLE III

D   D, E  F

D 1101100001001101111110011100010001011111110001001111101001101101000
E 1101110011111111111101111100010000000111011001111111101001000101000
F 1101100000001101111010011111111111011001110111001111111111100111000

D (COG3842): ABC-type spermidine/putrescine transport systems, ATPase components
E (COG1126): ABC-type polar amino acid transport system, ATPase component
F (COG3839): ABC-type sugar transport systems, ATPase components

Our method recovers all relationships among protein fami-
lies in [4]. Moreover, our method finds a number of novel rela-
tionships. We have evaluated the discovered relationships via
known annotations of linked proteins. The following examples
show several previously undiscovered triplet relationships.

We have examined the profiles of 3 proteinsA (COG0469),
B (COG0574) andC (COG1175) which are described in
Table I. The uncertainty coefficient scores are listed in Table II.

In pairwise analysis, the uncertainty coefficient scores of
U(A|B), U(A|C) are 0.13 and 0.22, respectively. Both of them
are below the threshold value0.3. The triplet uncertainty
coefficient score is0.42 which is below threshold 0.6. The
Rosetta Stone value betweenA and C is 0.3. Hence using
phylogenetic profile data or Rosetta Stone data alone, we could
not identify triplet relationships among proteinsA, B andC.
However based on our joint learning method, the triplet that
proteins B and C predict proteinA ends up with a top 2%
significant score value under the logic functionā + b.

The previous three COGs fall in groupG (the category of
Carbohydrate transport and metabolism). The ancestral gene
PpsA of COG0574 is type-I polyketide synthase and is highly
similar to others from Mycobacterium leprae. The ancestral
gene PykF of COG0469 is involved in Pyruvate metabolism,
so as PpsA. The ancestral gene UgpA of COG1175 is proba-
bly the Sn-glycerol-3-phosphate transport integral membrane
protein ABC transporter. This hypothesis is supported by a
FASTA score6 which infers that UgpA is likely to play a
functional role in Pyruvate metabolism based on information
extracted from the NCBI database. The above biological in-
formation supports the triplet relationships that we discovered
by logic analysis.

We also examined the triplet of proteinsD (COG3842),
E (COG1126) andF (COG3839), which are described in
Table III. In Table IV, we list the pairwise and ternary
uncertainty coefficient scores using phylogenetic profiles and
pairwise scores using the Rosetta Stone data.

Using phylogenetic profile data alone to infer logic rela-
tionships amongD,E and F will end up with no findings
because the pairwise and ternary coefficient scores are below
threshold values. However, applying the proposed Bayesian
framework using two data sources, we found thatD could
be predicated byE and F with a top 1% significant score
using the logic functionD = E ∧ F. The ancestral gene
glnQ of E (COG1126) is involved in the glutamine transport
ATP-binding biosynthesis and the ancestral gene malK ofF
(COG3839) is involved in the maltose/maltodextrin transport

6A FASTA score is a sequence alignment score using the FASTA
program[17], which is used to measure the sequence similarities.

TABLE IV

P      COG3842, COG1126

COG3839.

Pairwise U(x|y)
U(D|E) 0.18
U(D|F) 0.18

Triplet U(x| f (y, z))
U(D| fopt(E, F)) 0.48

Rosetta Stone Data
P(E→ D | Drs) 0.59
P(F → D | Drs) 0.60

Triplet Score value = -1.77

ATP-binding biosynthesis. Both of them are involved in the
procaryotic pathway of ABC transporters. The ancestral gene
of D (COG3842) is potA, which is in the same category
of Amino acid transport and metabolism as gene glnQ. The
ancestral gene potA has been also identified as playing a
functional role in the prokaryotic pathway of ABC transporters
in E.coli. The discovered protein triplet is validated by known
protein function annotations. Furthermore, the above triplet
can not be identified using a single data source.

The 30 most significant triplets are shown in Figure 1.
The proteins in this network belong to functional categories
E (Amino acid transport and metabolism),P (Inorganic
ion transport and metabolism),G (Carbohydrate transport
and metabolism) andC (Energy production and conversion).
Among those 30 triplets, only 4 triplet relationships could be
recovered using phylogenetic profiles alone and 9 functional
linkages could be recovered using Rosetta Stone data alone.
Combining multiple data sources can help us reveal previously
unrecovered triplets. The linkages connecting uncharaterized
proteins (or general function predicted proteins) with anno-
tated proteins in the network suggest that these proteins are
involved in new functions. For instance, the superfamily II
Helicase, associated with COG1204, is connected to ABC-
type antimicrobial peptide transport system ATPase component
SalX. It suggests that the proteins in this super family might
be involved in the peptide transport process.

C. Joint learning on quartets of proteins

In Eqs. 5 - 7, we showed that the proposed framework can
be easily extended to infer logic relationships with more than
2 predictors. In this section, we study quartets of proteins
(the target protein can be predicted by three predictors). We
obtain the scores of all possible quartet combinations and rank
them in descending order. The threshold score,θ, is set to
−3.612 since a quartet with score−3.612 has the property
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Fig. 1. An illustration of top 30 most significant triplets that are jointly learned by phylogenetic profile and gene fusion events. Each node represents a
protein. The directed edges represent the functional linkages from the predictors to target for each triplet relationship. The edges are labeled according to the
function. Nodes with the same color mean they belong to the same category, which can be obtained from supporting material from [4].

TABLE V

D   COG0444, COG0747, COG1136 COG3845

A 1111111010111111111111111100010001111000111111001111110111001101000
B 1111110010111111111111111100011110000001111111001110111111000101000
C 1111111111111111111111111111110111111111111001111111111001111111000
D 1001000000001000000010011100000001111001010111000101100001101000000

A(COG0444): ABC-type dipeptide/oligopeptide/nickel transport system, ATPase component
B(COG0747): ABC-type dipeptide transport system, periplasmic component
C(COG1136): ABC-type antimicrobial peptide transport system, ATPase component
D(COG3845): ABC-type uncharacterized transport systems, ATPase components

that three predictors canfully predict the target protein using
phylogenetic profile data (P(Dpp | Si

Spre
) = 1.0), while no

linkage between the predictors and the target can be discovered
using the Rosetta Stone method (P( j → i | Drs) = 0.3,∀ j ∈
Spre).

The scores of protein quartets that are greater or equal to the
threshold value are considered to be significant. We examined(
140
4

)
∗ 4 = 61,318,460 combinations of all protein quartets,

and discovered 143,057 previous unknown relationships with
significant scores.

We examined four proteins COG0444, COG0747,
COG1136 and COG3845 with ancestral genes DppD, DdpA,
SalX and unknown, respectively. We list the phylogenetic
profiles in Table V and pairwise, triplet and quartets analysis
results in Table VI. We can identify that both DdpA and
DppD play functional roles in the ABC transport pathway.
The description of SalX in the KEGG database shows that the
ABC-type transporter is related to transport system, which
means SalX has a very close relationship with the ABC

TABLE VI

T      COG0444, COG0747, COG1136

 COG3845.

Triplet U(x| f (y, z))
U(A| f (B,C)) 0.28
U(A| f (B,D)) 0.02
U(A| f (C,D)) 0.09

Quartet U(x| f (q, y, z))
U(A| fopt(B,C,D)) 0.45

Rosetta Stone Data
P(B→ A | Drs) 0.30
P(C→ A | Drs) 0.84
P(D→ A | Drs) 0.84

Quartet Score value= -2.41

transport pathway. COG3845 is clustered with proteins whose
function in the ABC-type uncharacterized transport system is
general. It is highly possible that those four proteins should
be annotated to be involved in the ABC transport pathway.

Note that pairwise or triplet analysis among these four pro-
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teins using phylogenetic profiles alone could not recover the
linkages because they resulted in poor uncertainty coefficient
scores. The relationship between DppD and DdpA is missed
if we apply the Rosetta Stone value only.

The previous examples illustrate that our method can ef-
fectively reveal many quartets that are not discovered using
pairwise or triplet analysis on a single data source.

In quartet analysis (n = 3), there are 68 logic types
consisting of 218 proper functions. A total of 62 logic types
were observed in quartet analysis among 140 COGs. Figure 2
shows the number of occurrences of the top 10 most frequently
observed logic types based on the optimal prediction functions
in quartet analysis. The corresponding logic functions are
shown in Table VII. The remaining 52 logic types are not
as frequently observed as those top 10 logic types. Due to
space limitation, we do not list all of them in this paper.
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Fig. 2. Top 10 most frequently observed logic types in quartet relationships

Example 1:(Type A Logic)
COG0517 is classified only as hypothetical or putative

protein in FOG:CBS domain in the NCBI database. In our
analysis, COG0517 is present in a genome only if COG1121
is present, or COG3839 is not present, or COG3842 is
not present. COG1121 is an ABC-type Mn/Zn transporter
ATP-binding protein. COG3839 is an ABC-type sugar
transporter ATP-binding protein. COG3842 is a member
of the ABC-type spermidine/putrescine transport systems,
ATPase components. These results suggest that the protein
associated with COG0517 may play certain functional role in
the ABC-type transport system as an ATP-biding protein.

Example 2:(Type B Logic)
COG1109, a phosphomannomutase, is present in a genome

only if COG1208 or COG 1209 is present, or COG1319
is not present. COG1208 is Nucleoside-diphosphate-sugar
pyrophosphorylase involved in lipopolysaccharide biosynthe-
sis/translation initiation factor 2B, gamma/epsilon subunits
(eIF-2Bgamma/eIF-2Bepsilon). COG1209 is dTDP-glucose
pyrophosphorylase. COG1319 is Aerobic-type carbon monox-
ide dehydrogenase, middle subunit CoxM/CutM homologs.
The results suggest that COG1109 may have putative func-
tional linkages with pyrophosphorylase which is associated
with COG1208 and COG1209, and COG1319.

The previous two examples show that the logic analysis of

TABLE VII

D  L T

Logic Type Logic Functions

A a + b̄ + c̄ ā + b + c̄ ā + b̄ + c

B a + b + c̄ a+ b̄ + c ā + b + c

C bc+ ac̄ bc+ ab̄ ac+ bc̄

ac+ āb ab+ āc ab+ b̄c

D a(b + c) b(a + c) c(a + b)

E ā + b⊕ c b̄ + a⊕ c c̄ + a⊕ b

F a + bc̄ a+ b̄c b+ ac̄

b + āc c+ ab̄ c+ āb

G a + bc b+ ac c+ ab

H
a(b + c̄) a(b̄ + c) b(a + c̄)

b(ā + c) c(a + b̄) c(ā + b)

I a + b⊕ c b+ a⊕ c c+ a⊕ b

J a + b̄c̄ b+ āc̄ c+ āb̄
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protein quartet can also be used to hypothesize the annotations
of uncharacterized proteins or proteins that are assigned a
general function.

D. Statistical Analysis

The accuracy of the discovered protein functional linkages
can not be exactly verified due to a limited knowledge of
protein interactions and pathways [13]. Furthermore, many
protein interaction databases contain spurious linkages, which
can not be directly used to evaluate our findings in terms of
precision and recall.

In our work, we present statistical analysis to test the
significance of discovered logic relationships. We design the
method in three steps. First, we generate a matrix of ran-
domized phylogenetic profiles maintaining thesameindividual
distributions as the actual profiles. Second, we compute the
score for each protein quartet using Eq.1 on the randomized
datasets and rank them in descending order according to the
calculated scores. Finally, we repeat the previous steps 100
times. For testing statistical significance, we used 50 nodes of
dual-CPU (Xeon 2.8 GHz) machines, a subset of 512 nodes
dual-CPU clusters available at ASU-TGen. It took four hours
of CPU time, which results in a total computation time of
400 hours. We then evaluated the statistical significance of
the discovered relationships viap-values,ps, with respect to
the log posterior probability values, defined by [4]

ps =
| Rs |
| A | , (8)

where|Rs| is the number of discovered logic relationships with
scores≥ s in the random datasets, and|A| is the total number
of quartet trials. In this experiment,|A| =

(
140
4

)
∗ 100.

We applied the method to analyze the statistical significance
over 143,057 previously unknown relationships of quartets.
The logic relationships discovered from the original datasets
are approximately 100 times as frequent as the ones discovered
from the random datasets. Figure 3 shows, in a log scale, the
number of identified protein quartets against the score values
for the actual and random datasets.
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Fig. 3. A plot of the cumulative number of protein quartets recovered at
a score greater than a given threshold. The number of discovered protein
quartets above certain score in the actual datasets are∼ 100 times frequently
as the number in the random datasets.

Statistical analysis results of the top 1,000, 2,000 and
5,000 protein quartets with significant scoress are shown
in Figure 4. By analyzing the top 1,000 discovered protein
quartets associated with significant scores (s ≥ −2.52), we
found that more than 76% of them havep-value ≤ 5E-07,
and all of them havep-value≤ 7E-07. We further examined
2,000 most significant quartets (s≥ −2.69), and observed that
more than 66% of them havep-value ≤ 1E-06, and all of
them havep-value≤ 2E-06. In about 5,000 most significant
quartets (s≥ −2.93), 96% of them havep-value≤ 6.65E-06.
The results also showed that all of the 143,057 protein quartets
(s≥ −3.612) havep-value< 5.71E-04.
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Fig. 4. p-value of the protein quartets with significant scores

V. C

In this paper, we presented a new approach for joint learning
of protein logic relationships from both protein phylogenetic
profile and Rosetta Stone data. We used a Bayesian model
to incorporate phylogenetic profile data via a likelihood and
Rosetta Stone data via a prior. By extending pairwise and
triplet logic analysis, we proposed a general method for
identifying high order protein logic relationships, such that
the presence or absence of one protein can be predicted by
the profiles of two or more other proteins. We used the notion
of proper function to reflect the actual effect of the predictors
on the target protein. With our generalized definitions and
framework, the model can be easily extended to infer protein
logic relationships with larger number of proteins.

We applied our model to jointly learn the protein triplet
and quartet relationships on phylogenetic profile and Rosetta
Stone datasets over 140 COGs. We identified biologically
meaningful functional linkages, which could not be recovered
using phylogenetic profile or Rosetta Stone data alone. In
protein triplet analysis, we listed the top 30 significant protein
triplets. We also applied our method to systematically examine
all protein quartets. In joint learning of protein quartets, we re-
covered 143,057 previously unknown relationships associated
with significant scores. We performed statistical analysis to
evaluate the significance of the discovered protein quartets.
The analysis showed that 96% of the top 5,000 quartets
with significant scores havep-value ≤ 6.65E-06, and all of
the 143,057 quartets havep-value ≤ 5.71E-04. A selected
number of significant protein triplets and quartets were further
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studied by using the KEGG and NCBI pathway databases. The
putative functional linkages discovered by our joint learning
method can aid in the process of annotating protein databases
and help us better understand the evolution of biological
systems.
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