
1

Online appendix for the paper

Typed Answer Set Programming Lambda
Calculus Theories and Correctness of Inverse

Lambda Algorithms with respect to them
published in Theory and Practice of Logic Programming

Chitta Baral, Juraj Dzifcak, Marcos A. Gonzalez and Aaron Gottesman

School of Computing, Informatics, and Decision Systems Engineering

Arizona State University, Tempe, AZ

submitted 25 March 2012; revised 11 June 2012; accepted 18 June 2012

Appendix A

Before presenting the theorems and proofs, we will present several necessary defi-

nitions.

Definition 1 (applicator term)

An applicator term of a typed λ-calculus formula is an expression of the form

x@J1@ · · ·@Jn where x is a variable and Ji are typed λ-calculus formulas.

Definition 2 (sub-formula)

A sub-formula of a typed λ-calculus formula F is a sub-term of F which is a typed

λ-calculus formula.

Lemma 1

Given typed λ-calculus formulas H , G and F , if G@F in β-normal form is equal

to H , then the sub-terms in H must be the same as the sub-terms in G@F .

Proof

The definition of typed ASP λ-calculus formulas presented in previous sections

states that all variables that appear in a formula are bound. Therefore, when one

formula is applied to another, none of the sub-terms of those formulas will be

modified by the application due to the definition of application in lambda calculus.

Lemma 2

Given typed λ-calculus formulas H and G , if G is a sub-term of H , then there is

always an F such that H = F@G .

2

Proof

Let G = g1,g2...,gn . (where g1,...,gn are λ-elements)

We know that G occurs in H . Thus,

Let H = h1, h2, · · ·, hi , g1, · · ·, gn , hi+1, · · ·, hn .

Let F be λv.h1, h2, · · ·, hi , v , hi+1, · · ·, hn .

Then, H = h1, h2, · · ·, hi , g1, g2, · · ·, gn , hi+1, · · ·, hn = λv .h1, h2, · · ·, hi , v , hi+1, · · ·, hn

@ g1, g2, · · ·, gn = F@G .

Theorem 1 (Soundness of InverseL)

Given two typed λ-calculus formulas H and G in β-normal form, if InverseL(H ,G)

returns a non-null value F , then H = F @ G .

Proof

Let G and H be two typed λ-calculus formulas, let F = InverseL(H ,G).

1. If G is λv · v
• F = λv · (v@H)

By the above condition of the algorithm for this case, H = H and G = λv ·v .

Then, F@G = λv · (v@H) @ λv · v = (λv · v)@H = H .

2. If G is a sub-term of H

• F = λv ·H (G : v)

Let E1 and E2 be possibly empty series of λ-elements. By the above condition

of the algorithm for this case, H = E1GE2 and G = G . Then, F@G =

(λv · E1vE2) @ G = E1GE2 = H .

3. G is not λv · v , (J 1(J 1
1 , · · ·, J 1

m), J 2(J 2
1 , · · ·, J 2

m), · · · , J n(J n
1 , · · ·, J n

m)) are

sub-terms of H and, ∀J i ∈ H , G is λv1, · · ·, vs · J i(J i
1 , · · ·, J i

m : vk1 , · · ·, vkm)

with 1 ≤ s ≤ m and ∀p, 1 ≤ kp ≤ s.

• F = λw ·H ((J 1 : (w@J 1
k1

@ · · ·@J 1
km

), · · ·, J n : (w@J n
k1

@ · · ·@J n
km

))) where

each Jkp maps to a different vkp in G .

Let E1,E2, · · ·,En+1 be (possibly empty) series of λ-elements. By the above

condition of the algorithm for this case, G = λv1, · · ·, vs · J i(J i
1 , · · ·, J i

m :

vk1 , · · ·, vkm) and H = E1J 1E2J 2 · · · EnJ nEn+1. Then, F@G =

(λw ·E1w@J 1
k1
,@ · · ·@J 1

km
E2w@J 2

k1
@ · · ·@J 2

km
· · ·Enw@J n

k1
@ · · ·@J n

km
En+1)

@ λv1, · · ·, vs · J i(J i
1 , · · ·, J i

m : vk1 , · · ·, vkm)

= E1(λv1, · · ·, vs · J i(J i
1 , · · ·, J i

m : vk1 , · · ·, vkm)@J 1
k1

@ · · ·@J 1
km

)E2 · · · En

(λv1, · · ·, vs · J i(J i
1 , · · ·, J i

m : vk1 , · · ·, vkm)@J n
k1

@ · · ·@J n
km

)En+1

= E1J 1(J 1
1 , · · ·, J 1

m)E2, · · ·, J n(J n
1 , · · ·, J n

m)En+1 = H .

J i contains all common λ-elements to all J i formulas from H , which sub-

terms of each formula had been substituted by variables. Thus, when the

formulas J i
k1
, · · ·, J i

km
belonging to a given formula are placed in the variables

vk1 , · · ·, vkm , one obtained the specific J i formula back.

The reason why it is stated in G that each Jkp maps to a different vkp is due

to the last step of the proof. For each occurrence of a specific variable vkp
in G , one needs one formula Jkp that will be placed on all the variables vkp
during the application.

3

4. H is λv1, · · ·, vi · J and J 1(J 1
i+1, · · ·, J 1

s) is a sub-term of J ,

G is λw · J (J 1(J 1
i+1, · · ·, J 1

s) : w@J 1
k1

@ · · ·@J 1
ks

) with ∀p, i + 1 ≤ kp ≤ s.

• F = λwλv1, · · ·, vi · (w@λvi+1, · · ·, vs · (J 1(J 1
i+1, · · ·, J 1

s : vk1 , · · ·, vks)))
Let E1,E2 be (possibly empty) series of λ-elements. By the above condition

of the algorithm for this case, H = λv1, · · ·, vi · E1J 1(J 1
i+1, · · ·, J 1

s)E2 and G

= λw · J (J 1(J 1
i+1, · · ·, J 1

s) : w@J 1
k1

@, · · ·,@J 1
ks

). Thus, F@G =

λwλv1, ···, vi ·(w@λvi+1, ···, vs ·J 1(J 1
i+1, ···, J 1

s : vk1 , ···, vks))@λw ·J (J 1(J 1
i+1, ··

·, J 1
s) : w@J 1

k1
@ · · ·@J 1

ks
) = λv1, · · ·, vi · (λw · J (J 1(J 1

i+1, · · ·, J 1
s)

: w@J 1
k1

@ · · ·@J 1
ks

)@λvi+1, · · ·, vs · J 1(J 1
i+1, · · ·, J 1

s : vk1 , · · ·, vks))
= λv1, · · ·, vi · (J (λvi+1, · · ·, vs · J 1(J 1

i+1, · · ·, J 1
s : vk1 , · · ·, vks))@J 1

k1
@ · · ·@J 1

ks
)

= λv1, · · ·, vi · J (J 1(J 1
i+1, · · ·, J 1

s))= λv1, · · ·, vi ·E1(J 1(J 1
i+1, · · ·, J 1

s))E2 = H .

Theorem 2 (Soundness InverseR)

Given two typed λ-calculus formulas H and G in β-normal form, if InverseR(H ,G)

returns a non-null value F , then H = G @ F .

Proof

Let G and H be two typed λ-calculus formulas, let F = InverseR(H ,G).

1. If G is λv · v@J

• F = InverseL(H , J)

One knows by the previous proof that if InverseL(H , J) returns a non-null

value K , then H = K @ J . By the given condition of the algorithm for this

case, G is λv · v@J . Therefore, G@F = λv · v@J @ K = K @ J = H .

2. If J is a sub-term of H and G is λv ·H (J : v)

• F = J

Let E1 and E2 be possibly empty series of λ-elements. By the above condition

of the algorithm for this case, H = E1JE2 and G = λv · E1(J : v)E2. Then,

G@F = (λv · E1(J : v)E2) @ J = E1JE2 = H .

3. G is not λv ·v@J , (J 1(J 1
1 , ···, J 1

m), J 2(J 2
1 , ···, J 2

m), ··· , J n(J n
1 , ···, J n

m)) are sub-

terms of H such that for all i , J i(J i
1 , . . . , J

i
m) = J 1(J 1

1 , . . . , J
1
m : J i

1 , . . . , J
i
m)

and G is λw · H (J 1(J 1
1 , · · ·, J 1

m), · · ·, J n(J n
1 , · · ·, J n

m) : (w@J 1
k1
, · · ·,@J 1

km
), · ·

·, (w@J n
k1
, · · ·,@J n

km
)) for some permutation {k1, . . . , km} of {1, . . . ,m}.

• F = λvk1 , · · ·, vkm · J 1(J 1
1 , · · ·, J 1

m : v1, · · ·, vm).

Let E1,E2, · · ·,En+1 be (possibly empty) series of λ-elements. By the above

condition of the algorithm for this case, G = λw · H ((J 1(J 1
1 , · · ·, J 1

m) :

w@J 1
k1

@ · · · @J 1
km

), · · ·, (J n(J n
1 , · · ·, J n

m) : w@J n
k1

@ · · · @J n
km

)) and H =

E1J 1E2J 2 ···EnJ nEn+1. Thus, G @ F = (λw ·E1w@J 1
k1

@···@J 1
km

E2w@J 2
k1

@·
· ·@J 2

km
· · ·Enw@J n

k1
@ · · ·@J n

km
En+1) @ (λvk1 , · · ·, vkm ·J 1(J 1

1 , · · ·, J 1
m : v1, · · ·, vk)

= E1λvk1 , · · ·, vkm · (J 1(J 1
1 , · · ·, J 1

m : v1, · · ·, vk))@J 1
k1

@ · · ·@J 1
km

E2 . . .Enλvk1 , · ·
·, vkm · (J 1(J 1

1 , · · ·, J 1
m : v1, · · ·, vk))@J n

k1
@ · · ·@J n

km
En+1 = E1J 1(J 1

1 , . . . , J
1
m :

J 1
1 , . . . , J

1
m)E2 . . .EnJ 1(J 1

1 , . . . , J
1
m : J n

1 , . . . , J
n
m)En+1 = E1J 1E2 . . .EnJ nEn+1

= H .

4

4. H is λv1, · · ·, vi · J and J 1(J 1
i+1, · · ·, J 1

s) is a sub-term of J ,

G is λw · λv1, · · ·, vi · (w@λvi+1, · · ·, vs · (J 1(J 1
i+1, · · ·, J 1

s : vk1 , · · ·, vks))) with

∀p, i + 1 ≤ kp ≤ s.

• F = λw · J (J 1(J 1
i+1, · · ·, J 1

s) : w@J 1
k1

@ · · ·@J 1
ks

)

Let E1,E2 be (possibly empty) series of λ-elements. By the above condition

of the algorithm for this case, H = λv1, · · ·, vi · E1J 1(J 1
i+1, · · ·, J 1

s)E2 and G

= λw · λv1, · · ·, vi · (w@λvi+1, · · ·, vs · J 1(J 1
i+1, · · ·, J 1

s : vk1 , · · ·, vks))). Thus,

G@F = λwλv1, · · ·, vi · (w@λvi+1, · · ·, vs · J 1(J 1
i+1, · · ·, J 1

s : vk1 , · · ·, vks)) @

λw · J (J 1(J 1
i+1, · · ·, J 1

s) : w@J 1
k1

@ · · ·@J 1
ks

) = H .

Theorem 3 (Completeness of InverseL)

For any two typed λ-calculus formulas H and G in β-normal form, where H is

of order two or less, and G is of order one or less, if there exists a set of typed

λ-calculus formulas ΘF of order two or less in β-normal form, such that ∀Fi ∈ ΘF ,

H = Fi@G , then InverseL(H ,G) will give an F where F ∈ ΘF .

Proof

In Table 4 of the paper we demonstrated that there are 6 possible combinations of

H , G and F . None of the combinations will satisfy option 4 of the operator since

F needs to be order 3. Recall that the inverse operator has 4 possible cases, which

we will refer to as “options”. The assumption from the condition of the theorem is

that H = F@G .

Proof by Contradiction.

• Case 1: Typed λ-calculus formulas H and G have order zero and F has order

one.

1. Assume that InverseL(H ,G) = null.

2. Options 1 and 3 of the operator are not satisfied since G is order zero.

3. We are left with option number 2. Lets assume that a formula G is not a

sub-term of H .

4. From the previous point, one knows that a formula G is not a sub-term

of H .

5. Suppose G is not a sub-term of H .

— By definition of the input of the operator, G is order zero. By Lemma

1,H is formed by the sub-terms of G and F . If G is placed in the

outermost variable of F , it will not receive any modification since G is

order zero. This outermost variable is a λ-term and thus by definition

a sub-term. Therefore, G is a sub-term of H . Contradiction.

• Case 2: Typed λ-calculus formulas H and F have order one and G has order

zero.

1. Assume that InverseL(H ,G) = null.

2. Options 1 and 3 of the operator are not satisfied since G is order zero.

5

3. We are left with option number 2. Lets assume that a formula G is not a

sub-term of H .

4. In the exactly same way as in the case 1 above, we can show that G is a

sub-term of H which leads to a contradiction.

• Case 3: Typed λ-calculus formulas H and F have order two and G has order

zero.

1. Assume that InverseL(H ,G) = null.

2. Options 1 and 3 of the operator are not satisfied since G is order zero.

3. We are left with option number 2. Lets assume that a formula G is not a

sub-term of H .

4. In the exactly same way as in the case 1 above, we can show that G is a

sub-term of H which leads to a contradiction.

• Case 4: Typed λ-calculus formula H has order zero, G has order one and F

has order two.

1. Assume that InverseL(H ,G) = null

2. Option 2 of the operator cannot be satisfied. Since F has as input an order

one formula, and a zero order as output, it needs to have an application

to reduce the order. H has zero order, therefore it does not have any

application. Thus, F cannot be formed from H and be of second order.

3. Lets assume that options 1 and 3 of the operator are not satisfied.

4. Option 1 of the operator is not satisfied if G is not of the form specified.

One has two possible scenarios:

— If G is of the form considered in option 1, then it is satisfied and the

operator returns the specified F . Contradiction.

— If G is not of the form considered in option 1, option 1 is not satisfied

and we are left with option number 3.

5. Lets assume option 3 of the operator is not satisfied. For this to happen,

some condition of option 3 cannot be satisfied. Thus, G is λv · v and/or

the formulas J i are not sub-terms of H and/or ∀ J i , G is not of the form

λv1, · · ·, vs · J i(J i
1 , · · ·, J i

m : vk1 , · · ·, vkm).

6. G is not λv · v ; this was shown in point 4 above.

7. By definition of sub-term, a formula H has at least one sub-term which is

H itself. Therefore, H has at least a sub-term J 0 which is itself.

8. G is order one, therefore, it will start with a list of lambda abstractors. By

definition of Typed lambda-calculus formulas, after the list of the lambda

abstractors, one will have a formula, call it J .

When G is applied to F , it is placed on the outermost variable. If there

are more than one occurrences of this variable in F , one will have the

formula G several times in the resulting formula H .

H , output of F , can be order one or zero, therefore each occurrence of the

variable in F will be in an applicator term with the formulas found in H

for each occurrence of G generating different versions of G in H . If H is

order two, then G will be order one, and in order to reduce the order of

6

G to zero in F so that one obtains a valid formula H , one will also need

applicator terms in F . Each of these versions of G in H can be identified

as J i .

These J i sub-terms can all have common λ-components depending on the

structure of G . The sub-formulas of these J i are what differentiates one

J i from another in H . Each of them has m sub-formulas Ji that will be

placed in the variables of G . All J i have the same number of Ji since they

were all originated from the application of G to F , which has a definite

number of variables. These sub-formulas belong to the applicators terms

in F .

The variables in G that are bound to the initial list of abstractors can

have any order or repetition inside G since there is no restriction on the

structure of G . All stated to this point can be expressed as G = λv1, · ·
·, vs · J i(J i

1 , · · ·, J i
m : vk1 , · · ·, vkm).

This is the second condition of option 3. Contradiction.

• Case 5: Typed λ-calculus formula H and G have order one, F has order two.

1. Lets assume that InverseL(H ,G) = null.

2. Option 2 of the operator cannot be satisfied. Thus, G cannot be a sub-term

of H . One has two possible scenarios:

— Suppose F is a second order formula without applicator terms. When

G is applied to F , G is placed in the outermost variable of F and it

becomes a sub-term of H . Option 2 is satisfied. Contradiction.

— Suppose F is a second order formula with applicator terms. When G is

applied to F , λ-abstractors and bound variables of G are not present

in H when they are substituted by the formulas of the applicator terms

of F . Therefore, G is not a sub-term of H and option 2 is not satisfied.

One proceeds considering other options of the operator.

3. By point 1 above, one also has that options 1 and 3 of the operator are

not satisfied.

4. Option 1 of the operator is not satisfied if G is not of the form specified.

One has two possible scenarios:

— If G is of the form considered in option 1, then it is satisfied and the

operator returns the specified F . Contradiction.

— If G is not of the form considered in option 1, option 1 is not satisfied

and one continues considering the last possible option.

5. Option 3 cannot be satisfied. By point 4, one knows that G is not a sub-

term of H . By point 5, one knows that G is not λv · v . For option 3 to

not be satisfied, some condition of option 3 cannot be satisfied. Thus, G

is λv.v and/or the formulas J i are not sub-terms of H and/or ∀ J i , G is

not of the form λv1, · · ·, vs · J i(J i
1 , · · ·, J i

m : vp , · · ·, vq). If this is the case,

then option 3 is not satisfied.

6. In this step, one can apply the same reasoning that was shown in the

previous case (case 4), with the only difference being that in this situation,

7

since H is order one, the number of formulas in the applicators of F will

be at least one less than the number of initial λ-abstractors in F or G .

And G and F have to obey the rules of ASP λ-calculus formulas with

respect to formulas with connectors so that H is a valid ASP λ-calculus

formula after the application of F to G .

• Case 6: Typed λ-calculus formula H and F have order two, G has order one.

1. Assume that InverseL(H ,G) = null.

2. Option 2 of the operator cannot be satisfied. Thus, G cannot be a sub-term

of H . One has two possible scenarios:

— Suppose F is a second order formula without applicator terms. When

G is applied to F , G is placed in the outermost variable of F and it

becomes a sub-term of H . Option 2 is satisfied. Contradiction.

— Suppose F is a second order formula with applicator terms. When G is

applied to F , λ-abstractors and bound variables of G are not present

in H when they are substituted by the formulas of the applicator terms

of F . Therefore, G is not a sub-term of H and option 2 is not satisfied.

One proceeds considering other options of the operator.

3. By point 1 above, one also has that options 1 and 3 of the operator are

not satisfied.

4. Option 1 of the operator is not satisfied if G is not of the form specified.

One has two possible scenarios:

— If G is of the form considered in option 1, then it is satisfied and the

operator returns the specified F . Contradiction.

— If G is not of the form considered in option 1, option 1 is not satisfied

and one continues considering the last possible option.

5. Option 3 cannot be satisfied. By point 4, one knows that G is not a sub-

term of H . By point 5, one knows that G is not λv · v . For option 3 to

not be satisfied, some condition of option 3 cannot be satisfied. Thus, G

is λv · v and/or the formulas J i are not sub-terms of H and/or ∀ J i , G is

not of the form λv1, · · ·, vs · J i(J i
1 , · · ·, J i

m : vp , · · ·, vq). If this is the case,

then option 3 is not satisfied.

6. In this step, one can apply the same reasoning that was shown in case 4

above, with the difference being that in this situation, since H is order

two, the result of applying the formula G to F will give a second order

formula as output.

Theorem 4 (Completeness of InverseR)

For any two typed λ-calculus formulas H and G of order two or less in β-normal

form, if there exists a set of typed λ-calculus formulas ΘF of order one or less in

β-normal form, such that ∀Fi ∈ ΘF , H = G@Fi , then InverseR(H ,G) will give an

F , where F ∈ ΘF .

8

Proof

There are 6 possible combinations of H , G and F with different orders as discussed

previously. None of the combinations will satisfy rule 4 of the operator since G needs

to be order 3. As before, we will refer to the various cases of the inverse operator

as “options”. The assumption from the condition of the theorem is H = G@F .

Proof by Contradiction:

• Case 1: Typed λ-calculus formulas H and F have order zero and G has order

one.

1. Lets assume that InverseR(H ,G) = null.

2. Options 1 and 3 of the operator are not satisfied since G has to be order

two to satisfy the conditions.

3. Lets assume that option 2 of the operator is not satisfied.

4. This means that a formula J is not a sub-term of H or/and G is not of

the form λv ·H (J : v).

5. Suppose that there is no sub-term J of H .

— By definition of sub-term, H is a sub-term of H . Thus contradiction.

6. Suppose G is not of the form λv ·H (J : v).

— G is a typed λ-calculus formula formed by λ-elements g1, g2, · · ·, gn . H

is formed by h1, h2, · · ·, hn . By point 5, J is a sub-term of H , therefore

H is formed by h1, h2, · · ·, hi , j1, · · ·, jn , hi+1, · · ·hn (λ-elements can be

empty). By Lemma 2, G is λv.h1, h2, · · ·, hi , v , hi+1, · · ·, hn , which is in

fact λv ·H (J : v). Contradiction.

• Case 2: Typed λ-calculus formula F has order zero and H , G has order one.

1. Assume that InverseR(H ,G) = null.

2. Options 1 and 3 of the operator are not satisfied since G has to be order

two to satisfy the conditions.

3. Lets assume that option 2 of the operator is not satisfied.

4. This means that a formula J is not a sub-term of H or/and G is not of

the form λv ·H (J : v).

5. As in the above case, it was shown that J is a sub-term of H and that G

is of the form λv ·H (J : v). Therefore, contradiction.

• Case 3: Typed λ-calculus formula F has order zero and H , G has order two.

1. Assume that InverseR(H ,G) = null

2. Option 1 is not satisfied since F is order zero and it cannot be applied to

G applicator term.

3. Option 3 of the operator is not satisfied since G needs to have applicator

terms and H has the same order as G . The outermost variable of G could

have an occurrence not in an applicator term somewhere in the formula,

but then this variable would have a different type.

4. Lets assume that option 2 of the operator is not satisfied.

5. This means that a formula J is not a sub-term of H or/and G is not of

the form λv ·H (J : v).

9

6. In case 1 above, it was shown that J is a sub-term of H and that G is of

the form λv ·H (J : v). Therefore, contradiction.

• Case 4: Typed λ-calculus formula H has order zero, F has order one and G

has order two.

1. Assume that InverseR(H ,G) = null.

2. Option 2 of the operator is not satisfied because G is order two and H is

order zero. G cannot be formed by H .

3. We are left with options 1 and 3.

4. Option 1 of the operator is not satisfied if G is not of the form specified.

One has two possible scenarios:

— If G is of the form considered in option 1, then it is satisfied and the

operator returns the specified F . Contradiction.

— If G is not of the form considered in option 1, option 1 is not satisfied

and one continues considering the last possible option.

G is order two and therefore it is receiving a function as input which is F .

Therefore it will have a λ-abstractor at the beginning that binds to the

variable where F will be placed. And since G is order two and H is order

zero, G needs to have an application to reduce the order in the output. One

has that option 1 is not satisfied, thus the expression in the application to

the variable of G , next to its abstractor, cannot be a formula and nothing

else.

5. By point 3 above, Option 3 of the operator is not satisfied. For this to

happen, some condition of option 3 cannot be satisfied. Thus, G is λv ·v@J

and/or J i are not sub-terms of H and/or G is not λw ·H ((J 1(Ji , · · ·, Jk) :

w@Jp , · · ·,@Jq), · · ·, (J n(Ji , · · ·, Jk) : w@Jp , · · ·,@Jq)). If this is the case,

then option 3 is not satisfied.

6. G cannot be λv · v@J ; this was shown in the previous point 4.

7. By definition of sub-term, a formula H has at least one sub-term which is

H . Therefore H has at least a sub-term J 0 which is itself.

8. G is a second order formula, therefore it is receiving a formula of order one

or less as input. In order to do this, it needs an abstractor at the beginning

of the formula that binds to the variable where the input formula will be

placed. Denote the lambda abstractor by λw .

H , output of G , can be order one or zero, therefore G will have occurrences

of applicator terms whose variable will be bound to the initial abstractor

to reduce the order. If H is order two, then F will be order one. In order to

reduce the order of F to zero, so that one obtains a valid formula H , one

will also need applicator terms. The number of formulas in the applicator

terms depends on the number of variables in G . They will be equal if H

is order zero and different if H is order one. Every occurrence of w will

be in an applicator term for G to remain as a valid typed formula, since

all occurrences of w need to have the same type as their corresponding

abstractor.

These Ji formulas have to be order zero in order for G to remain being

10

second order. By point 4 above, we know that G is not of the form λv ·v@J ,

which is the smallest possible second order formula which reduces the order

of its input. Therefore it must have more λ-terms which are added using

connectors.

By Lemma 1, H is formed by the subterms of G and F . Thus, in this case,

all subterms of G are present in H . One has that the difference between

the formula H and G is that H has as sub-terms, the formula F after

being applied to the applicator terms of G . F is order one, therefore, it

will have a list of abstractors at the beginning of the formula which bind

to variables in the formula. When F is applied to G , it will be placed

in the variable w of each applicator term and it will generate a formula

when its variables are substituted by the formulas in the applicator term.

These formulas will be part of H and each of them can be identified as

J i . Each of them will have common elements that belong to F , since F is

only changing by the formulas of G placed on its variables.

All applicator terms will have the same number of formulas since they are

all applied to the same F which has a specific number of variables. And

since the variables in G can be in any order or repetition, the formulas of

the applicators have to be as well.

All stated to this point can be expressed as: λw · H ((J 1(J1, · · ·, Jm) :

w@Jk1 , · · ·,@Jkm), · · ·, (J n(J1, · · ·, Jm) : w@Jk1 , · · ·,@Jkm)). This is the last

condition of option 3. Contradiction.

• Case 5: Typed λ-calculus formulas F and H have order one, G has order two.

1. Assume that InverseR(H ,G) = null.

2. Option 2 of the operator cannot be satisfied. One has two possible situa-

tions:

— G is order two and H is order one. If G has no applicator terms, then

G can be formed by H . And, as shown in case 1, this leads to the

condition being satisfied and thus, contradiction.

— If G has applicator terms, then it cannot be formed by an order one

formula H . Option 2 is not satisfied and one proceeds with the next

possible options.

3. Lets assume options 1 and 3 of the operator are not satisfied.

4. Option 1 of the operator is not satisfied if G is not of the form specified.

One knows by point 2 that G has at least one applicator term. One has

two possible scenarios:

— If G is of the form considered in option 1, then it is satisfied and the

operator returns the specified F . Contradiction.

— If G is not of the form considered in option 1, option 1 is not satisfied

and one continues considering the last possible option.

5. Option 3 of the operator cannot be satisfied. For this to happen, some

condition of option 3 cannot be satisfied. Thus, G is λv · v@J and/or J i

are not sub-terms of H and/or G is not λw ·H ((J 1(Ji , · · ·, Jk) : w@Jp , · ·

11

·,@Jq), · · ·, (J n(Ji , · · ·, Jk) : x@Jp , · · ·,@Jq)). If this is the case, then option

3 is not satisfied.

6. One can apply the same reasoning that was shown in the previous case

(case 4) with the only difference being that in this case since H is order

one, the number of formulas in the applicators of G needs to be at least

one less than the number of initial λ-abstractors in F or G .

• Case 6: Typed λ-calculus formulas G and H have order two, F has order one.

1. Assume that InverseR(H ,G) = null.

2. Option 1 of the operator cannot be satisfied. G is receiving as input an

order one formula F to which a formula J will be applied. The output

of G is H of order two. In order for J applied to F to return a formula

of order two is if J was order two. However, then G would become order

three.

3. Option 2 of the operator cannot be satisfied. G is receiving as input the

formula F of order one. In order to give a valid output of order two, G

needs to have some additional sub-term of order two and reduce the order

of the input F to zero so that the resulting expression is a formula. But,

since F is placed in a variable and not in an applicator term, its order

cannot be reduced.

4. Option 3 cannot be satisfied. The reasoning for this option is the same as

that in the previous case and it leads to a contradiction.

Theorem 5 (InverseL complexity)

The InverseL Algorithm runs in exponential time in the number of variables in G

and polynomial time in the size of the formulas H and G .

Proof

Case 3 gives the worst case complexity. Let k be the number of variables in G ,

then we need to find all permutations of length k , since they are the parts in H we

need to substitute. In the worst case H is a big conjunction terms. First, we find

all subterms of H (on the order of the size of H). Then we would try to check if

those subterms have k subterms that we can substitute with the variables in G to

end up with G (on the order of the size of G). There are then in the worst-case on

the order of |H |!/(|H | − k)! permutations we need to check per subterm. Thus, the

worst case complexity of InverseL is O((|H |!/(|H | − k)!)(|H |+ 2|G |)). However, if

k is small, as it is in most practical examples, then |H |!/(|H |−k)! is approximately

O(|H |k).

Theorem 6 (InverseR complexity)

The InverseR Algorithm runs in exponential time in the number of variables in G

and polynomial time in the size of the formulas H and G .

12

Proof

Since Case 1 of InverseR uses InverseL its worst case complexity can be no better

than the complexity of InverseL. All other cases of InverseR run in polynomial

time. Note case 3 of InverseR has polynomial complexity since the formulas given

as input to the applications in G can be used to find the subterms of H that can

generate them. Therefore, we do not have to search all permutation of the subterms

as in InverseL. Thus, the worst case complexity is given in Case 1 to be the same

as InverseL, O((|H |!/(|H | − k)!)(|H |+ 2|G |)).

