

 1

Genomic Information Retrieval through Selective Extraction and

Tagging by the ASU-BioAI Group

Lian Yu, Syed Toufeeq Ahmed, Graciela Gonzalez, Brandon Logsdon, Mutsumi Nakamura, Shawn

Nikkila, Kalpesh Shah, Luis Tari, Ryan Wendt, Amanda Zeigler, Chitta Baral�
Department of Computer Science and Engineering,

Arizona State University,

PO Box 878809,

 Tempe, AZ 85287-8809, USA

ABSTRACT

In this paper we describe the approach used by the Arizona

State University BioAI group for the ad-hoc retrieval task of

the TREC Genomics Track 2005. We pre-process TREC

query expression by adding the synonyms of genes,

diseases, bio-processes, functions of organs, and selectively

adding stemming verbs, nouns, and Mesh Heading

categories. The pre-processed queries are used to perform

initial search on the TREC Genomics collection of MEDLINE

abstracts and produce a set of target abstracts using Apache

Lucene. Tagging, anaphor resolution and fact extraction are

performed on the target abstracts to refine the search results

in terms of relevance. Finally, we rank the target abstracts

according to the extracted facts, distance between terms and

terms appeared in the query.

1 INTRODUCTION

The BioAI Research Group of the Fulton School of

Engineering in Arizona State University participated in the

Ad-hoc Retrieval Task of the TREC (Text Retrieval

Conference) Genomics Track in 2005. Provided were a set

of retrieval queries collected from biologists that conformed

to a set of generic topic templates (GTTs). There are 5

GTTs, each of which has 10 instances, for a total of 50

topics. Following is a list of the 5 GTTs listed as given,

(available at http://ir.ohsu.edu/genomics/2005protocol.html)

with the semantic types in each GTT underlined:

1. Find articles describing standard methods or protocols

for doing some sort of experiment or procedure.

2. Find articles describing the role of a gene involved in

a given disease.

3. Find articles describing the role of a gene in a specific

biological process.

4. Find articles describing interactions (e.g., promote,

suppress, inhibit, etc.) between two or more genes in

the function of an organ or in a disease.

5. Find articles describing one or more mutations of a

given gene and its biological impact.
The dataset for the TREC 2005 Genomics Track consists

of completed citations from the MEDLINE database

* To whom correspondence should be addressed.

inclusive from 1994 to 2003. Records were extracted using

the Date Completed (DCOM) field for all references in the

range of 19940101 - 20031231. This provided a total of

4,591,008 records, which is about one third of the full

MEDLINE database. The subset of articles provided by

TREC is available in the "MEDLINE" format, which

consists of ASCII text with fields indicated and delimited by

different 2-4 character abbreviations.

The aim for our first participation in the TREC Genomics

Track was to provide an efficient approach to retrieve most

relevant abstracts from the subset regarding to the queries.

We found that about 25% of MEDLINE records do not have

an abstract, mainly because the article itself does not have

one. We focused our retrieval task on the remaining 75%,

giving us close to 3.5 million abstracts. A guiding principle

for us was that relevance of a topic should not be just based

on individual terms or keywords, such as genes or diseases,

but rather it should take into account the subject of the

whole document. In order to implement this principle, we

would first parse the abstract to identify complete facts: the

right semantic terms plus the right relationship among them,

as specified in the query topic. We would extract those facts

as a whole, noting that they might appear more than once in

the abstract, and then take both fact and term frequency into

consideration when ranking the abstracts for relevance.

 The idea was that if we could extract all relevant facts

from each abstract, we would just need to search among

those extracted facts for those closely related to the query

(rank) and return results. However, we needed to process a

large volume of abstracts within a limited time in order to

submit experiment results on time. We decided to retrieve a

set of potential target abstracts from the given dataset using

the given query topics, and then apply the extraction and

ranking schema on that reduced set.

 We choose Apache Lucene [1] to perform the initial

retrieval. Apache Lucene is a high-performance, full-

featured text search engine library written in Java. It is a

technology suitable for an application that requires full-text

search, especially cross-platform. Apache Lucene is an open

source project available from Apache Jakarta. Figure 1

shows the architecture of our approach:

Lian Yu et al.

2

1. Pre-processing queries: To apply Lucene in the

biomedical domain, we needed to first incorporate

bio-domain knowledge into the Lucene queries. For

example, we needed to pre-process each of the 50

queries by adding synonyms, alias, and acronyms to

genes, diseases, bio-processes, and functions of

organs, as well Mesh categories information.

2. Indexing: uses Lucene indexing APIs to create a

comprehensive index of terms on about 3.4 million of

the given subset of MEDLINE abstracts.

3. Retrieval of target abstracts: uses a batch query-

process Java program to input each pre-processed

query topic and output a list of PubMed IDs (hereafter

called PMIDs) associated to it. The size of target

abstracts is narrowed down to 12K MEDLINE

abstracts through this process.

4. Tagging: tags entities such as genes and diseases to

facilitate anaphor resolution and fact extraction.

5. Resolving Anaphors: resolves pronouns of genes,

diseases, and bio-processes so that the text extraction

tool can extract facts of interest.

6. Fact extraction: extracts facts in terms of the relation

identified from the queries.

7. Ranking of abstracts: we define a formula which takes

the fact frequency, the distance of terms, as well as

terms frequency into consideration.

In the following section, we expand on each step in this

process. In Section 3 we describe the evaluation of our

approach. In Section 4 we sketch future research

directions

Fig. 1. Architecture of the Ad-hoc Retrieval System

2 INFORMATION RETRIEVAL SYSTEM

2.1 Pre-process Queries

Query pre-processing can be divided into three phases:

synonym matching, stemming and fine tuning. Both the

synonym matching and stemming phases are automatic,

while the fine tuning phase is manually done based on the

topics and the number of abstracts retrieved. We elaborate

on each of them below. Since we use Lucene as our

indexing system, the queries follow the Lucene syntax.

2.1.1 Synonym Matching

Given a list of words provided by TREC for each topic,

synonym matching automatically checks if the given word

is a gene or a disease. If it is either of the two, all of the

corresponding synonyms are extracted from either Entrez

Gene
1
 or MeSH

2
, respectively. Entrez Gene [6] is a gene

database from NCBI, and MeSH [4] (short for Medical

Subject Headings) is an ontology of terms used for

categorizing articles in PubMed [6]. Both Entrez Gene and

MeSH provide flat files available at their FTP sites. For

topics that involve biological processes and functions, a

selected set of terms from MeSH is used with their

corresponding synonyms.

Synonyms are grouped by “OR” Boolean operator and

groups of synonyms are connected with “AND” Boolean

operator. For instance, suppose g is a gene name, and g1 and

g2 are synonyms of g, and d is a disease name while d1 is a

synonym of d. Then the query formed would be:

 (g OR g1 OR g2) AND (d OR d1)

1 ftp://ftp.ncbi.nlm.nih.gov/gene/
2 http://www.nlm.nih.gov/mesh/filelist.html

Genomic Information Retrieval through Selective Extraction and Tagging by the ASU-BioAI Group

3

2.1.2 Stemming

Words that are not identified as genes or diseases are

stemmed using the Porter Stemming algorithm [9], which

returns the root form of a word. A wildcard is attached to

each stemmed word to form the query. For instance, the

word “progression” is stemmed as “progress” and

“progress*” is formed as part of the query.

2.1.3 Fine-Tuning

Queries formed by the previous two phases can result in a

large number of relevant abstracts for some of the topics.

Furthermore, our queries have to reflect the specific needs

of TREC. Therefore, it is insufficient to have the keywords

and their synonyms as part of the queries. It is necessary to

add extra information to the queries. For example, in the

case of topic 110, we are interested in the role of interferon-

beta gene in Multiple Sclerosis. Using “interferon-beta”,

“multiple sclerosis” and their corresponding synonyms as a

query would retrieve articles that used interferon-beta as a

treatment, which is not of our interest.

The fine tuning approach differs in the various templates.

In template 1 about methods and protocols, if the given

keywords appear in MeSH, the query is modified so that the

keywords must appear as the MeSH heading of the

abstracts. MeSH headings act as categories of the articles.

For instance, in topic 100, electroporation is a MeSH

heading, so the query for topic 100 contains “MH –

electroporation” to make use of the MedLine format of the

abstracts. The query for topic 100 is formed as follows in

Lucene syntax:

 "MH \- Electroporation" AND "cell" AND

"open"

For template 2 regarding the role of genes in diseases,

MeSH headings such as genetics and pathology are added in

the queries. In the case of topic 118 regarding the gene

TGFB and Cerebral Amyloid Angiopathy, we added

“genetics AND pathology” as part of the query. The query is

formed as follows:

(TGFB1 OR CED OR DPD1 OR TGFB OR beta 1)

AND ("Cerebral Amyloid Angiopathy" OR

"Congophilic Angiopathy" OR "Sporadic

Cerebral Amyloid Angiopathy" OR "Cerebral

Amyloid Angiopathies" OR "Congophilic

Angiopathies") AND pathology AND genetics

On the other hand, NOT operators ‘-’ are used on words

such as treatment and clinical trials as part of the queries in

template 2 to exclude them from the search. The query for

topic 110 regarding interferon-beta and multiple sclerosis is

formed as follows:

("interferon* beta*") AND ("Multiple

Sclerosis" OR "MS" OR "Disseminated

Sclerosis") AND -"PT - Clinical Trial" AND

-treat* AND -therap*

Similarly, words such as polymorphism and mutation are

added as part of the queries for template 5, to reflect the fact

that we are interested in only articles about mutation of

genes. The query for topic 143 regarding the mutation of

NM23 and tracheal development is formed as follows:

("NME1" OR "AWD" OR "GAAD" OR "NDPKA" OR

"NM23" OR "NM23\-H1") AND (("tracheal

development" OR "tracheal develop*")) AND

(polymorphism OR mutation)

2.2 Indexing

Using the Standard Analyzer provided by Lucene, it

tokenizes the words in the abstracts to perform indexing.

The process of tokenization involves the use of stop-word

list, so that frequently used but uninformative words, such

as a, an, the, would not be used for indexing. The Lucene

index stores the tokens and a list of files in which each of

the token appears.

2.3 Entity Tagging

The task is to parse a biomedical text to identify entities

such as diseases, biological processes and biological

functions, and then tag them accordingly with

DISE_<term>, PROC_<term>, and FUNC_<term>, where

<term> represents the name of the disease, biological

process, or biological function, usually consisting of several

words. Abner [11], a system based on statistical machine

learning techniques, was used to identify gene and protein

names.

Two problems arise when dealing with this task. The first

problem is the looseness of the English language in

conjunction with synonyms, alias, acronyms and even

spelling errors. Tagging can not be done by simply

matching token by token because of names spanning

multiple words, so we must consider one or multiple words

when making comparisons. The second problem is

efficiency. Brute force methods will allow us to tag all

instances of biological words; however, the running time

makes it an unrealistic choice for the amount of abstracts

with which we have to deal.

We tried to exclude as many words as possible from being

matched such that the only words that are matched are

words of meaning and content. In the English language,

nouns, verbs, adjectives, and adverbs convey the real

meaning and content. Everything else just works to make a

more readable sentence, and they never change the content.

In order to reduce the number of word groups matched we

chunked words into noun and verb groups. Recognizing that

most likely an entity of interest would be either a noun

phrase (adjective/noun) or a verb phrase (adverb/verb) we

grouped words using a part-of-speech tagger tool called

Monty Tagger [5] into sequences. Thus, given an abstract,

before attempting to tag biological terms, we tag parts of

speech using the Monty Tagger Java API. An abstract where

Lian Yu et al.

4

each of the words is tagged with a part of speech preceded

by ‘/’ looks as follows:

Haemopoietic/NNP cell/NN growth/NN and/CC

differentiation/NN is/VBZ primarily/RB

regulated/VBN by/IN the/DT local/JJ

production/NN of/IN various/JJ

cytokines/NN within/IN the/DT bone/NN

marrow/NN micro_environment/NN 3/CD ,/,

as/IN well/RB as/IN by/IN the/DT

circulating/VBG hormone/NN ,/,

erythropoietin/NNP GENE_EPO/NNP ./.

This tagged string is then tokenized and one by one

analyzed for its part of speech in order to be grouped. There

are four main parts of speech that we care about: Noun,

Verb, Adjective, and Adverb. Nouns are tagged with /NN,

/NNS, /NNP, and /NNPS. Verbs are tagged with /VB,

/VBD, /VBG, /VBN, /VBP, and /VBZ. Adjectives are

tagged with /JJ, /JJR, and /JJS. Adverbs are tagged with

/RB, /RBR and /RBS. In the example above, the first noun

group is, “Haemopoetic/NNP cell/NN growth/NN”.

This group is then matched against our dictionaries of

diseases, biological processes, and functions (compiled from

MeSH). If there is a direct match the string is tagged as a

Disease, Process, or Function respectively. The same

process is applied to verb groups. In the above example the

first verb group is “is/VBZ primarily/RB

regulated/VBN”. The tagged abstracts are then used for

anaphor resolution.

2.4 Anaphora Resolution

In linguistics, an anaphora is an expression that is used to

refer back to some entity (or entities). Pronouns (such as it,

their, this) are the most common anaphora, though other

pro-forms are also anaphoras. The entity to which an

anaphora refers is its referent or antecedent. Consider:

“Luis sent me an email. It was the first

thing he did that day.”

 Here, both “it” and “he” are anaphoras that refer back to

the email and Luis (the antecedents), which were mentioned

before. A human reader has no problem identifying what

they refer to, but automatic processing of the text requires

their resolution: that is, finding a potential replacement for

them and substituting the anaphoras. For the biomedical

domain, we also need to apply some semantic information

to accurately replace some anaphoras.

 The subtasks for anaphor resolution include creating a

referent candidate list, doing a proximity search, and finding

the longest common substring to identify the right

antecedent. We elaborate on each of them next.

2.4.1 Creating a referent candidate list

A list of referents is maintained as they are encountered in

the sequential parsing of the abstract. The number of

referents can grow very large and prohibit efficient and

sensible search for resolution of ambiguous anaphora. So

the list is limited to only those words that are tagged as

potential names for genes, proteins or diseases. To facilitate

this, a variable is kept to track the most recent reference to

an antecedent entity, since sometimes there are some

anaphoras that are used more than once (like using “he” or

“it” in subsequent sentences in the example above).

Semantic Chunk Objects (SCO) [2] are the potential

candidates for the anaphoras, and contain a potential

antecedent plus information such as the distance of the SCO

from the first word in the abstract, the score received by the

SCO as a potential candidate for the anaphora and semantic

information such as whether the SCO is a gene, disease or

protein.

2.4.2 Proximity Search

Information regarding sentence number and distance from

the beginning of the text is kept for each SCO. Usually the

correct antecedent is the closest one to the anaphora. Using

the scoring heuristic and semantic information along with

the proximity information helps better resolve the

anaphoras.

2.4.3 Longest Common Substring

Anaphoras such as “these” or ‘both” are resolved by

looking at the word that follow them. A longest common

substring comparison is run on that word and the potential

SCOs. Depending upon how long the common substring is

one can decide which semantic chuck object the anaphora

substitutes. Consider the example:

“The exon1 and exon3 are most crucial in

expression of these genes. These exons

are…”.

In this case the word next to “these” is exon and that is

compared to all the SCO’s finding the noun group exon1

and exon3 as the closest matches thus are replacement for

anaphora “these”.

The comparison is run not only on the antecedent attribute

of the SCO but also on the semantic information of the

SCO. Consider for example:

“Alzheimer’s disease and variant

Creutzfeldt-Jakob disease affect the brain.

These diseases are more prominent…”

The comparison will include the word following “these”

i.e. “disease” and thus we get the group “Alzheimer’s

disease and variant Creutzfeldt-Jakob disease” as the

potential replacement.

2.5 Fact Extraction

As explained before, we consider a “fact” the entity or

set of entities participating in a relationship of interest for

the topic. Once the entities are recognized through tagging

–Section 2.3- and anaphor resolution –Section 2.4-, the

abstracts are ready for fact extraction. Recall that the

Genomic Information Retrieval through Selective Extraction and Tagging by the ASU-BioAI Group

5

abstracts are tagged with the following information (an

example is shown in Fig. 2):

• Gene names as GENE_<phrase of a gene name>

• Diseases as DISE_< phrase of a disease>

• Biological Processes as PROC_< phrase of a

biological process >

• Molecular Functions as FUNC_< phrase of a

molecular function>

Fig. 2: An example of tagging

Extraction of facts corresponding to the templates (shown

below) is carried out by the extraction module, where the

idea of lexical chaining is applied. The premise is that

words that are closer to each other are more likely related

than the ones that are far apart. The general schema for

extracted facts is as follows:

PMID| Fact Id| Fact Frequency| GENE_< phrase >|

Interaction Word | GENE_< phrase > | DISE_< phrase >|

PROC_< phrase > | FUNC_< phrase > |

where PMID is a unique PMID, Fact Id is unique fact

number within the given abstract, Fact Frequency is

frequency of the fact occurring in the given abstract,

GENE_< phrase > is gene name prefixed with GENE_,

similarly DISE_< phrase >, PROC_< phrase > and FUNC_<

phrase > is for disease, process and function respectively.

Extraction Solution

A lexical chain [8] is a lexical cohesion of related words

that contribute to the continuity of meaning. Based on this

idea, the extraction module tries heuristically to construct a

chain of related words (such as gene names and diseases)

and include them as a fact only if they are considered to be

related. The relation of these words is primarily assumed to

be in a single sentence.

Fig. 3: Heuristic based on Lexical (semantic) cohesion of words.

Windowing technique is used to limit the chain size under

consideration.

 The method can be explained with the help of windowing

technique. Let’s consider the input text (sentence by

sentence) to be a single stream of text with a window of size

α. A chain of related terms that fit within this window size

is a potential candidate for fact extraction. The extraction

module now considers the terms lexically related within this

window. This window is moved one word at a time

throughout the text. Fig. 3 shows the window and the input

text. The fact extraction task is performed on all gene-

related TREC topics (i.e. all topics except topic 1).

2.6 Ranking Abstracts

 The Ranking module takes two input files: 1) a query file

which contains a TREC template or query ID and

corresponding queries (created earlier in the Query Pre-

processing step) and 2) a query results file, which contains a

list of query IDs and associated PMIDs returned from a

Lucene search. For each query ID, the ranking module

outputs a ranking of the PMIDs based on relevancy.

To rank the abstracts with for a given query ID, a

hierarchical ranking approach is used in this paper: the

abstracts associated with a query ID are first ranked based

on the number of times relevant facts occur in each abstract.

This measure is called the fact frequency. The fact

frequency counts the number of times that related terms in

the query appear in a same sentence (see description of the

Extraction module) in the abstracts of interest. If any two

abstracts have the same fact frequency the tie is broken by

comparing the abstracts' term/distance scores, abbreviated

TD. (see Equation 2). The TD score incorporates both the

term frequency and term distance (where terms are not

necessarily in the same sentence, unlike fact frequency) of

the abstracts in order to determine which abstract is more

relevant.

TREC requires that each abstract be assigned a single score

to represent its relevancy. To accomplish this, a ranking

formula called rf(a) is used to assign a value to an abstract a

that meets the above two requirements.

If A represents all the abstracts that have the same query

ID, a ∈ A, ff(a) represents the fact frequency of a, and td(a)

represents the TD score of a, then the value rf(a) is as

follows in Equation (1):

)(*))(max()()(affAtdatdarf += (1)

 In Equation 1 the maximum score of all the abstracts in A

is used in order to ensure that an abstract that has a high fact

frequency, and is thus more relevant, will have a high value

of rf(a). The TD score of the abstract is also taken into

account to break ties between abstracts with identical fact

frequencies, resulting in a single value which ranks an

abstract using the hierarchical ranking approach described

earlier.

Lian Yu et al.

6

 Once rf(a) for each abstract has been computed, the list of

abstracts, sorted by query ID and then sub sorted in

decreasing order by rf(a), are written to two files, qrels.txt

and topic_document.txt, which were then submitted to

TREC for evaluation.

 The notations used in the following formula are listed as

follows:

a: an abstract with a query ID of ID

A: the set of all the abstracts with a query ID of

ID and a ∈ A.

G: the set of all genes and their synonyms found

in the query ID

D: the set of all the diseases and their synonyms

found in the query ID

s(a): the number of sentences in a

d = (s1, s2): the distance between strings s1 and s2 (such

as strings of a gene or a disease) in terms of

sentences in between

Mina (d): the minimum distance in sentences between

s1 and s2 If either s1 or s2 is not in a then Mina

(d) is defined to be equal to s(a)

f(a, s): the number of times the string s occurs in a

w(a): the total number of words in a

df(a, d): the number of times the pair of strings of d is

at a distance of Mina (d) (if either string in d

is not in a then df(a, d) is defined to be equal

to 1).

 Then the TD score of a, td(a), is computed as follows in

Equation (2).

=∨=

>∧>
=

0)(0)(,0

0)(0)(,**
)(

asawif

asawifreldistratio
atd

(2)

where the variable ratio is computed with gene or disease

overlap and the weights of the genes or diseases in the query

ID, dist represents the distance between gene/disease pairs

in the query ID (see Equation (3)). rel, or relevancy,

represents the frequency of the genes and diseases in the

query ID appearing in a (see Equation (6)).

 The portion of ratio in TD score consists of the product of

three factors as follows in Equation (3)[1]:

weight
awDG

overlap
ratio *

)(

1
*

+
= (3)

The first factor is called the coordination, which is the

overlap (see Equation (4)) divided by the number of genes

and diseases in the query ID. The second factor is known as

length normalization, which is the reciprocal of the square

root of the total number of items, tokens, or the words of the

abstract searched. The last factor, weight, represents the

weights assigned to each gene and disease in the query ID:

since each gene and disease has equal weight this score will

be the square root of the number of genes and diseases in

the query ID (see Equation (5)) [1].

The overlap of an abstract a is the number of genes or

diseases in the query ID that occur at least once in a.

0),(: >∪∈= dafDGdoverlap (4)

The weight value normalizes the weights for the genes

and diseases in the query ID.

∑
∪∈

=

DGd

dwgh
weight

)(
2

1
 (5)

where wgh(d) represents the individual weight of a gene or

disease d in the query ID: by default, this value is equal to

one divided by the number of genes and diseases in the

query ID.

 The distance, dist, is the product of the distance scores for

each possible ordered pair of genes and diseases in the

query ID. A distance score for a gene/disease pair is a

product of two factors: a sentence distance factor and a

distance frequency factor. The sentence distance factor is a

value between one and two inclusive, with a value of one

signifying that the gene/disease pair do not occur together in

the abstract a and a score of two signifying that the gene and

disease occur in the same sentence in the abstract a. The

value of the distance frequency factor is how often the

gene/disease pair occurs at the distance used to calculate the

sentence distance factor: the square root is applied to this

value for normalization. If ID is between a certain range the

query includes not one but two sets of genes (G1 and G2) for

which the distance must be taken into account (see

corresponding template): therefore, a second product term

must be included which measures the distance between each

possible ordered pair of genes in these two sets.

The distance (dist) value is the product of the distance

values between each possible ordered pair of genes and

diseases in the query ID. A distance value for a gene/disease

pair is itself a product of two factors: a sentence distance

factor and a distance frequency factor. The sentence

distance factor is a value between one and two inclusive:

one signifying that the gene/disease pair does not occur

together in the abstract a and two signifying that the gene

and disease occur in the same sentence in the abstract a. The

value of the distance frequency factor indicates how often

the gene/disease pair occurs at the distance used to calculate

the sentence distance factor, and the square root is applied to

this value for normalization. If ID is between 130 and 139

then Equation (6b) is used to calculate the value of dist.

Within this range the query includes not one but two sets of

genes (G1 and G2) for which the distance must be taken into

account (see corresponding template): therefore, along with

the product found in Equation (6a), a second product term

must be included which measures the distance between each

possible ordered pair of genes in these two sets.

Genomic Information Retrieval through Selective Extraction and Tagging by the ASU-BioAI Group

7

 ∏
×∈

−=
DGd

dadf
as

dad
dist),(*)

)(

),(
2(

 0)()139130(≠∧>∨< asTT (6a)

∏

∏

×∈

×∈

−

−=

21

),(*)
)(

),(
2(

),()
)(

),(
2(

GGg

DGd

gadf
as

gad

dadf
as

dad
dist

 0)(139130 ≠∧≤∧≥ asTT (6b)

The relevancy portion in TD of a, rel, is a sum of the

relevancy of each gene or disease searched for in a. The

relevancy of an individual gene or disease is a product of its

frequency and its inverse document frequency [3],[10]. The

square root of the frequency is taken to normalize the value,

while the inverse document frequency measures how rare a

gene or disease is: the rarer the gene or disease, the higher

the inverse document frequency, and thus the relevancy,

will be. This is because the occurrence of a rare gene or

disease in an abstract is a better indicator of relevancy than a

common one.

)
1),(

log(*),(
−

= ∑
∪∈ dAdfr

A
dafrel

DGd

(7)

 The document frequency, dfr(A,d) (see Equation (8)),

represents the number of abstracts in A that contain the gene

or disease d at least once. The smaller the value of dfr(A,d)

the rarer the gene or disease d is.

0),(:),(>∈= dafAadAdfr (8)

3 EVALUATION AND DICUSSION

This section demonstrates the experiment results of our

approach, and the comparison with results from Pubmed

search engine in regarding to the 50 topics.

3.1 Run Results

 We performed Lucene indexing on the collection of 4.5

million abstracts in MEDLINE format, used 50 formatted

queries to search in the Lucene index, and retrieved about

12K target abstracts. The number of search results varied

from query to query ranging from 0 to 7,000.

 For each template, we performed tagging, anaphor

resolution, extraction (exception template 1) and ranking.

We performed fact extraction on abstracts pertinent to

templates 2 through 5, and calculated the fact frequencies,

which were incorporated into the ranking formula. For

abstracts related to template 1, we performed tagging and

anaphor resolution without fact extraction. The ranking is

only dependent on the score as described in Section 2.5.

3.2 TREC Evaluation Results

 TREC ad-hoc relevance judgments were done based on

the top 60 documents from the two runs submitted by each

group for each topic, which yielded an average pool size of

822 documents. Relevance judgments were performed only

on 49 of the 50 topics, as no relevant document was found

for one of the topics, which is topic #135. Evaluation results

returned by TREC were summarized in terms of precision at

top 10 relevant documents retrieved (denoted as P10),

precision at top 100 relevant documents retrieved (P100)

and uninterpolated average precision for the 49 topics.

Our system for the ad hoc retrieval task achieves an

overall precision of 0.2714 for P10 and precision of 0.1061

for P100 among the 49 topics. This implies that our system

achieves a low recall, as the number of articles retrieved by

our system is low. Table 1 shows the average number of

articles retrieved as well as minimum and maximum number

for each template. We further analyzed our performance and

noticed that our system performs best in template 2, which

is to retrieve articles describing the role(s) of a gene

involved in a disease. It is evident that our extraction-based

retrieval system benefits from the rich dictionaries of gene

and disease names compiled from Entrez Gene and MeSH.

On the contrary, the lack of rich dictionaries for functions of

an organ (for template 4) and biological impact or role (for

template 5) is the main reason on why our system suffers in

the precision of the retrieval task for templates 4 and 5. Our

system also failed to retrieve any documents for some of the

topics in templates 4 and 5.

Table 1: Average of the number of articles retrieved

Template # Number of articles retrieved on

average

1 (topic # 100-109) 95 (min = 2, max = 436)

2 (topic # 110-119) 110 (min = 4, max = 303)

3 (topic # 120-129) 122.5 (min = 4, max = 1000)

4 (topic # 130-139) 8.11 (min = 0, max = 52)

5 (topic # 140-149) 26.9 (min = 0, max = 207)

4 CONCLUSION AND FUTURE WORK

The TREC Genomics team included 8 members from the

BioAI group, 3 of them undergraduates. We spent about 6

weeks completing the ad-hoc retrieval task. We used

Apache Lucene to perform the initial retrieval and got 12K

target abstracts out of 4.5 million abstracts. Then tagging,

anaphor resolution, extraction and ranking were performed

to refine relevance of search results.

Retrieval systems such as NCBI PubMed generally return

a large number of documents that are supposed to be

relevant to the users’ queries. In other words, such retrieval

systems achieve high recall but relatively low precision.

Users of a retrieval system with high precision can benefit

on the preciseness and conciseness of the articles returned to

Lian Yu et al.

8

them. With this in mind, we emphasized the precision

aspect of our retrieval system. Our system could achieve

higher precision on templates 4 and 5 if richer ontologies

were used for functions of an organ and biological impact.

Future work includes investigating ways to improve the

accuracy of the tagging module for diseases, bio-processes

and functions of organs. A quantitative approach to assign

scores to SCOs is needed for the anaphor resolution module.

The extraction module needs to be able to extract various

types of the topics, such as topics in the template 1.

ACKNOWLEDGEMENTS

REFERENCES

[1] Apache Lucene. http://lucene.apache.org/java/docs/.

[2] J. Castaño, J. Zhang, J. Pustejovsky. Anaphora Resolution in

Biomedical Literature. International Symposium on Reference

Resolution, 2002.

[3] K.S. Jones. Index term weighting. Information Storage and

Retrieval, 9: 619-633, 1973.

[4] MeSH. http://www.nlm.nih.gov/mesh/.

[5] Monty Tagger. http://web.media.mit.edu/~hugo/montytagger/.

[6] NCBI Entrez Gene.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene.

[7] NCBI Entrez PubMed.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed.

[8] J. Morris, G. Hirst, Lexical Cohesion Computed by Thesaural

Relations as an indicator of the structure of Text. Association

of Computational Linguists, 1991.

[9] M.F. Porter. An algorithm for suffix stripping, Program,

14(3):130-137, 1980.

[10] S.E. Robertson and K.S. Jones. Relevance weighting of

search terms. Journal of the American Society for Information

Science, 27, 129—146, 1976.

[11] B. Settles. ABNER: an open source tool for automatically

tagging genes, proteins, and other entity names in text.

Bioinformatics, 21(14):3191-3192, 2005.

