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Abstract—Information extraction systems are traditionally implemented as a pipeline of special-purpose processing modules targeting
the extraction of a particular kind of information. A major drawback of such approach is that whenever a new extraction goal emerges
or a module is improved, extraction has to be re-applied from scratch to the entire text corpus even though only a small part of the
corpus might be affected. In this paper, we describe a novel approach for information extraction so that extraction needs are expressed
in the form of database queries, which are evaluated and optimized by databases. Using database queries for information extraction
enables generic extraction and minimizes reprocessing of data. In addition, our approach provides two different query generation
components that can automatically form database queries for extraction from training datasets, as well as from unlabeled data through
a mechanism inspired by the pseudo-relevance feedback approach found in protein-protein interactions and drug-protein-metabolic
relations from two sets of corpus. Experiments show that our approach achieves a precision of 83.6% and recall of 58.6% (F-measure
of 64.2%) for the extraction of protein-protein interactions from the BioCreative 2 corpus, while achieving a precision of 85.0% and
recall of 26.0% (F-measure of 39.8%,) for drug-protein-metabolic relations.
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1 INTRODUCTION

T is estimated that each year more than 600,000 arti-
Icles are published in the biomedical literature, with
about 19 million publication entries being stored in the
Medline database'. To uncover information from such
a large corpus of documents, it is vital to address the
need in an automated manner. The field of information
extraction (IE) seeks to develop methods for fetching
concise, structured information from natural language
text. Examples of such structured information are the
extraction of entities and relationships between entities.

IE is typically seen as a one-time process for the
extraction of a particular kind of relationships of interest
from a document collection. IE is usually deployed as
a pipeline of special-purpose programs, which include
sentence splitters, tokenizers, named entity recognizers,
shallow or deep syntactic parsers, and extraction based
on a collection of patterns. The large demand of IE in
various domain results in the development of frame-
works such as UIMA [1] and GATE [2], providing a
way to perform extraction by defining workflows of
components. Such kind of extraction frameworks are
usually file-based so that large amount of processed
data can be utilized between components. In this setting,
relational databases play a limited role of storing the
extracted relationships.
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While such framework is suitable for one-time ex-
traction, it is important to notice that there are cases
when IE has to be performed repeatedly even on the
same document collection. Examples of such cases in-
clude the processing of web documents with modified
content [3], the availability of updated ontologies or
improved components for named entity recognition, and
the realization of new target relationships for extraction.
Using the existing extraction frameworks in any of these
scenarios means that it is necessary to reprocess the
entire text collection, which can be computationally ex-
pensive. It is important to realize that it is unnecessary to
reprocess the entire collection when certain components
in the pipeline or extraction goals are changed. Con-
sider a biology-oriented scenario when the original goal
of extracting protein-protein interactions changes into
finding gene-disease associations from the same corpus
of text. Consider another scenario where the extraction
goal remains the same, but an updated ontology or an
improved model based on statistical learning approach
becomes available for named entity recognition. Changes
in these scenarios typically only affect a portion of the
text corpus. Thus an ideal framework needs to have the
capability of managing processed data and performing
incremental extraction to identify which part of the data
is affected by the change of components or goals.

In this paper, we propose a new paradigm for in-
formation extraction that utilizes database management
systems as an essential component of our extraction
framework. Database management systems become a
logical framework of choice that can serve such dy-
namic extraction needs over file-based storage systems.
As illustrated in Figure 1, text processing components
such as named entity recognizers and syntactic parsers
are deployed for the entire collection. The intermediate
output of the processing modules is stored in a relational
database known as the parse tree database. Extraction then
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becomes a matter of issuing database queries in the
form of parse tree query language (PTQL). In the event
of a change of extraction goals or a module update,
the responsible module is deployed for the entire text
corpus and the processed data is populated into the
parse tree database with the previously processed data.
Incremental extraction is performed so that database
queries are issued to identify sentences with newly
recognized mentions. Once the affected sentences are
identified, extraction can then be performed only on
such sentences rather than the entire corpus. By storing
the processed data, our approach avoids the need to
reprocess the entire collection of text unlike the file-based
pipeline approaches. Avoiding reprocessing of data is
particularly important for extraction in the biomedical
domain, where a full processing of all 17 million Medline
abstracts took about more than 36K hours of CPU time
using a single-core CPU with 2-GHz and 2 GB of RAM.
In this case, the Link Grammar parser [4] contributes to
a large portion of the time spent in text processing.
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Fig. 1. An overview of our extraction framework illustrat-
ing how the parse tree database is used for extraction and
update of modules.

We highlight the technical contributions of the archi-
tecture proposed in this paper.
e  Novel Database-Centric Framework for Information Ex-
traction. Unlike traditional approaches for IE, our ap-
proach is to store intermediate text processing output
in a specialized database called the parse tree database.
Extraction is formulated as queries so that it is no longer
necessary to write and run special-purpose programs for
each specific extraction goal. Our approach minimizes
the need of reprocessing the entire collection of text in
the presence of new extraction goals and deployment of
improved processing components.
o Query Language for Information Extraction. The use
of grammatical structures such as constituent trees and
linkages to define extraction patterns requires traversals
of paths in constituent trees, as well as links and link
types between node pairs during evaluation of extraction
patterns. As query languages such as XPath and XQuery
are not suitable for extracting linguistic patterns [5], we
designed and implemented a query language called parse
tree query language (PTQL) for pattern extraction which
effectively achieves diverse IE goals.
o Automated Query Generation. Manually writing extrac-
tion queries can be a time-consuming, labor-intensive
process, and such approach is likely to achieve unsat-

isfactory extraction performance. Our system provides
two forms of automated query generation either in the
presence or absence of training data.

Our information extraction framework is composed of
two phases:

o  [nitial Phase: we perform a one-time parse, entity
recognition and tagging (identifying individual entries
as belonging to a class of interest) on the whole corpus
based on current knowledge. The generated syntactic
parse trees and semantic entity tagging of the processed
text is stored in a parse tree database (PTDB).

e  Extraction Phase: Extracting particular kinds of rela-
tions can be done by issuing an appropriate query to the
PTDB. To express extraction patterns, we designed and
implemented a query language called parse tree query lan-
guage (PTQL) that is suitable for generic extraction. Our
system not only allows a user to issue PTQL queries for
extraction, but it can also automatically generate queries
from training data or user keyword-based queries.

The rest of the paper is organized as follows. We
first present the necessary background in Section 2.2.
In Section 3, the system architecture of our extraction
framework is discussed in details, which includes the
PTDB, the query language PTQL and its evaluation. We
then describe the two query generation components in
our framework in Section 4, which enable the generation
of extraction queries from both labeled and unlabeled
data. The query performance of our approach and the
quality of the extracted results are presented in Section
5. We describe the related work and conclude in Sections
6 and 7.

2 BACKGROUND
2.1 Information extraction

IE has been an active research area that seeks techniques
to uncover information from a large collection of text.
Examples of common IE tasks include the identification
of entities (such as protein names, disease names), extrac-
tion of relationships between entities (such as interac-
tions between a pair of proteins) and extraction of entity
attributes (such as coreference resolution that identifies
different variants of mentions corresponding to the same
entity) from text. Readers are referred to [6] for a recent
and comprehensive survey of IE.

The examples and experiments used in our paper in-
volve the use of grammatical structures for relationship
extraction. Cooccurrences of entities is a typical method
in relationship extraction, but often leads to imprecise
results. Consider that our goal is to extract relations
between drug and proteins from the following sentence:

Quetiapine is metabolised by CYP3A4 and
sertindole by CYP2D6. (PMID:10422890)
By utilizing our grammatical knowledge, a hu-
man reader can observe that (CYP3A4, metabolise,
quetiapine) and (CYP2D6, metabolise, sertindole) are
the only correct triplet relations for the above sentence.
However, if we consider coccurrences of entities as a
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criteria to extract relationships, incorrect relationships
such as (CYP3A4, metabolise, sertindole) and (CYP2D6,
metabolise, quetiapine) would also be extracted from the
above sentence. This simple example highlights the need
of grammatical knowledge in performing relationship
extraction.

A typical IE setting involves a pipeline of text process-
ing modules in order to perform relationship extraction.
These include:

o sentence splitting: identifies sentences from a para-
graph of text

o tokenization: identifies word tokens from sentences

» named entity recognition: identifies mentions of entity
types of interest

o syntactic parsing: identifies grammatical structures of
sentences

o pattern matching: obtains relationships based on a set
of extraction patterns that utilize lexical, syntactic
and semantic features

Figure 2 illustrates a typical text processing workflow in
order to perform extraction of relationships. Extraction
patterns are typically obtained through manually written
patterns compiled by experts or automatically gener-
ated patterns based on training data. Different kinds of
parsers, which include shallow and deep parsers, can be
utilized in the pipeline. In our work, the Link Grammar
parser [7] is utilized as part of our extraction approach.
We describe the basic terminologies involved in Link
Grammar in the next subsection.

paragraph of text
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Fig. 2. A workflow of text processing modules that takes
a paragraph of text as input to perform relationship extrac-
tion.

2.2 Link Grammar

The Link Grammar parser is a dependency parser based
on the Link Grammar theory [7]. Link Grammar con-
sists of a set of words and linking requirements be-
tween words. A sentence of the language is defined as
a sequence of words such that the links connecting

the words satisfy the following properties: (i) the links
do not cross, (ii) the words form a connected graph,
and (iii) the links satisfy the linking requirements of
each word in the sentence. The output of the parser,
called a linkage, shows the dependencies between pairs
of words in the sentence. Figure 3 shows an example
for the sentence “RADS53, which activates DNA damage,
positively regulates the DBF4 protein” (PMID:10049915).
The linkage contains several links, which include link
S connecting the subject-noun RAD53 to the transitive
verb regulates, the O link connecting the transitive
verb regulates to the direct object DBF4 and the MXxr
link connecting the relative pronoun which to the noun
RADS53. For a complete description of links, we refer the
reader to [4].

rien] A

DNA damage, positively regulates the DBF4 protein.

RAD53, which activates

Fig. 3. Linkage of the sentence “RADS53, which activates
DNA damage, positively regulates the DBF4 protein”,
showing only the main link types in the linkage.

Besides producing linkages, the Link Grammar parser
is also capable of outputting constituent trees. A con-
stituent tree is a syntactic tree of a sentence with the
nodes represented by part-of-speech tags and words
of the sentences in the leaf nodes. For instance, the
corresponding constituent tree for the above sentence is
illustrated in Figure 4. In the constituent tree, S stands
for a sentence/clause, SBAR for a clause containing a
clause with a relative pronoun, WHNP for a clause con-
taining a relative pronoun, NP for a noun phrase, VP for
a verb phrase and ADVP for an adverb phrase. The leaf
nodes of the constituent tree represent the words of the
sentence and their part-of-speech tags. For words that
are not recognizable by the parser, the tag U is given for
such words for unknown part-of-speeches.

RADS3,

which

activates DNA damage, positively regulates the DBF4 protein.

Fig. 4. Constituent tree of the sentence “RAD53, which
activates DNA damage, positively regulates the DBF4
protein”
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3 SYSTEM ARCHITECTURE

We first give an overview of our approach, and discuss
each of the major components of our system in this
section. Our approach is composed of two phases: initial
phase for processing of text and extraction phase for using
database queries to perform extraction. The Text Processor
in the initial phase is responsible for corpus processing
and stores the processed information in the Parse Tree
Database (PTDB). The extraction patterns over parse trees
can be expressed in our proposed parse tree query language
(PTQL). In the extraction phase, the PTQL query evaluator
takes a PTQL query and transforms it into keyword-
based queries and SQL queries, which are evaluated
by the underlying RDBMS and IR engine. To speed up
query evaluation, the index builder creates an inverted
index for the indexing of sentences according to words
and the corresponding entity types. Figure 5 illustrates
the system architecture of our approach.

results 1 PTQL Query |
f | Evaluator |
Text Parse Tree saL : Query :
Processor Database RDBMS [*query | Translator |!
T FT
| |
text entities : IDs 407| PTQL
documents : ’ : query
filtering | 1
@ y Y IR ey Filter |1
Index Inverted engine i |
Builder Index IDS: T :
|

Fig. 5. System architecture of the PTQL framework. The
framework includes the parse tree database for storing
intermediate processed information and the query evalu-
ator for the evaluation of PTQL queries through filtering
and translation to SQL queries.

Our approach provides two modes of generating
PTQL queries for the purpose of information extraction:
training set driven query generation and pseudo-relevance
feedback driven query generation. To generate a set of
patterns for information extraction using the training
set driven approach, the pattern generator first automati-
cally annotates an unlabeled document collection with
information drawn from a problem-—specific database.
This step necessitates a method for precise recognition
and normalization of protein mentions. From this la-
beled data, initial phrases referring to interactions are
extracted. These phrases are then refined to compute
consensus patterns and the resulting PTQL queries are
generated by the query generator. However, training data
is not always readily available for certain relationships
due to the inherent cost of creating a training corpus.
In that regards, our approach provides the pseudo-
relevance feedback driven approach that takes keyword-
based queries, and the PTQL query generator then finds
common grammatical patterns among the top-k re-
trieved sentences to generate PTQL queries.

We first describe the parse tree database and the

tag=P

tag=P \ value=positively ,/ — « o
value=DBF4

value=RAD53 >« _ _ __-7 tag=l -
value=regulates

Fig. 6. An example of a parse tree for a document, which
includes sections of the document, sentences and the
corresponding parse trees. The attribute Tagindicates the
semantic type of a word, in which p stands for protein
names and I for interaction words.

syntax of PTQL before we provide details of how PTQL
queries are processed.

3.1 Parse tree database and inverted index

The Text Processor parses Medline abstracts with the
Link Grammar parser [4], and identifies entities in the
sentences using BANNER [8] to recognize gene/protein
names and MetaMap [9] to recognize other entity types
that include disease and drug names. Each document
is represented as a hierarchical representation called the
parse tree of a document, and the parse trees of all docu-
ments in the document collection constitute the parse tree
database (PTDB). The detailed schema and its description
can be found in Appendix A. A parse tree is composed
of a constituent tree and a linkage. A constituent tree is a
syntactic tree of a sentence with the nodes represented
by part-of-speech tags and leafs corresponding to words
in the sentence. A linkage, on the other hand, represents
the syntactic dependencies (or links) between pairs of
words in a sentence. Each node in the parse tree has
labels and attributes capturing the document structure
(such as title, sections, sentences), part-of-speech tags,
and entity types of corresponding words.

Figure 6 shows an example of a parse tree for a
Medline abstract. The parse tree contains the root node
labeled as DOC and each node represents an element in
the document which can be a section (SEC), a sentence
(STN), or a parse tree for a sentence (PSTN). A node
labeled as STN may have more than one child labeled
with PSTN to allow the storage of multiple parse trees.
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The node below the PSTN node indicates the start of
the parse tree, which includes the constituent tree and
linkage of the sentence. A solid line represents a parent-
child relationship between two nodes in the constituent
tree, whereas a dotted line represents a link between two
words of the sentence. In the constituent tree, nodes S,
NP, VP and ADVP stand for a sentence, a noun phrase, a
verb phrase and an adverb phrase respectively. The link-
age contains three different links: the S link connects the
subject-noun RAD53 to the transitive verb regulates,
the O link connects the transitive verb regulates to
the direct object DBF4 and the E link connects the verb-
modifying adverb positively to the verb regulates.
The square box on a dotted line indicates the link type
between two words. Each leaf node in a parse tree has
value and tag attributes. The value attribute stores
the text representation of a node, while the tag attribute
indicates the entity type of a leaf node. For instance, a
protein is marked with a tag P, a drug name with a tag
D and an interaction word is marked with I.

Another essential component of our system architec-
ture is an inverted index maintained by an IR engine such
as Lucene?. This inverted index enables the efficient pro-
cessing of PTQL queries, which will be discussed in de-
tails in a later section. As illustrated in Figure 7, the index
builder relies on a text preprocessor to recognize entities
and replace the entities with identifiers in the sentences.
Each sentence in the documents are indexed on its own
so that each keyword-based filtering query retrieves a
sentence rather than the entire document. Assuming
that the concepts of interest are entities such as protein
and drug names, and interaction verbs in the form of
present tense and past participle. We use the identi-
fiers DRUGNAME, PROTNAME, IVERB-S and IVERB-D to
represent these concepts respectively. The index builder
includes the original sentences in the inverted index,
as well as sentences with entities replaced with identi-
fiers. For instance, the sentence “RADS53 positively reg-
ulates DBF4” is indexed as PROTNAME positively
IVERB-S PROTNAME under the field name sent-proc
in the inverted index. The approach of indexing sen-
tences with replaced identifiers is similar to [10], [11],
[12]. Unlike [10], our approach requires no modification
to the structure of the inverted index in order to process
variabilized queries. For efficient access of the hierarchi-
cal structure and horizontal relations among nodes, we
adopt the labeling scheme used in LPath [13], [5] and
present the scheme in Appendix B.

3.2 PTQL: Parse Tree Query Language

A fundamental design criteria for the query language
is the ability of expressing linguistic patterns based on
constituent trees. Standard XML query languages such
as XPath [14] and XQuery [15] seem to be the ideal candi-
dates for querying parse trees. However, the inability of

2. http:/ /lucene.apache.org

entities
Inverted Index
Index Builder ‘ docia 2145
ﬁ sent__cid 32
sent Triazolam is metabolized by CYP3A4
sent-proc  DRUGNAME is IVERB-D by PROTNAME
doc_id 8611
o sent_cid 15
re Rﬁ;zz B%s;t‘;vely sent RAD53 positively regulates DBF4
goc = 8611m sent-proc  PROTNAME positively IVERB-S PROTNAME

Medline abstracts

Fig. 7. An extended inverted index to handle queries that
involve concepts rather than just instances

expressing immediate-following siblings and immediate-
preceding siblings in these standard XML query lan-
guages, as shown in [16], leads to the development of
LPath [13], [5] as a query language for linguistic queries
on constituent trees. An additional design criteria for
the query language is the ability to express linguistic
patterns based on dependency grammar, such as Link
Grammar [7]. Links and link types can be useful in
linguistic patterns, such as the type MXsr connects a
relative pronoun to its corresponding noun. However,
languages such as XQuery and LPath can only ex-
press ancestor-descendant and sibling relations between
nodes. One of the novel features of our proposed query
language PTQL is the ability to express links and link
types between pairs of nodes, so that PTQL can be used
to express linguistic patterns based on constituent trees
and links, as well as link types.

We propose a high level extraction query language
called PTQL. PTQL is an extension of the linguistic
query language LPath [13], [5] that allows queries to
be performed not only on the constituent trees but
also the syntactic links between words on linkages. A
PTQL query is made up of four components: (i) tree
patterns, (ii) link conditions, (iii) proximity conditions,
and (iv) return expression. A tree pattern describes the
hierarchical structure and the horizontal order between
the nodes of the parse tree. A link condition describes the
linking requirements between nodes, while a proximity
condition is to find words that are within a specified
number of words. A return expression defines what to
return. The EBNF grammar for PTQL is shown in Figure
8. Before going into details of the definition of PTQL
queries and its usage, we start with the basic element of
PTQL queries called node expressions.

Definition 1: A node expression is an expression of
the form X[<pred exp>] (x) where X is a node
name, e.g., a sentence (STN), a parse sentence (PSTN),
a noun phrase (NP), or ? (a node of any name), <pred
exp> (predicate expression) is a boolean formula of
expressions of the form <attribute> <op> <value>,
and x is a variable name.

Intuitively, X [<pred exp>] (x) represents a node of
type X that satisfies the condition specified by <pred
exp> and this node is denoted by the variable x. When
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(<proximity cond>)? ’:’

(<return exp>)?

("{" <pattern list> "}’')?

(<or op> <node exp>) *

<value> (’,’ <value>)x ")’ ) )

<link exp> ')’

<query> ::= <pattern> ’:’ (<link cond>)? ’:’

<pattern> ::= <vert axis> <node exp> (' (/' <var> ’')’)?
<node exp> ::= <node> (' [’ <pred exp> "]’)?

<node> ::= <id> | ’'?’

<vert axis> ::="/" | /)’

<pattern list> ::= <pattern> (<horz axis> <pattern>) *
<horz axis> ::= '"->" | ’'=>" | ’'<=>'

<pred exp> ::= <pred term> (<and op> <pred exp>) *

<pred term> ::= <field> ( (<op> <value>) | ( <IN op> ' ('
<link exp> ::= <link term> ( <bool op> <link exp> )«
<link term> ::= ( <var> <link type> <var> ) | ' ('

<link type> ::= ’!’ <link_main_type> ( <link_subtype> )?

<proximity exp> ::= <proximity term> (
<proximity term> ::= (<number>? ('[' | '{")

(17 | "}’) <number>?) |
(DISTINCT) ? <return term>

I(I

<return exp> ::= o,

<return term> ::= <var> ’'.’ <field>

<op> ::= '=' | ’'<>' | ’like’ | ’'is’ | ’'is not’
<and op> ::= "AND’

<or op> ::= ’'OR’

<in op> ::= ’IN’

Fig. 8. PTQL Grammar

the predicate expression is empty (resp. variable bind-
ing is empty) we can omit the square brackets (resp.
parenthesis). As an example, N[tag="P’ ] (x) is a node
expression describing a node labeled with N (noun) and
tagged with P (i.e., a protein name) and this node is
denoted by the variable x. A wildcard ’ ?’ denotes a
node of any name. For instance, ? (y) represents a node
of any name and this node is denoted by the variable y.

To describe a tree pattern, we use two types of axis. A
vertical axis / (parent-child relationship) or // (ancestor-
descendant relationship) describes the hierarchical or-
der of nodes in the parse tree. A horizontal axis —>
(immediate following) or => (following) describes the
horizontal order of nodes®. Formally, a tree pattern is
defined recursively as follows.

Definition 2: If e is a node expression then /e and
//e are tree patterns. If e is a node expression and
di,...,9p are tree patterns then /e{ ap <hai;> ...
<han-1> g, + and //e{ g1 <ha;> ... <ha,_1> g,
} are tree patterns, where ha; can be —>, =>, or <=>.

A parse tree matches a pattern /e (resp. //e) if one
of the children (resp. descendants) of the root node
satisfies the node expression e. A parse tree matches a
pattern /e { q; <ha> ... <ha> q, } (resp. //e {
a1 <hai;> ... <ha,_1> g, }) if there is a node X with
children Yy, Yo, ..., Y, of X such that (i) X is a child
(resp. descendant) of the root node of the parse tree,
(ii) X satisfies the node expression e, (iii) each tree T;
with X being the root node and the subtree of the parse
tree rooted at Y; being the only subtree of T; matches
the pattern ¢;, and (iv) if ha; = ' ->’ (resp. ha; =
*=>") then Y;y; immediately follows (resp. follows)
Y;. Y41 follows or precedes Y; if ha; = "<=>'. For

3. A node X is said to (immediately) follow a node Y in a parse tree
if the right most leaf of X (immediately) follows the left most leaf of
Y.

<bool op> <proximity exp> )x*
<var>
<proximity exp> ')
<return term>) *

(<var>) +

’

instance, the parse tree in Figure 6 matches the pattern
//s{/Np->/vP} as (i) the node labeled with S is a
descendant of the root node of the parse tree, (ii) the first
noun phrase and the verb phrase are two children of
that node, and (iii) the verb phrase immediately follows
the noun phrase. This tree also matches the pattern
//s{//2tag="P" 1=>//VP{/V->//?[tag="P' ]}}
However, it does not match the pattern
//8{//Np->//V} as the verb does not immediately
follow either the first noun phrase (there is an adverb in
between) or the second noun phrase. A link condition
is defined as follows.

Definition 3: A link term is an expression of the form
x !<link> y, where x and y are variable names and
<link> is a link name in the linkage. A link condition is
a boolean expression of link terms.

For instance, x !S y is a link term representing the fact
that the node denoted by x connects to the node denoted
by y through an S link. Similarly, y !0 =z is a link term
representing the fact that the node denoted by y connects
to the node denoted by z through an O link. x !S y
AND y !0 zisa link expression whose meaning should
be clear.

Definition 4: A proximity term is an expression of the
form m{x; X tn or mlxy xi]n, where x4, ...,
xj, are variable names and m, n are integers. A proximity
condition is a boolean expression of proximity terms.

We use an example to illustrate the definition of prox-
imity terms. 1{x y}2 is a proximity term representing
the fact that the nodes denoted by x, y are at least 1
node but not more than 2 nodes apart with respect to the
sentence that contains words represented by x and y. In
the case of 1[x y]2, an additional constraint is imposed
such that words represented by x have to appear before
words represented by y in the sentence.
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Definition 5: A return expression is a list of elements of
the form <var>. <attr> separated by ’,’, possibly
preceded by the keyword DISTINCT, where <var> is a
variable name and <attr> is an attribute name.

As an example, DISTINCT x.value, y.value,
z.value is a return expression that returns the distinct
value attributes of nodes denoted by variables x, y,
z in the tree pattern. We now define the syntax of PTQL
queries.

Definition 6: A PTQL query is an expression of the
form <pattern> <link cond> <proximity
cond> <return exp> where <pattern> is a tree
pattern, <link cond> is a link condition, <proximity
cond> is a proximity condition and <return exp> is
a return expression.

A parse tree matches a PTQL query if it matches the
tree pattern of the query and the links between nodes
satisfies the link condition of the query. The return ex-
pression of the query defines what information we want
to return.

We illustrate the PTQL queries with examples,
as shown in Table 1. For query Ql, the tree pattern
//?[tag="P’'] (i1)=>//V[value='regulates’] (v)
=>//?[tag="P’] (i2) represents that a protein name
(denoted as i1) is followed by the verb “regulates”
(denoted as v), which is followed by another protein
name (denoted as i2), while the link condition il
!S v and v !0 i2 specifies that i1l has to be the
subject of the sentence and v corresponds to the verb
“regulates”, and v and i2 has verb-object relation. This
query returns the triplet (RAD53, regulates, DBF4).
Query Q2 demonstrates how tree patterns can be used
to identify protein mentions based on lexical clues using
the word “protein” within a noun phrase. This query
returns (DBF4) as a protein mention. Query Q3 utilizes
the link MX to resolve coreferences, as the link MXx
connects a relative pronoun to its corresponding word.
In this case, the relative pronoun “which” is connected
to the word “RAD53” so that (RAD53) is returned.

3.3 Query evaluation

Our approach for the evaluation of PTQL queries in-
volves the use of IR engine as well as RDBMS. The role
of the IR engine in query is to select sentences based on
the lexical features defined in PTQL queries, and only
the subset of sentences retrieved by the IR engine are
considered for the evaluation of the conditions specified
in the PTQL queries by RDBMS. Unlike the filtering
mechanism described in [17] that selects potentially
relevant documents for extraction, our approach does
not discard sentences that should otherwise be included
for extraction. Using sample query Q1 as an example,
the lexical features defined in the query imply that
only sentences with at least one gene name together
with the keyword “regulates” should be considered for

extraction. We summarize the process of the evaluation
of PTQL queries as follows:

1) Translate the given PTQL query into a filtering
query.

2) Use the filtering query to retrieve relevant docu-
ments D and the corresponding sentences S from
the inverted index.

3) Translate the PTQL query into an SQL query and
instantiate the query with document id d € D and
sentence id s € S.

4) Query PTDB using the SQL query generated in
Step 3.

5) Return the results of the SQL query as the results
of the PTQL query.

In step 2, the process of finding relevant sentences
with respect to the given PTQL query requires the
translation of the PTQL query into the corresponding
filtering query. Here we define the syntax of the keyword-
based filtering queries, which adopts the syntax of Lucene
queries.

A query term t for a filtering query is a string that can
be preceded by the required operator +, as well as the
term <field>:, where <field> is the name of a field.
A phrase p is in the form "t; t,", where ¢, ...,
t, are query terms. p can be followed by a proximity
operator in the form of p~<number>. A parenthesis
expression is composed of query terms and phrases,
enclosed by parentheses, and it can be preceded by the
required operator. A keyword-based filtering query is a list
of query terms, phrases and parenthesis expressions.
An PTQL query ¢ is translated into a keyword-based
filtering query using the following steps:

1) Generate query terms for each of the node expres-
sions that are in the tree pattern of q.

2) Form phrases if consecutive node expressions are
connected by “immediate following” horizontal
axes (i.e. “—>"

3) Form phrases followed by the proximity operator
if the corresponding nodes are defined in the prox-
imity condition of g.

The translation of a PTQL query ¢ into a keyword-
based filtering query involves the traversal of the
parse tree of the PTQL query in preorder walk
fashion. For each predicate term in the form of
<field> = <val> (resp. IN (valj,...,valg), we
create the query term +(field): (val) (resp. +(field)
: ({valy) (valg)) *). For example, the predicate
term of a node expression //N[tag='P’ and value
IN ("RAD5S3’,’DBF4’)] is +sent: ("RADS53"
"DBF4") +rep-sent :PROTNAME. If the tree pattern
of ¢ contains e; -> e;, where ¢; and e; are node
expressions with predicate term in the form of <field>
= <val>, then the phrase "(val;) (val;)" is formed for
the query terms that represent e; and e;. If a proximity

4. +(field) : ((vali) . (valg)) is the short form for
+ ((field) : (val1) ... (field): (valg))
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Relationship extraction (Q1):

PTQL:
v !0 12 ::

Extract protein-protein interactions with the pattern <subject>-<verb>-<object>, where the subject
and object correspond to protein names (tag='P’) and the verb corresponds to “regulates”
//s{//?[tag="P"] (il)=>//V[value='regulates’] (v)=> //?[tag="P’]1(i2)}: il
il.value, v.value, i2.value

'S v and

Entity recognition (Q2):
g are treated as protein names
PTQL:

Find protein mentions that precede the word “protein” within a noun phrase so that the return values of

//NP{/? (g)->/N[value='protein’ ]} :::

g.value

Coreference resolution (Q3):
values of w

PTQL:

Find words that are referenced by the pronoun “which” so that the corresponding words are the return

//5{//? (w)=>//PRP[value="which’] (p)} : w !MX p ::

w.value

TABLE 1
Examples of PTQL queries. The constituent tree and linkage given in Figures 3 and 4 match any of these queries.

term in the proximity condition of ¢ is in the form [x;
x;]n, then the phrase "(val;) (val;)" “n is formed.

We use query Q1 in Table 1 to illustrate the transla-
tion of PTQL queries into keyword-based filtering. The
following is the keyword-based filtering query for Q1:

+sent:regulates +rep_sent :PROTNAME

The translation of PTQL queries into SQL queries in
step 3 adopts the approach used in LPath [5], [13] to
translate the hierarchical representation and horizontal
relations of PTQL queries into nested SQL queries. We
further extend the translation of PTQL link conditions
into SQL. The details of the PTQL-to-SQL translation
is presented in Appendices C and D. The translated
SQL query is then instantiated with the sentences re-
trieved in step 2 by specifying the document (Doc_1ID)
and sentence IDs (Sent_CID) in the SQL queries. The
corresponding SQL translation for query Q1 is as fol-
lows, in which table alias C and T refers to the table
Constituents and Linkages that are used for storing
the constituent trees and linkages of sentences, while
table alias B refers to the table Bioentities thatis used
for storing entity mentions:

SELECT v2,v3,v4
FROM (SELECT id id4,..,v v4,id1,.., vl
FROM C, (SELECT id id3,..,v v3,1id1,..,vl
FROM C, (SELECT id id2,..,v v2,id1,..,vl
FROM C, (SELECT pid pidl,..,v vl
FROM C WHERE d>2 AND C.n='S8’) C2
WHERE C.1>=C2.11 AND C.r<=C2.rl
AND C.d>C2.dl1 AND (B.t='P’
B.id=C.id)) C3
WHERE C.1>=C3.11 AND C.r<=C3.rl
AND C.d>C3.dl1 AND C.n="V’
AND C.v='regulates’
AND C.1>=C3.r2) C4
WHERE C.1>=C4.11 AND C.r<=C4.r1 AND
C.d>C4.dl1 AND (B.t="P’ AND
B.id=C.id) AND C.1>=C4.r3) T
WHERE ((T.id2,T.id3) IN (SELECT f_id,t_id
FROM L WHERE TYPE=’S’)) AND ((T.id3,T.id4)
IN (SELECT f_id,t_id FROM L WHERE TYPE='0’))

AND

4 QUERY GENERATION

In this section, we demonstrate how PTQL queries for
extraction differs from the traditional pipeline approach
of information extraction through the extraction of

protein-protein and drug-protein (also known as drug-
enzyme) interactions. Information extraction is typically
performed by identifying a set of distinctive features that
are common among the examples of the relationship of
interest from the training data. These distinctive features
are then utilized to form extraction patterns that are
generic enough to be applied to unseen data for relation-
ship extraction. We called this approach as the training set
driven query generation, and we demonstrate its capability
in extracting any kinds of protein-protein interactions.
However, compiling a corpus of annotated training data
is known to be time-consuming and labor-intensive. In
the absence of training data, our alternative approach
is to generate extraction queries from keyword-based
queries using a pseudo-relevance feedback methodol-
ogy. We called this alternative approach as the pseudo-
relevance feedback driven query generation that is capable
of extracting specific kind of interactions. In this case,
we show the performance of the approach with the
extraction of drug-protein metabolic relations.

4.1 Training set driven query generation

We illustrate our approach with an application of
protein-protein interaction extraction using a set of syn-
tactic patterns that are expressed in PTQL queries. To
generate a set of patterns for information extraction,
the annotator component is applied to automatically
annotate an unlabeled document collection with infor-
mation drawn from a problem-specific database. This
step necessitates a method for precise recognition and
normalization of protein mentions. From this labeled
data, the pattern generator identifies relevant phrases
referring to interactions in order to generate patterns.
These initial patterns are then used to compute consen-
sus patterns through the pattern generalization component
for protein—protein interactions (PPI)s. PTQL queries are
then formed by the query generator to perform extraction
from the parse tree database.

As many sentences might contain coincidental men-
tions of proteins and not describe an interaction (“We
study the proteins A, B, and C.”), we reduce these initial
candidate evidence by a number of refinement steps. As
a first step, we search for words typically referring to
protein—protein interactions (“binds”, “association”, “—
mediated”). We currently use a set of 123 verbs, 126
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1 | P interacts with the P
2| P binds to P
3| P bound to P

| P {i-verb}  {preposition}  {determiner}? P

{determiner} := a, an, the, these, this, those, ...;

{preposition} := between, for, to, with, ...;

{i-verb} := binds, bound, interacts, interacted, ...;
Fig. 9. Multiple initial patterns (1-3) lead to the same
general pattern, after words have been replaced with
concepts (in curly brackets; for example, protein names
are replaced with ‘P’).

nouns, and 8 adjectives, plus corresponding word forms.
Such words have to appear between the two proteins
under consideration, or precede/follow them in a short
distance, which is parameterizable. We then reduce the
full sentence to the snippet that likely conveys the infor-
mation about an interaction; therefore, we may extract
the shortest snippet that contains both proteins and an
interaction—indicating word, or include additional words
from the left and right of this snippet. Each snippet
found is considered as a relevant phrase; it could be
directly used to find similar (parts of) sentences in the
test dataset. The more the snippet extends to the left
and right, the more precise the phrase will be. Shorter
snippets, on the other hand, will typically increase the
recall when using that phrase.

To increase the recall of the initial patterns, we gen-
eralize the patterns by substituting tokens belonging to
certain word categories with a higher-level concept, such
as gene/protein names, interaction verbs. It shows that
many natural language sentences that describe certain
events, like protein—protein interactions, exhibit a cer-
tain ‘behavior’ that makes them similar to other such
sentences. Consider Figure 9, where the words ‘binds’,
‘interacts’, etc. can be generalized into i-verb, indicat-
ing that the words belong to the higher-level concept
interaction verbs.

The generalized patterns are then translated into PTQL
queries for extraction. For instance, the syntactic pattern
<p> {i-verb} {preposition} {determiner}? <p>,
where <P> corresponds to the matching of any protein
names, is translated into:

//S{//[tag="P"]1(il)->//V[tag="1I']1->//IN[value
in {’with’,’for’,...}(wl)=>//[tag="P’'](12)}
1[wl i2]2 il.value, i2.value

The category {preposition} is represented by its set of
predefined instances of prepositions in the PTQL query.
The term {determiner}? indicates that a determiner is
an optional match, and it is represented by the proximity
condition 1 [wl i2]2 so that at most one word can be
in between the words represented by the variables wl
and 12. Notice that no link condition is used in the
translation from syntatic patterns to PTQL queries.

4.2 Pseudo-relevance feedback driven query gener-
ation

To make up for the lack of training data for the relation-
ship of interest, we offer an alternative approach that
is inspired by pseudo-relevance feedback in information
retrieval (IR). The idea is to automatically generate PTQL
queries by considering the constituent trees of the top-
k sentences retrieved with a boolean keyword-based
query. The common grammatical patterns among the
constituent trees of relevant sentences are utilized to
form extraction patterns. Interaction extraction is then
performed by using the PTQL queries translated from
the generated extraction patterns.

A boolean keyword-based query ¢ is composed of
query terms t; ... t,, where a query term ¢; can be
a keyword, or an identifier for an entity type, such as
PROTNAME that represents any matches of protein names.
With ¢, a ranked list of sentences S is retrieved and the
constituent trees of the top-k sentences of S (denoted
as Sy) are retrieved from PTDB. To find common gram-
matical patterns among the constituent trees of Sy, string
encodings are generated for each of the sentence in Sj. A
0-th level string encoding records the labels of the lowest
common ancestor [ca of the query terms and the query
terms themselves in a pre-order tree traverse order. A m-
th level string encoding is defined as the string encoding
that includes at most m descendants of lca on each
of the paths connecting lca and a query term t;. For
instance, suppose ¢=PROTNAME and regulates and
PROTNAME, then the string

//S/NP/kwl://S/VP/kw2://S/VP//kw3

is a 1st level string encoding for the constituent tree in
Figure 4, in which kwl, kw3 represent PROTNAME and
kw2 represents the keyword “regulates”, and S is the
the lowest common ancestor node for the three terms. A
m-th level string encoding has a one-to-one translation
to a PTQL query. Using the above string encoding as an
example, the corresponding PTQL query is

//S{/NP{/?[tag="P’]}=>/VP{/?[value=
"regulates’]=>//?[tag="P’']}}}

With m=0, the linguistic patterns in the relevant sen-
tences are maximally generalized, potentially leading
to a high recall with possible comprise to precision.
With the increasing value of m, the patterns become
more specific, potentially increase precision with pos-
sible compromise to recall. By forming the m-th level
string encodings, we can identify the similarity of the
retrieved sentences based on their grammatical struc-
tures. We define that two sentences are grammatically
similar if they have the same m-th level string encoding.
Grammatically similar sentences are grouped together
to form a cluster. A PTQL query is then generated for
each of the clusters of string encodings. The steps of
generating PTQL queries can be outlined as follows:
Let C,, be a set of clusters with m-th level string en-
codings. Given a boolean keyword-based query ¢ and
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positively kw2

DBF4 —— kw3
(PROTNAME )

Fig. 10. An illustration of the m-th level string encod-
ing //S/NP/kwl://S/VP/kw2://S/VP//kw3, where
m=1, for the constituent tree of “RAD53 positively reg-
ulates DBF4” with respect to the query PROTNAME and
regulates and PROTNAME. The shaded nodes in the
constituent tree are used for the string encoding, and the
node with label s is the the lowest common ancestor node
for the three query terms.

paramemter £k,

1) Retrieve sentences using g from the inverted index
and retrieve the constituent trees of the top-k sen-
tences S;, from PTDB.

2) For each sentence in S extract the subtree that
is rooted at the lca of all the query terms t;,
..., t, with the query terms as leaf nodes from the
constituent tree.

3) Generate m-th level string encodings for each of
the subtrees.

4) Sentences that are grammatically similar based on
their m-th level string encodings are grouped to-
gether to form clusters of common grammatical
patterns C,.

5) A PTQL query is generated for each common
grammatical pattern C,,.

Interactions are extracted through the evaluation of the
generated PTQL queries.

5 RESULTS

We first illustrate the performance of our approach in
terms of query evaluation and the time savings achieved
through incremental extraction. Then we evaluate the
extraction performance for our two approaches in query
generation.

5.1

We performed experiments in finding the time perfor-
mance of the evaluation of PTQL queries, as well as
experiments to illustrate the amount of time saved in the
event of change of an extraction goal and deployment of
an improved module. All experiments were performed
using a 2.2-GHz Intel Xeon QuadCore CPU running
in Red Hat Linux. Only a single process was used to
perform the experiments. The parse tree database is
stored as a relational database managed by MySQL.

Time performance for PTQL
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Fig. 11. Time performance in seconds for PTQL evalua-
tion for a set of 25 queries that involve the extraction of
drug-metabolic-gene relations.

5.1.1 Query evaluation

Using a large corpus of 17 million Medline abstracts, the
intermediate processing data was stored in our parse tree
database occupying about 1.5 TB of disk space. A set of
25 PTQL queries that involves the extraction of drug-
gene metabolic relations was used to evaluate the time
performance for PTQL evaluation. Specifically, given a
drug, the goal is to find which genes are involved in the
metabolic relations with the drug. In our experiments,
we specified a single drug (“1-drug”), a set of 5 drugs
(“5-drugs”) and a set of 10 drugs (“10-drugs”) in each of
the 25 PTQL queries. Each query was evaluated with 5
different sets of drugs and repeated for 5 runs. Figure 11
shows the average duration over different sets of drugs
and runs for the PTQL evaluation. This figure shows that
the query evaluation can be completed in the range of
a second to 50 seconds for all answers to be returned.
Queries specified with a larger set of drugs require
a longer time to complete the evaluation. The time
performance indicates that our proposed framework is
acceptable for real-time IE.

5.1.2 Incremental extraction

We performed experiments to show the time savings for
incremental extraction. Incremental extraction is applied
when there is a change in extraction goals or deployment
of an improved processing module. The scenario behind
our experiment is that the initial goal is to perform
extraction for drug information from a text collection.
The extraction goal is then changed into the extraction of
drug-protein relations that requires the deployment of a
gene named entity recognizing to identify gene mentions
in the text collection.

To illustrate the amount of time savings, a collection of
13K Medline abstracts was initially processed with the
Link Grammar parser and a dictionary-based tagger for
drug names. This process took about 62.38 hours. We
then deployed a statistical-based tagger for gene names
to process the corpus. With the pipeline approach, the
whole process had to be started from scratch by running




IEEE TRANSACTIONS ON KNOWLEDGE & DATA ENGINEERING

the Link Grammar parser, the drug name tagger and the
newly deployed gene name tagger. This took another
64.8 hours to complete. With our approach, the interme-
diate processing data produced by the Link Grammar
parser and the drug name tagger were populated into
the parse tree database. The gene name tagger was
then deployed to process the corpus and SQL insert
statements were issued to update the parse tree database.
This process took only 6.71 hours to complete. This
experiment showed a tremendous decrease of 89.64%
when a new module is deployed for text processing as
compared to the pipeline approach.

5.2 Extraction performance for PTQL

We used two datasets to evaluate the performance of
PTQL. For the evaluation of our training set driven
query generation, we used the BioCreative 2 IPS test
data [18] as a benchmark for relationship, in this case the
extraction of protein—protein interactions. This data set
consists of 358 full-text articles, which we transformed
into 98,209 sentences. This set was reduced by us to
include only sentences that contain at least one protein,
resulting in 71,631 sentences. Another dataset of 13015
Medline abstracts from [19] that focus on drug-protein
relations is used to evaluate the pseudo-relevance feed-
back driven query generation.

5.2.1 Training set driven query generation

Using the training set driven query generation method,
we used the training data from the BioCreative 2 IPS
corpus to generate extraction patterns. The task in the
BioCreative 2 IPS benchmark is to find protein—protein
interactions for which a text provides evidence for a
physical interaction between the proteins. In addition, all
proteins have to be mapped to corresponding identifiers
in the UniProt database. We describe our approach for
this additional task in [20]. The generated patterns were
then translated into PTQL queries, which were utilized
to perform extraction from the testing data. The training
set driven query generation method generated 11,208
extraction patterns. Our approach of using PTQL queries
to express the generated patterns achieves a mean preci-
sion and recall of 83.6% and 58.6% with 64.2% as the f-
measure. The extraction results are summarized in Table
2. Our results also show far better performance than
the previously top-performing PPI systems [21], [22],
[23]. To give a fair comparison, we performed another
experiment that utilized the 74 manually curated pat-
terns reported in [24] on their OpenDMAP system, but
using the same gene normalization (EMN) and named
entity recognition (NER) from [20]. We observed that
our approach still achieves significantly better results.
The significant improvement over previous methods is
largely contributed by the large number of generated
extraction patterns that were generated by our train-
ing set driven query generation approach. Each of the
generated patterns has a high precision but low recall,

TABLE 2
Performance of various approaches on the BioCreative 2
IPS test data (version: “SwissProt only”). Mean precision,
recall, and f-measure in %. The systems marked * are
basically the same; for one, we replaced their NER/EMN
with our own to get results that are better comparable.

System P R F
PTQL 83.6 586 642
* Reported by [21] 391 297 285
74 manually created patterns [24], with 59.7 379 418
NER/EMN from [20]

Reported by [22] 370 327 304
Reported by [23] 252 233 242

but the combined results of the 11,208 extraction queries
contributes to a high overall recall.

5.2.2 Pseudo-relevance feedback query generation

We further evaluate the extraction performance for PTQL
using the pseudo-relevance feedback driven query gen-
eration method. Our goal here is to extract drug-protein
metabolic relations without the use of training data
to generate queries. Specifically we created boolean
keyword-based queries in the form of DRUGNAME and
<metabolic-word> and PROTNAME, where the iden-
tifiers DRUGNAME and PROTNAME correspond to match-
ing of any mentions of drug and protein names, and
<metabolic-word> is a class of words to indicate
drug-protein metabolic relations that include the words
“metabolized”, “metabolize”, “metabolizes”, “metabolised”,
“metabolise”, “metabolises” and “metabolism”. For each of
the keyword-based queries, the top k% of the retrieved
sentences were used to generate clusters. A cluster is
translated into a PTQL query if it has at least n members.
The generated PTQL queries are then applied to perform
extraction, and the query results of the PTQL queries are
the extracted relations.

The performance of the query generation using
our pseudo-relevance feedback is compared with the
cooccurrences method, which considers a drug-protein
metabolic relation when drug and protein names to-
gether appear with one of the metabolic words in a
sentence. To perform the comparison, we created a gold
standard by analyzing all of the interactions that were
extracted using the cooccurrences method. This results
in a collection of 1059 drug-protein metabolic relations®
out of the 13,015 abstracts. Table 3 shows the perfor-
mance of the query generation method compared to the
cooccurrences method. While the f-measure shows that
the query generation method lags behind due to the high
recall achieved by cooccurrences, it is important to notice
that precision is significantly higher than its cooccur-
rences counterpart. The results also shows the expected
tradeoff between precision and recall when m varies.
With increasing m, which is the maximum number of

5. We omit possible cross-sentence relations in the creation of gold
standard.
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TABLE 3

Precision, recall and f-measure in % for drug-protein

metabolic relations between the cooccurrences method
and the pseudo-relevance feedback driven query

generation method (QueryGen). m is the maximum
number of descendants to include in the m-th level string
encodings, using the top 60% of the retrieved sentences

to form clusters with at least 3 members.

System Precision  Recall F-measure

Cooccurrences 39.9 100.0 57.0

QueryGen (m=1) 53.5 64.3 58.4

QueryGen (m=2) 68.0 42.8 52.5

QueryGen (m=3) 83.3 31.0 45.2

QueryGen (m=4) 85.0 26.0 39.8
TABLE 4

Comparison of cooccurrence and pseudo-relevance
feedback on the extraction of drug-protein metabolic
relations. Number of true positives (TP), precision (P),
recall (R) and f-measure (F) for each kind of gene-drug
metabolic relations between the cooccurrences method
and the pseudo-relevance feedback driven query
generation method (PTQL). m is the maximum number
of descendants to include in the m-th level string
encodings, using the top 60% of the retrieved sentences
to form clusters with at least 3 members.

Cooccurrences PTQL (m=1)
TP P R F TP P R
metabolized 344 55.0 1000 71.0 | 243 822 68.6 74.8
metabolises 9 45.0 100.0 621 - - - -
metabolised 82 519 1000 683 43 79.6 524 63.2
metabolize 38 409 1000 580 | 13 520 342 413
metabolism 546  32.0 1000 484 | 355 41.0 650 50.3
metabolizes 47 72.3 100.0 839 26 83.9 553 66.7

descendants of LCA to include in the m-th level string
encodings, precision gains at the expense of recall. This
is intuitive as the string encodings become more specific
when more descendants are included. Table 4 shows
the extraction performance of drug-protein metabolic
relations with different keywords using our pseudo-
relevance feedback driven query generation method.
Extraction with the keyword “metabolises” does not yield
any results with our query generation method, due to
the small number of sentences retrieved by the initial
keyword-based queries.

6 RELATED WORK

Information extraction has been an active research area
over the years. The main focus has been on improving
the accuracy of the extraction systems, and IE has been
seen as an one-time execution process. A recent special
issue of SIGMOD Record [25] highlights the need to
develop IE frameworks that manage extraction tasks as
long-time running processes.

6.1 Traditional IE approaches

Our proposed framework has a fundamental difference
from the existing extraction systems in terms of the usage

of RDBMS. Popular IE frameworks such as UIMA [1]
and GATE [2] provide the ability of efficient integration
of various NLP components for IE. Such frameworks are
file-based and they do not store the intermediate pro-
cessing output of various components. Typical extraction
systems such as QXtract [17] and Snowball [26] utilize
RDBMS to store and query the extracted facts. Recent
work on IE management systems rely on RDBMS for
optimization of the execution of IE tasks. For systems
such as Cimple [27] and SystemT [28], operations such
as joins in RDBMS are performed over extracted facts
that are stored in various database tables. However, in
the event of a deployment of an improved component
or a change of extraction goals, all components have to
be reprocessed from scratch, which is computationally
expensive as shown in our experiments. In our approach,
only the new module has to be processed for the text col-
lection. The intermediate processing data is then inserted
into the parse tree database so that both the new and
existing processing data can be utilized for extraction.

To address the high computational cost associated
with extraction, document filtering is a common ap-
proach in which only the promising documents are
considered for extraction [17], [29], [30]. These promising
documents are selected based on a classifier that is
trained for determining documents that are relevant for
extraction. Such an approach can potentially miss out
documents that should have been used for extraction.
In our filtering approach, sentences are selected solely
based on the lexical clues that are provided in a PTQL
query. This filtering process utilizes the efficiency of IR
engines so that a complete scan of the parse tree database
is unnecessary without sacrificing any sentences that
should have been used for extraction.

6.2 Rule-based IE approaches

Rule-based IE approaches have been proposed in [31],
[32], [33], [34]. The AQL query language proposed in the
Avatar system [34] is capable of performing extraction
for a variety of IE tasks that includes matching with
regular expression. Unlike PTQL, the language does not
support the use of parse trees, which can be useful in
IE tasks such as relationship extraction. Systems such
as DIAL [32], TLM [33], KnowItNow [35] focus on rela-
tionship extraction based on their own query languages.
However, these languages only support querying of data
from shallow parsing, and they do not have the ability
of extracting from rich grammatical structures such as
parse trees. On the other hand, declarative languages
are used in systems such as Cimple [27] and SystemT
[28]. Operations such as joins in RDBMS are performed
over extracted facts that are stored in various database
tables. Rules are then applied to integrate different types
of extracted facts. However, these rules are not capable
of querying parse trees.

Our work is closest to an IE management system
MEDIE [31] stores parse trees in a database and allows
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extraction over parse trees with a query language. The
XML-like query language proposed is based on another
kind of dependency grammar called head-driven phrase
structure (HPSG). Unlike PTQL, link types cannot be
expressed with this query language. In addition, MEDIE
only provides simple query generation component that
translates subject-verb-object extraction queries into its
own query languages. This limits the utility of the sys-
tem, as there can be a learning curve to learn the query
language before users can perform their own extraction.

6.3 Machine learning approaches for IE

Our proposed approach provides mechanisms to gener-
ate extraction queries from both labeled and unlabeled
data. Query generation is critical so that casual users
can specify their information needs without learning
the query language. Learning extraction patterns from
training data has been proposed previously [17], [26],
[36], [37]. However, training data is not always readily
available and annotation of training data is both labor-
intensive and time-consuming. To compensate the need
of training data for extraction, [38], [39] proposed a new
paradigm of automated discovery of relations through
self-supervised learning. The core idea is to identify
dependency structures from sentences that are retrieved
by a user’s query. The identified grammatical structures
are generalized to form extraction patterns. However, the
process of finding patterns can be expensive as any sub-
trees in the dependency structures can be considered as
patterns. To reduce the complexity, only structures with
verbs as predicates and a restricted number of nodes
are considered in the process of identifying patterns.
The techniques in [38], [39] requires certain predefined
linguistic heuristics for the generation of extraction pat-
terns. Our query generation method does not make any
assumptions for linguistic heuristics.

7 DISCUSSION AND FUTURE WORK

In this section, we discuss the main contributions of our
work as well as their limitations.

e Extraction framework. Existing extraction frameworks
do not provide the capabilities of managing intermediate
processed data such as parse trees and semantic informa-
tion. This leads to the need of reprocessing of the entire
text collection, which can be computationally expensive.
On the other hand, by storing the intermediate processed
data as in our novel framework, introducing new knowl-
edge can be issued with simple SQL insert statements on
top of the processed data. With the use of parse trees,
our framework is most suitable for performing extraction
on text corpus written in natural sentences such as the
biomedical literature. In the case when the parser fails to
generate parse tree for a sentence, our system generates
a “replacement parse tree” that has the node STN as the
root with the words in the sentence as the children of
the root node. This allows PTQL queries to be applied to
sentences that are incomplete or casually-written, which

can appear frequently in web documents. Features such
as horizontal axis and proximity conditions can be most
useful for performing extraction on replacement parse
trees.

o  Parse tree query language. One of the main contri-
butions of our work is PTQL that enables information
extraction over parse trees. While our current focus is
per-sentence extraction, it is important to notice that
the query language itself is capable of defining patterns
across multiple sentences. By storing documents in the
form of parse trees, in which the node DOC is repre-
sented as the root of the document and the sentences
represented by the nodes STN as the descendants. As
shown in the sample queries illustrated in Table 1,
PTQL has the ability to perform a variety of informa-
tion extraction tasks by taking advantage of parse trees
unlike other query languages. Currently PTQL lacks the
support of common features such as regular expression
as frequently used by entity extraction task. PTQL also
does not provide the ability to compute statistics across
multiple extraction such as taking redundancy into ac-
count for boosting the confidence of an extracted fact.

e Query generation An important component of our
extraction framework is on the automated generation of
PTQL queries. Our training set driven query generation
component is capable of generating precise extraction
queries. To handle recall, the strategy is to generate a
large number of such precise extraction queries. While
training data is available for certain extraction goals
such as the extraction of protein-protein interactions, it
is not the case for other kinds of extraction. Our pseudo-
relevance feedback query generation mechanism allows
generation of PTQL queries without training data. As
indicated by the precision listed in Table 4, the perfor-
mance of the query generation method can be sensitive
to the choice of keywords. However, our results indicate
that our method can significantly improve the precision
over the precision achieved by using cooccurrences.

As future work, we will extend the support of other
parsers by providing wrappers of other dependency
parsers and scheme, such as Pro3Gres and the Stanford
Dependency scheme, so that they can be stored in PTDB
and queried using PTQL. We will expand the capabilities
of PTQL, such as the support of regular expression and
the utilization of redundancy to compute confidence of
the extracted information.
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