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ABSTRACT 

In this paper we describe the approach used by the Arizona 

State University BioAI group for the ad-hoc retrieval task of 

the TREC Genomics Track 2005. We pre-process TREC 

query expression by adding the synonyms of genes, 

diseases, bio-processes, functions of organs, and selectively 

adding stemming verbs, nouns, and Mesh Heading 

categories. The pre-processed queries are used to perform 

initial search on the TREC Genomics collection of MEDLINE 

abstracts and produce a set of target abstracts using Apache 

Lucene. Tagging, anaphor resolution and fact extraction are 

performed on the target abstracts to refine the search results 

in terms of relevance. Finally, we rank the target abstracts 

according to the extracted facts, distance between terms and 

terms appeared in the query.  

1 INTRODUCTION  

The BioAI Research Group of the Fulton School of 

Engineering in Arizona State University participated in the 

Ad-hoc Retrieval Task of the TREC (Text Retrieval 

Conference) Genomics Track in 2005. Provided were a set 

of retrieval queries collected from biologists that conformed 

to a set of generic topic templates (GTTs). There are 5 

GTTs, each of which has 10 instances, for a total of 50 

topics.  Following is a list of the 5 GTTs listed as given, 

(available at http://ir.ohsu.edu/genomics/2005protocol.html) 

with the semantic types in each GTT underlined: 

1. Find articles describing standard methods or protocols 

for doing some sort of experiment or procedure. 

2. Find articles describing the role of a gene involved in 

a given disease. 

3. Find articles describing the role of a gene in a specific 

biological process. 

4. Find articles describing interactions (e.g., promote, 

suppress, inhibit, etc.) between two or more genes in 

the function of an organ or in a disease. 

5. Find articles describing one or more mutations of a 

given gene and its biological impact. 
The dataset for the TREC 2005 Genomics Track consists 

of completed citations from the MEDLINE database 

  
* To whom correspondence should be addressed.  

inclusive from 1994 to 2003.  Records were extracted using 

the Date Completed (DCOM) field for all references in the 

range of 19940101 - 20031231.  This provided a total of 

4,591,008 records, which is about one third of the full 

MEDLINE database. The subset of articles provided by 

TREC is available in the "MEDLINE" format, which 

consists of ASCII text with fields indicated and delimited by 

different 2-4 character abbreviations.  

The aim for our first participation in the TREC Genomics 

Track was to provide an efficient approach to retrieve most 

relevant abstracts from the subset regarding to the queries. 

We found that about 25% of MEDLINE records do not have 

an abstract, mainly because the article itself does not have 

one. We focused our retrieval task on the remaining 75%, 

giving us close to 3.5 million abstracts. A guiding principle 

for us was that relevance of a topic should not be just based 

on individual terms or keywords, such as genes or diseases, 

but rather it should take into account the subject of the 

whole document. In order to implement this principle, we 

would first parse the abstract to identify complete facts: the 

right semantic terms plus the right relationship among them, 

as specified in the query topic. We would extract those facts 

as a whole, noting that they might appear more than once in 

the abstract, and then take both fact and term frequency into 

consideration when ranking the abstracts for relevance. 

 The idea was that if we could extract all relevant facts 

from each abstract, we would just need to search among 

those extracted facts for those closely related to the query 

(rank) and return results. However, we needed to process a 

large volume of abstracts within a limited time in order to 

submit experiment results on time. We decided to retrieve a 

set of potential target abstracts from the given dataset using 

the given query topics, and then apply the extraction and 

ranking schema on that reduced set.  

 We choose Apache Lucene [1] to perform the initial 

retrieval. Apache Lucene is a high-performance, full-

featured text search engine library written in Java. It is a 

technology suitable for an application that requires full-text 

search, especially cross-platform. Apache Lucene is an open 

source project available from Apache Jakarta. Figure 1 

shows the architecture of our approach: 
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1. Pre-processing queries: To apply Lucene in the 

biomedical domain, we needed to first incorporate 

bio-domain knowledge into the Lucene queries. For 

example, we needed to pre-process each of the 50 

queries by adding synonyms, alias, and acronyms to 

genes, diseases, bio-processes, and functions of 

organs, as well Mesh categories information. 

2. Indexing: uses Lucene indexing APIs to create a 

comprehensive index of terms on about 3.4 million of 

the given subset of MEDLINE abstracts.  

3. Retrieval of target abstracts: uses a batch query-

process Java program to input each pre-processed 

query topic and output a list of PubMed IDs (hereafter 

called PMIDs) associated to it. The size of target 

abstracts is narrowed down to 12K MEDLINE 

abstracts through this process. 

4. Tagging: tags entities such as genes and diseases to 

facilitate anaphor resolution and fact extraction. 

5. Resolving Anaphors: resolves pronouns of genes, 

diseases, and bio-processes so that the text extraction 

tool can extract facts of interest. 

6. Fact extraction: extracts facts in terms of the relation 

identified from the queries. 

7. Ranking of abstracts: we define a formula which takes 

the fact frequency, the distance of terms, as well as 

terms frequency into consideration.  

In the following section, we expand on each step in this 

process. In Section 3 we describe the evaluation of our 

approach. In Section 4 we sketch future research 

directions  

 

 

 

Fig. 1.    Architecture of the Ad-hoc Retrieval System 

2 INFORMATION RETRIEVAL SYSTEM  

2.1 Pre-process Queries 

Query pre-processing can be divided into three phases: 

synonym matching, stemming and fine tuning. Both the 

synonym matching and stemming phases are automatic, 

while the fine tuning phase is manually done based on the 

topics and the number of abstracts retrieved. We elaborate 

on each of them below. Since we use Lucene as our 

indexing system, the queries follow the Lucene syntax.  

2.1.1 Synonym Matching 

Given a list of words provided by TREC for each topic, 

synonym matching automatically checks if the given word 

is a gene or a disease. If it is either of the two, all of the 

corresponding synonyms are extracted from either Entrez 

Gene
1
 or MeSH

2
, respectively. Entrez Gene [6] is a gene 

database from NCBI, and MeSH [4] (short for Medical 

Subject Headings) is an ontology of terms used for 

categorizing articles in PubMed [6]. Both Entrez Gene and 

MeSH provide flat files available at their FTP sites. For 

topics that involve biological processes and functions, a 

selected set of terms from MeSH is used with their 

corresponding synonyms. 

Synonyms are grouped by “OR” Boolean operator and 

groups of synonyms are connected with “AND” Boolean 

operator. For instance, suppose g is a gene name, and g1 and 

g2 are synonyms of g, and d is a disease name while d1 is a 

synonym of d. Then the query formed would be: 

      (g OR g1 OR g2) AND (d OR d1) 

  
1 ftp://ftp.ncbi.nlm.nih.gov/gene/ 
2 http://www.nlm.nih.gov/mesh/filelist.html 
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2.1.2 Stemming 

Words that are not identified as genes or diseases are 

stemmed using the Porter Stemming algorithm [9], which 

returns the root form of a word. A wildcard is attached to 

each stemmed word to form the query. For instance, the 

word “progression” is stemmed as “progress” and 

“progress*” is formed as part of the query. 

2.1.3 Fine-Tuning 

Queries formed by the previous two phases can result in a 

large number of relevant abstracts for some of the topics. 

Furthermore, our queries have to reflect the specific needs 

of TREC. Therefore, it is insufficient to have the keywords 

and their synonyms as part of the queries. It is necessary to 

add extra information to the queries. For example, in the 

case of topic 110, we are interested in the role of interferon-

beta gene in Multiple Sclerosis. Using “interferon-beta”, 

“multiple sclerosis” and their corresponding synonyms as a 

query would retrieve articles that used interferon-beta as a 

treatment, which is not of our interest. 

The fine tuning approach differs in the various templates. 

In template 1 about methods and protocols, if the given 

keywords appear in MeSH, the query is modified so that the 

keywords must appear as the MeSH heading of the 

abstracts. MeSH headings act as categories of the articles. 

For instance, in topic 100, electroporation is a MeSH 

heading, so the query for topic 100 contains “MH – 

electroporation” to make use of the MedLine format of the 

abstracts. The query for topic 100 is formed as follows in 

Lucene syntax: 

     "MH \- Electroporation" AND "cell" AND 

"open" 

For template 2 regarding the role of genes in diseases, 

MeSH headings such as genetics and pathology are added in 

the queries. In the case of topic 118 regarding the gene 

TGFB and Cerebral Amyloid Angiopathy, we added 

“genetics AND pathology” as part of the query. The query is 

formed as follows: 

(TGFB1 OR CED OR DPD1 OR TGFB OR beta 1) 

AND ("Cerebral Amyloid Angiopathy" OR 

"Congophilic Angiopathy" OR "Sporadic 

Cerebral Amyloid Angiopathy" OR "Cerebral 

Amyloid Angiopathies" OR "Congophilic 

Angiopathies") AND pathology AND genetics 

On the other hand, NOT operators ‘-’ are used on words 

such as treatment and clinical trials as part of the queries in 

template 2 to exclude them from the search. The query for 

topic 110 regarding interferon-beta and multiple sclerosis is 

formed as follows: 

("interferon* beta*") AND ("Multiple 

Sclerosis" OR "MS" OR "Disseminated 

Sclerosis") AND -"PT - Clinical Trial" AND 

-treat* AND -therap* 

Similarly, words such as polymorphism and mutation are 

added as part of the queries for template 5, to reflect the fact 

that we are interested in only articles about mutation of 

genes. The query for topic 143 regarding the mutation of 

NM23 and tracheal development is formed as follows: 

("NME1" OR "AWD" OR "GAAD" OR "NDPKA" OR 

"NM23" OR "NM23\-H1") AND (("tracheal 

development" OR "tracheal develop*")) AND 

(polymorphism OR mutation) 

2.2 Indexing 

Using the Standard Analyzer provided by Lucene, it 

tokenizes the words in the abstracts to perform indexing. 

The process of tokenization involves the use of stop-word 

list, so that frequently used but uninformative words, such 

as a, an, the, would not be used for indexing. The Lucene 

index stores the tokens and a list of files in which each of 

the token appears. 

2.3 Entity Tagging 

The task is to parse a biomedical text to identify entities 

such as diseases, biological processes and biological 

functions, and then tag them accordingly with 

DISE_<term>, PROC_<term>, and FUNC_<term>, where 

<term> represents the name of the disease, biological 

process, or biological function, usually consisting of several 

words. Abner [11], a system based on statistical machine 

learning techniques, was used to identify gene and protein 

names.  

Two problems arise when dealing with this task. The first 

problem is the looseness of the English language in 

conjunction with synonyms, alias, acronyms and even 

spelling errors. Tagging can not be done by simply 

matching token by token because of names spanning 

multiple words, so we must consider one or multiple words 

when making comparisons. The second problem is 

efficiency. Brute force methods will allow us to tag all 

instances of biological words; however, the running time 

makes it an unrealistic choice for the amount of abstracts 

with which we have to deal. 

We tried to exclude as many words as possible from being 

matched such that the only words that are matched are 

words of meaning and content. In the English language, 

nouns, verbs, adjectives, and adverbs convey the real 

meaning and content. Everything else just works to make a 

more readable sentence, and they never change the content. 

In order to reduce the number of word groups matched we 

chunked words into noun and verb groups. Recognizing that 

most likely an entity of interest would be either a noun 

phrase (adjective/noun) or a verb phrase (adverb/verb) we 

grouped words using a part-of-speech tagger tool called 

Monty Tagger [5] into sequences. Thus, given an abstract, 

before attempting to tag biological terms, we tag parts of 

speech using the Monty Tagger Java API. An abstract where 



Lian Yu et al. 

4 

each of the words is tagged with a part of speech preceded 

by ‘/’ looks as follows:  

Haemopoietic/NNP cell/NN growth/NN and/CC 

differentiation/NN is/VBZ primarily/RB 

regulated/VBN by/IN the/DT local/JJ 

production/NN of/IN various/JJ 

cytokines/NN within/IN the/DT bone/NN 

marrow/NN micro_environment/NN 3/CD ,/, 

as/IN well/RB as/IN by/IN the/DT 

circulating/VBG hormone/NN ,/, 

erythropoietin/NNP GENE_EPO/NNP ./.  

This tagged string is then tokenized and one by one 

analyzed for its part of speech in order to be grouped. There 

are four main parts of speech that we care about: Noun, 

Verb, Adjective, and Adverb. Nouns are tagged with /NN, 

/NNS, /NNP, and /NNPS. Verbs are tagged with /VB, 

/VBD, /VBG, /VBN, /VBP, and /VBZ. Adjectives are 

tagged with /JJ, /JJR, and /JJS. Adverbs are tagged with 

/RB, /RBR and /RBS. In the example above, the first noun 

group is, “Haemopoetic/NNP cell/NN growth/NN”. 

This group is then matched against our dictionaries of 

diseases, biological processes, and functions (compiled from 

MeSH). If there is a direct match the string is tagged as a 

Disease, Process, or Function respectively. The same 

process is applied to verb groups. In the above example the 

first verb group is “is/VBZ primarily/RB 

regulated/VBN”. The tagged abstracts are then used for 

anaphor resolution.  

2.4  Anaphora Resolution 

In linguistics, an anaphora is an expression that is used to 

refer back to some entity (or entities). Pronouns (such as it, 

their, this) are the most common anaphora, though other 

pro-forms are also anaphoras. The entity to which an 

anaphora refers is its referent or antecedent. Consider: 

“Luis sent me an email. It was the first 

thing he did that day.” 

 Here, both “it” and “he” are anaphoras that refer back to 

the email and Luis (the antecedents), which were mentioned 

before. A human reader has no problem identifying what 

they refer to, but automatic processing of the text requires 

their resolution: that is, finding a potential replacement for 

them and substituting the anaphoras. For the biomedical 

domain, we also need to apply some semantic information 

to accurately replace some anaphoras.  

  The subtasks for anaphor resolution include creating a 

referent candidate list, doing a proximity search, and finding 

the longest common substring to identify the right 

antecedent. We elaborate on each of them next. 

2.4.1 Creating a referent candidate list  

A list of referents is maintained as they are encountered in 

the sequential parsing of the abstract. The number of 

referents can grow very large and prohibit efficient and 

sensible search for resolution of ambiguous anaphora. So 

the list is limited to only those words that are tagged as 

potential names for genes, proteins or diseases. To facilitate 

this, a variable is kept to track the most recent reference to 

an antecedent entity, since sometimes there are some 

anaphoras that are used more than once (like using “he” or 

“it” in subsequent sentences in the example above).  

Semantic Chunk Objects (SCO) [2] are the potential 

candidates for the anaphoras, and contain a potential 

antecedent plus information such as the distance of the SCO 

from the first word in the abstract, the score received by the 

SCO as a potential candidate for the anaphora and semantic 

information such as whether the SCO is a gene, disease or 

protein. 

2.4.2 Proximity Search 

Information regarding sentence number and distance from 

the beginning of the text is kept for each SCO. Usually the 

correct antecedent is the closest one to the anaphora. Using 

the scoring heuristic and semantic information along with 

the proximity information helps better resolve the 

anaphoras.  

2.4.3 Longest Common Substring 

Anaphoras such as “these” or ‘both” are resolved by 

looking at the word that follow them. A longest common 

substring comparison is run on that word and the potential 

SCOs. Depending upon how long the common substring is 

one can decide which semantic chuck object the anaphora 

substitutes. Consider the example:   

“The exon1 and exon3 are most crucial in 

expression of these genes. These exons 

are…”.  

In this case the word next to “these” is exon and that is 

compared to all the SCO’s finding the noun group exon1 

and exon3 as the closest matches thus are replacement for 

anaphora “these”. 

The comparison is run not only on the antecedent attribute 

of the SCO but also on the semantic information of the 

SCO. Consider for example:  

“Alzheimer’s disease and variant 

Creutzfeldt-Jakob disease affect the brain. 

These diseases are more prominent…”  

The comparison will include the word following “these” 

i.e. “disease” and thus we get the group “Alzheimer’s 

disease and variant Creutzfeldt-Jakob disease” as the 

potential replacement. 

2.5 Fact Extraction 

As explained before, we consider a “fact” the entity or 

set of entities participating in a relationship of interest for 

the topic. Once the entities are recognized through tagging 

–Section 2.3- and anaphor resolution –Section 2.4-, the 

abstracts are ready for fact extraction. Recall that the 
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abstracts are tagged with the following information (an 

example is shown in Fig. 2):  

• Gene names as GENE_<phrase of a gene name> 

• Diseases as DISE_< phrase  of a disease> 

• Biological Processes as PROC_< phrase of a 

biological process > 

• Molecular Functions as FUNC_< phrase of a 

molecular function> 

 

 

Fig. 2: An example of  tagging 

Extraction of facts corresponding to the templates (shown 

below) is carried out by the extraction module, where the 

idea of lexical chaining is applied. The premise is that 

words that are closer to each other are more likely related 

than the ones that are far apart. The general schema for 

extracted facts is as follows:  

 

PMID| Fact Id| Fact Frequency| GENE_< phrase >| 

Interaction Word | GENE_< phrase > | DISE_< phrase >| 

PROC_< phrase > | FUNC_< phrase > | 

 

where PMID is a unique PMID, Fact Id is unique fact 

number within the given abstract, Fact Frequency is 

frequency of the fact occurring in the given abstract, 

GENE_< phrase > is gene name prefixed with GENE_, 

similarly DISE_< phrase >, PROC_< phrase > and FUNC_< 

phrase > is for disease, process and function respectively.  

Extraction Solution 

A lexical chain [8] is a lexical cohesion of related words 

that contribute to the continuity of meaning. Based on this 

idea, the extraction module tries heuristically to construct a 

chain of related words (such as gene names and diseases) 

and include them as a fact only if they are considered to be 

related. The relation of these words is primarily assumed to 

be in a single sentence. 

 

 

Fig. 3: Heuristic based on Lexical (semantic) cohesion of words. 

Windowing technique is used to limit the chain size under 

consideration. 

   The method can be explained with the help of windowing 

technique. Let’s consider the input text (sentence by 

sentence) to be a single stream of text with a window of size 

α.  A chain of related terms that fit within this window size 

is a potential candidate for fact extraction. The extraction 

module now considers the terms lexically related within this 

window. This window is moved one word at a time 

throughout the text. Fig. 3 shows the window and the input 

text. The fact extraction task is performed on all gene-

related TREC topics (i.e. all topics except topic 1).    

2.6 Ranking Abstracts 

   The Ranking module takes two input files: 1) a query file 

which contains a TREC template or query ID and 

corresponding queries (created earlier in the Query Pre-

processing step) and 2) a query results file, which contains a 

list of query IDs and associated PMIDs returned from a 

Lucene search. For each query ID, the ranking module 

outputs a ranking of the PMIDs based on relevancy. 

To rank the abstracts with for a given query ID, a 

hierarchical ranking approach is used in this paper: the 

abstracts associated with a query ID are first ranked based 

on the number of times relevant facts occur in each abstract. 

This measure is called the fact frequency. The fact 

frequency counts the number of times that related terms in 

the query appear in a same sentence (see description of the 

Extraction module) in the abstracts of interest. If any two 

abstracts have the same fact frequency the tie is broken by 

comparing the abstracts' term/distance scores, abbreviated 

TD. (see Equation 2). The TD score incorporates both the 

term frequency and term distance (where terms are not 

necessarily in the same sentence, unlike fact frequency) of 

the abstracts in order to determine which abstract is more 

relevant. 

TREC requires that each abstract be assigned a single score 

to represent its relevancy. To accomplish this, a ranking 

formula called rf(a) is used to assign a value to an abstract a 

that meets the above two requirements. 

If A represents all the abstracts that have the same query 

ID, a ∈ A, ff(a) represents the fact frequency of a, and td(a) 

represents the TD score of a, then the value rf(a) is as 

follows in Equation (1): 

  )(*))(max()()( affAtdatdarf +=     (1) 

     In Equation 1 the maximum score of all the abstracts in A 

is used in order to ensure that an abstract that has a high fact 

frequency, and is thus more relevant, will have a high value 

of rf(a). The TD score of the abstract is also taken into 

account to break ties between abstracts with identical fact 

frequencies, resulting in a single value which ranks an 

abstract using the hierarchical ranking approach described 

earlier. 
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  Once rf(a) for each abstract has been computed, the list of 

abstracts, sorted by query ID and then sub sorted in 

decreasing order by rf(a), are written to two files, qrels.txt 

and topic_document.txt, which were then submitted to 

TREC for evaluation. 

   The notations used in the following formula are listed as 

follows: 

 

a: an abstract with a query ID of ID 

A: the set of all the abstracts with a query ID of 

ID and a ∈ A. 

G: the set of all genes and their synonyms found 

in the query ID 

D: the set of all the diseases and their synonyms 

found in the query ID 

s(a): the number of sentences in a 

d = (s1, s2): the distance between strings s1 and s2   (such 

as strings of a gene or a disease) in terms of 

sentences in between 

Mina (d): the minimum distance in sentences between 

s1 and s2 If either s1 or s2 is not in a then Mina 

(d) is defined to be equal to s(a) 

f(a, s): the number of times the string s occurs in a 

w(a): the total number of words in a 

df(a, d): the number of times the pair of strings of d is 

at a distance of Mina (d) (if either string in d 

is not in a then df(a, d) is defined to be equal 

to 1). 

 

   Then the TD score of a, td(a), is computed as follows in 

Equation (2).  





=∨=

>∧>
=

0)(0)(,0

0)(0)(,**
)(

asawif

asawifreldistratio
atd  

(2) 

where the variable ratio is computed with gene or disease 

overlap and the weights of the genes or diseases in the query 

ID, dist represents the distance between gene/disease pairs 

in the query ID (see Equation (3)). rel, or relevancy, 

represents the frequency of the genes and diseases in the 

query ID appearing in a (see Equation (6)).  

   The portion of ratio in TD score consists of the product of 

three factors as follows in Equation (3)[1]:  

weight
awDG

overlap
ratio *

)(

1
*

+
=       (3) 

The first factor is called the coordination, which is the 

overlap (see Equation (4)) divided by the number of genes 

and diseases in the query ID. The second factor is known as 

length normalization, which is the reciprocal of the square 

root of the total number of items, tokens, or the words of the 

abstract searched. The last factor, weight, represents the 

weights assigned to each gene and disease in the query ID: 

since each gene and disease has equal weight this score will 

be the square root of the number of genes and diseases in 

the query ID (see Equation (5)) [1]. 

The overlap of an abstract a is the number of genes or 

diseases in the query ID that occur at least once in a. 

0),(: >∪∈= dafDGdoverlap        (4) 

The weight value normalizes the weights for the genes 

and diseases in the query ID.  

∑
∪∈

=

DGd

dwgh
weight

)(
2

1
          (5) 

where wgh(d) represents the individual weight of a gene or 

disease d in the query ID: by default, this value is equal to 

one divided by the number of genes and diseases in the 

query ID. 

  The distance, dist, is the product of the distance scores for 

each possible ordered pair of genes and diseases in the 

query ID. A distance score for a gene/disease pair is a 

product of two factors: a sentence distance factor and a 

distance frequency factor. The sentence distance factor is a 

value between one and two inclusive, with a value of one 

signifying that the gene/disease pair do not occur together in 

the abstract a and a score of two signifying that the gene and 

disease occur in the same sentence in the abstract a. The 

value of the distance frequency factor is how often the 

gene/disease pair occurs at the distance used to calculate the 

sentence distance factor: the square root is applied to this 

value for normalization. If ID is between a certain range the 

query includes not one but two sets of genes (G1 and G2) for 

which the distance must be taken into account (see 

corresponding template): therefore, a second product term 

must be included which measures the distance between each 

possible ordered pair of genes in these two sets.  

The distance (dist) value is the product of the distance 

values between each possible ordered pair of genes and 

diseases in the query ID. A distance value for a gene/disease 

pair is itself a product of two factors: a sentence distance 

factor and a distance frequency factor. The sentence 

distance factor is a value between one and two inclusive:  

one signifying that the gene/disease pair does not occur 

together in the abstract a and two signifying that the gene 

and disease occur in the same sentence in the abstract a. The 

value of the distance frequency factor indicates how often 

the gene/disease pair occurs at the distance used to calculate 

the sentence distance factor, and the square root is applied to 

this value for normalization. If ID is between 130 and 139 

then Equation (6b) is used to calculate the value of dist. 

Within this range the query includes not one but two sets of 

genes (G1 and G2) for which the distance must be taken into 

account (see corresponding template): therefore, along with 

the product found in Equation (6a), a second product term 

must be included which measures the distance between each 

possible ordered pair of genes in these two sets. 
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The relevancy portion in TD of a, rel, is a sum of the 

relevancy of each gene or disease searched for in a. The 

relevancy of an individual gene or disease is a product of its 

frequency and its inverse document frequency [3],[10]. The 

square root of the frequency is taken to normalize the value, 

while the inverse document frequency measures how rare a 

gene or disease is: the rarer the gene or disease, the higher 

the inverse document frequency, and thus the relevancy, 

will be. This is because the occurrence of a rare gene or 

disease in an abstract is a better indicator of relevancy than a 

common one. 

)
1),(

log(*),(
−

= ∑
∪∈ dAdfr

A
dafrel

DGd

(7) 

 The document frequency, dfr(A,d) (see Equation (8)), 

represents the number of abstracts in A that contain the gene 

or disease d at least once. The smaller the value of dfr(A,d) 

the rarer the gene or disease d is. 

0),(:),( >∈= dafAadAdfr      (8) 

3 EVALUATION AND DICUSSION 

This section demonstrates the experiment results of our 

approach, and the comparison with results from Pubmed 

search engine in regarding to the 50 topics. 

3.1 Run Results  

 We performed Lucene indexing on the collection of 4.5 

million abstracts in MEDLINE format, used 50 formatted 

queries to search in the Lucene index, and retrieved about 

12K target abstracts. The number of search results varied 

from query to query ranging from 0 to 7,000. 

    For each template, we performed tagging, anaphor 

resolution, extraction (exception template 1) and ranking. 

We performed fact extraction on abstracts pertinent to 

templates 2 through 5, and calculated the fact frequencies, 

which were incorporated into the ranking formula. For 

abstracts related to template 1, we performed tagging and 

anaphor resolution without fact extraction. The ranking is 

only dependent on the score as described in Section 2.5.  

3.2 TREC Evaluation Results  

     TREC ad-hoc relevance judgments were done based on 

the top 60 documents from the two runs submitted by each 

group for each topic, which yielded an average pool size of 

822 documents. Relevance judgments were performed only 

on 49 of the 50 topics, as no relevant document was found 

for one of the topics, which is topic #135. Evaluation results 

returned by TREC were summarized in terms of precision at 

top 10 relevant documents retrieved (denoted as P10), 

precision at top 100 relevant documents retrieved (P100) 

and uninterpolated average precision for the 49 topics. 

Our system for the ad hoc retrieval task achieves an 

overall precision of 0.2714 for P10 and precision of 0.1061 

for P100 among the 49 topics. This implies that our system 

achieves a low recall, as the number of articles retrieved by 

our system is low. Table 1 shows the average number of 

articles retrieved as well as minimum and maximum number 

for each template. We further analyzed our performance and 

noticed that our system performs best in template 2, which 

is to retrieve articles describing the role(s) of a gene 

involved in a disease. It is evident that our extraction-based 

retrieval system benefits from the rich dictionaries of gene 

and disease names compiled from Entrez Gene and MeSH. 

On the contrary, the lack of rich dictionaries for functions of 

an organ (for template 4) and biological impact or role (for 

template 5) is the main reason on why our system suffers in 

the precision of the retrieval task for templates 4 and 5. Our 

system also failed to retrieve any documents for some of the 

topics in templates 4 and 5. 

Table 1: Average of the number of articles retrieved  

Template # Number of articles retrieved on 

average 

1 (topic # 100-109) 95 (min = 2, max = 436) 

2 (topic # 110-119) 110 (min = 4, max = 303) 

3 (topic # 120-129) 122.5 (min = 4, max = 1000) 

4 (topic # 130-139) 8.11 (min = 0, max = 52) 

5 (topic # 140-149) 26.9 (min = 0, max = 207) 

 

4 CONCLUSION AND FUTURE WORK 

The TREC Genomics team included 8 members from the 

BioAI group, 3 of them undergraduates. We spent about 6 

weeks completing the ad-hoc retrieval task. We used 

Apache Lucene to perform the initial retrieval and got 12K 

target abstracts out of 4.5 million abstracts. Then tagging, 

anaphor resolution, extraction and ranking were performed 

to refine relevance of search results.  

Retrieval systems such as NCBI PubMed generally return 

a large number of documents that are supposed to be 

relevant to the users’ queries. In other words, such retrieval 

systems achieve high recall but relatively low precision. 

Users of a retrieval system with high precision can benefit 

on the preciseness and conciseness of the articles returned to 



Lian Yu et al. 

8 

them. With this in mind, we emphasized the precision 

aspect of our retrieval system. Our system could achieve 

higher precision on templates 4 and 5 if richer ontologies 

were used for functions of an organ and biological impact. 

Future work includes investigating ways to improve the 

accuracy of the tagging module for diseases, bio-processes 

and functions of organs. A quantitative approach to assign 

scores to SCOs is needed for the anaphor resolution module. 

The extraction module needs to be able to extract various 

types of the topics, such as topics in the template 1.   
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