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Abstract. In recent years Logic programming based languages and features—
such as rules and non-monotonic constructs—have become important in various
knowledge representation paradigms. While the early logic programming lan-
guages, such as Horn logic programs and Prolog did not focus on expressing and
reasoning with uncertainty, in recent years logic programming languages have
been developed that can express both logical and quantitative uncertainty. In this
paper we give an overview of such languages and the kind of uncertainty they can
express and reason with. Among those, we slightly elaborate on the language P-
log that not only accommodates probabilistic reasoning, but also respects causal-
ity and distinguishes observational and action updates.

1 Introduction

Uncertainty is commonly defined in dictionaries [1] as the state or condition of be-
ing uncertain. The adjective, uncertain, whose origin goes back to the 14th century,
is ascribed the meanings, “not accurately known”, “not sure” and “not precisely deter-
mined”. These meanings indirectly refer to a reasoner who does not accurately know, or
is not sure, or cannot determine something precisely. In the recent literature uncertainty
is classified in various ways. In one taxonomy [38], it is classified to finer notions such
as subjective uncertainty, objective uncertainty, epistemic uncertainty, and ontological
uncertainty. In another taxonomy, uncertainty is classified based on the approach used
to measure it. For example, probabilistic uncertainty, is measured using probabilities,
and in that case, various possible worlds have probabilities associated with them.

Although the initial logic programming formulations did not focus on uncertainty,
the current logic programming languages accommodate various kinds of uncertainty.
In this overview paper we briefly discuss some of the kinds of uncertainty that can be
expressed using the logic programming languages and their implications.

The early logic programming formulations are the language Prolog and Horn logic
programs [13,23]. A Horn logic program, also referred to as a definite program is a col-
lection of rules of the form: ag < A1, ...,0p. with n > 0 and where aq, ..., a,
are atoms in the sense of first order logic. The semantics of such programs can be
defined using the notion of a least model or through the least fixpoint of a meaning
accumulating operator [13,23].

For example, the least model of the program:



a<+b,ec.
d <+ e.
b+ .
C <.

is {b, ¢,a} and based on the semantics defined using the least model one can conclude
that the program entails b, ¢, a, ~d and —e. The entailment of —d and —e is based on the
closed world assumption [34] associated with the semantics of a Horn logic program.
Thus there is no uncertainty associated with Horn logic programs.

Although Prolog grew out of Horn logic programs, and did not really aim to accom-
modate uncertainty, some Prolog programs can go into infinite loops with respect to
certain queries and one may associate a kind of “uncertainty” value to that. Following
are some examples of such programs.

Py a <+ a.
b<+.
Ps: a < not a,c.
b<+.
Ps: a < not b.
b < not a.
D a.
p <+ b.

With respect to the Prolog programs P; and P» a Prolog query asking about a may
take the interpreter to an infinite loop, and with respect to the program Ps a Prolog
query asking about a, a Prolog query asking about b and a Prolog query asking about p
could each take the interpreter to an infinite loop.

In the early days of logic programming, such programs were considered “bad” and
writing such programs was “bad programming.” However, down the road, there was a
movement to develop logic programming languages with clean declarative semantics,
and Prolog with its non-declarative constructs was thought more as a programming lan-
guage with some logical features and was not considered a declarative logic program-
ming language. With the changed focus on clean declarative semantics, P, P> and Ps
were no longer bad programs and attempts were made to develop declarative semantics
that could graciously characterize these programs as well as other syntactically correct
programs. This resulted in several competing semantics and on some programs the dif-
ferent semantics would give different meanings. For example, for the program Ps, the
stable model semantics [16] would have two different stable models {a,p} and {b,p}
while the well-founded semantics [39] will assign the value unknown to a, b and p.

The important point to note is that unlike Horn logic programs, both stable model
semantics and well-founded semantics allow characterization of some form of “uncer-
tainty”. With respect to P5 the stable model semantics effectively encodes two possible
worlds, one where a and p are true (and b is false) and another where b and p are true
(and a is false). On the other hand the well-founded semantics does not delve into pos-
sible worlds; it just pronounces a, b and p to be unknown.

On a somewhat parallel track Minker and his co-authors [24] promoted the use of
disjunctions in the head of logic programming rules, thus allowing explicit expression
of uncertainty. An example of such a program is as follows.



Py aorb<«.
p < a.
p<+b.

The program P, was characterized using its minimal models and had two minimal
models {a,p} and {b,p}. As in the case of stable models one could consider these
two minimal models as two possible worlds. In both cases one can add probabilistic
uncertainty by assigning probabilities to the possible models.

In the rest of the paper we give a brief overview of various logic programming
languages that can express uncertainty and reason with it. We divide our overview to
two parts; one where we focus on logical uncertainty without getting into numbers and
another where we delve into numbers. After that we conclude and mention some future
directions.

2 Logical uncertainty in logic programming

Logical uncertainty can be expressed in logic programming in various ways. In the
previous section we mentioned how uncertainty can be expressed using the stable model
semantics as well as using disjunctions in the head of programs. We now give the formal
definition of stable models for programs that may have disjunctions in the head of rules.
A logic program is then a collection of rules of the form:
ag OT ... OT A < Qk41, .-+, Gm, NOL Qpt1, ..., NOL Gy,
with £ > 0, m > k, n > m, and where aq, ..., a,, are atoms in the sense of first order
logic. The semantics of such programs is defined in terms of stable models. Given such
a program P, and a set of atoms S, the Gelfond-Lifschitz transformation of P with re-
spect to S gives us a program P which does not have any not in it. This transformation
is obtained in two steps as follows:
(i) All rules in P which contains not p in its body for some p in .S are removed.
(ii) For each of the remaining rules the not ¢ in the bodies of the rules are removed.
A stable model of the program P is defined as any set of atoms .S such that S is a
minimal model of the program P*. An atom a is said to be true with respect to a stable
model S if a € S and a negative literal —a is said to be true with respect to a stable
model S if a ¢ S. The following examples illustrates the above definition. Consider the
program
Ps: a < not b.
b < not a.
porq+ a.
p < b.
This program has three stable models {a, p}, {a, ¢} and {b, p}. This is evident from
noting that P5{ “P} is the program:
a <.
porq <+ a.
p<+b.
and {a, p} is a minimal model of P{**}_ Similarly, it can be shown that {a, ¢} and
{b, p} are also stable models of Ps.



As we mentioned earlier, the logical uncertainty expressible using logic programs
is due to both the disjunctions in the head as well as due to the possibility that even pro-
grams without disjunctions may have multiple stable models. However, in the absence
of function symbols, there is a difference between the expressiveness of logic programs
that allow disjunction in their head and the ones that do not. Without disjunctions the
logic programs capture the class coNP, while with disjunctions they capture the class
1I,P [8].

In the absence of disjunctions, rules of the kind

Ps: a + notn_a.
n_a < not a.

allow the enumeration of the various possibilities and rules of the form
Pr: p < not p,q.

allow elimination of stable models where certain conditions (such as ¢) may be true.
The elimination rules can be further simplified by allowing rules with empty head. In
that case the above rule can be simply written as: Ps: — q. When rules
with empty heads, such as in Ps, are allowed, one can replace the constructs in Py by
exclusive disjunctions [20] of the form: Py: adPn_a<. to do the enumer-
ation, and can achieve the expressiveness to capture the class coNP with such exclusive
disjunctions, rules with empty heads as in Ps and stratified negation. The paper [20]
advocates this approach with the argument that many find the use of unrestricted nega-
tion to be unintuitive and complex. On the other hand use of negation is crucial in many
knowledge representation tasks and while using them having not to worry whether the
negation used is stratified or not makes the task simpler for humans.

2.1 Answer sets and use of classical negation

Allowing classical negation in logic programs gives rise to a different kind of uncer-
tainty. For example the program

Pig: a<+b.
—b .

has a unique answer set {0} and with respect to that answer set the truth value of a
is unknown. We now give the formal definition of answer sets for programs that allows
classical negation. A logic program is then a collection of rules of the form:

lpor...orly < lgt1,-. -y lm, not Ly, ..., not .

with £ > 0, m > k, n > m, and where [, . .., [, are literals in the sense of first order
logic. The semantics of such programs is defined in terms of answer sets [17]. Given
such a program P, an answer set of the program P is defined as a consistent set of
literals S such that S satisfies all rules in P° and no proper subset of S satisfies all
rules of P°, where P? is as defined earlier. A literal [ is defined to be true with respect
to an answer set S if [ € S. With the use of classical negation one need not invent new
atoms for the enumeration, as was done in Pg, and simply write:

Py a < not —a.
—a < not a.



Moreover, since answer sets are required to be consistent, one need not write ex-
plicit rules of the kind: — a,a. which were sometimes explicitly needed to be
written when not using classical negation.

2.2 Other logic programming languages and systems for expressing logical
uncertainty

Other logic programming languages that can express logical uncertainty include abduc-
tive logic programs [21] and various recent logic programming languages. Currently
there are various logic programming systems that one can be use to express logical
uncertainty. The most widely used are Smodels [29], DLV [11] and the Potassco suite
[15].

3 Multi-valued and Quantitative uncertainty in logic
programming

Beyond logical uncertainty that we discussed in the previous section where one could
reason about truth, falsity and lack of knowledge using logic programming, one can
classify uncertainty in logic programming in several dimensions.

— The truth values may have an associated degree of truth and falsity or we may have
multi-valued truth values.

— The degree of truth or the values (in the multi-valued case) could be discrete or
continuous.

— They can be associated with the whole rule or with each atom (or literal) in the rule.

— The formalism follows or does not follow axioms of probability.

— The formalism is motivated by concerns to learn rules and programs.

Examples of logic programming with more than three discrete truth values include
use of bi-lattice in logic programming in [14], use of annotated logics in [6] and various
fuzzy logic programming languages.

Among the various quantitative logic programming languages the recollection [37]
considers Shapiro’s quantitative logic programming [36] as the first “serious” paper on
the topic. Shapiro assigned a mapping to each rule; the mapping being from numbers in
(0,1] associated with each of the atoms in the body of the rule to a number in (0,1] to be
associated with the atom in the head of the rule. He gave a model-theoretic semantics
and developed a meta-interpreter. A few years later van Emden [12] considered the
special case where numbers were only associated with a rule and gave a fixpoint and a
sound and conditionally-complete proof theory.

A large body of work on quantitative logic programming has been done by Subrah-
manian with his students and colleagues. His earliest work used the truth values [0,1]
U {«}, where * denoted inconsistency and as per the recollection [37] it was “the first
work that explicitly allowed a form of negation to appear in the head.” This was fol-
lowed by his work on paraconsistent logic programming [6] where truth values could
be from any lattice. He and his colleagues further generalized paraconsistency to gener-
alized annotations and generalized annotated programs where complex terms could be
used as annotations.



3.1 Logic Programming with probabilities

The quantitative logic programming languages mentioned earlier, even when having
numbers, did not treat them as probabilities. In this section we discuss various logic
programming languages that accommodate probabilities!.

Probabilistic Logic Programming

The first probabilistic logic programming language was proposed by Ng and Subrah-
manian [27]. Rules in this language were of the form:

ag : [ag, Bo] < a1 : (a1, By .-y an [, Bal-

with n > 0 and where ag, ..., a, are atoms in the sense of first-order logic, and
[, Bi] € [0, 1]. Intuitively, the meaning of the above rule is that if the probability
of a; being true is in the interval [ay, 5;], for 1 < j < n, then the probability of ag
being true is in the interval [, 3p]. Ng and Subrahmanian gave a model theoretic and
a fixpoint characterization of such programs and also gave a sound and complete query
answering method. The semantics made the “ignorance” assumption that nothing was
known about any dependencies between the events denoted by the atoms. Recently a
revised semantics for this language has been given in [9].

Ng and Subrahmanian later extend the language to allow a;’s to be conjunction and
disjunction of atoms and the a;s in the body were allowed to have not preceding them.
In presence of not the semantics was given in a manner similar to the definition of
stable models.

Dekhtyar and Subrahmanian [10] further generalized this line of work to allow ex-
plicit specification of the assumptions regarding dependencies between the events de-
noted by the atoms that appear in a disjunction or conjunction. Such assumptions are re-
ferred to as probabilistic strategies and examples of probabilistic strategies include: (i)
independence, (ii) ignorance, (iii) mutual exclusion and (iv) implication. While some of
the probabilistic logic programming languages assume one of these strategies and hard-
code the semantics based on that, the hybrid probabilistic programs of [10] allowed one
to mention the probabilistic strategies used in each conjunction or disjunction. For ex-
ample, A;,q and V,;,q would denote the conjunction and disjunction associated with the
“independence” assumption and would have the property that Prob(eq Ajng - - - Nind
en) = Prob(ey) x ... x Prob(e,). Following are examples, from [10], of rules of
hybrid probabilistic programs:

price_drop(C) : [4,.9] < (ceo_sells_stock(C) V;gq ceo_retires(C)) : [.6,1].

price_drop(C) : [.5,1] < (strike(C) Ving accident(C)) : .3, 1].

The intuitive meaning of the first rule is that if the probability of the CEO of a
company selling his/her stock or retiring is greater than 0.6 then the probability of the
price dropping is between 0.4 and 0.9, and it is assumed that the relationship between
the CEO retiring and selling stock is not known. The intuitive meaning of the second
rule is that if the probability of a strike happening or an accident happening —which
are considered to be independent—is greater than 0.3 then the probability of the price
dropping is greater than 0.5.

! Some of these were discussed in our earlier paper [4], but the focus there was comparison with
P-log.



Lukaciewicz [25] proposed the alternative of using conditional probabilities in prob-
abilistic logic programs. In his framework clauses were of the form:  (H | B)[«q, £1]

where H and B are conjunctive formulas and 0 < o3 < 8 < 1, and a probabilistic
logic program consisted of several such clauses. The intuitive meaning of the above
clause is that the conditional probability of H given B is between oy and (1. Given a
program consisting of a set of such clauses the semantics is defined based on models
where each model is a probability distribution that satisfies each of the clauses in the
program.
Bayesian Logic Programming
Bayesian logic programs [22] are motivated by Bayes nets and build up on an earlier
formalism of probabilistic knowledge bases [28] and add some first-order syntactic fea-
tures to Bayes nets so as to make them relational. A Bayesian logic program has two
parts, a logical part that looks like a logic program and a set of conditional probability
tables. A rule or a clause of a Bayseian logic program is of the form:  H | Ay,..., A,

where H, A4, ..., A, are atoms which can take a value from a given domain asso-
ciated with the atom. An example of such a clause is:

highest_degree(X) | instructorr(X).

Its corresponding domain could be, for example, Djnstructor = {yes,no}, and
Dhighest_degree = {phd, masters,bachelors}. Each such clause has an associated
conditional probability table (CPT). For example, the above clause may have the fol-
lowing table:

instructor(X) | highest_degree(X)|highest_degree(X)|highest_degree(X)
phd masters bachelors
yes 0.7 0.25 0.05
no 0.05 0.3 0.65

Acyclic Bayesian logic programs are characterized by considering their grounded
versions. If the ground version has multiple rules with the same ground atom in the
head then combination rules are specified to combine these rules to a single rule with a
single associated conditional probability table.

Stochastic Logic Programs

Stochastic logic programs [26] are motivated from the perspective of machine learning
and are generalization of stochastic grammars. Consider developing a grammar for a
natural language such that the grammar is not too specific and yet is able to address am-
biguity. This is common as we all know grammar rules which work in most cases but
not necessarily in all cases and yet with our experience we are able to use those rules. In
statistical parsing one uses a stochastic grammar where production rules have associated
weight parameters that contribute to a probability distribution. Using those weight pa-
rameters one can define a probability function Prob(w|s, p), where s is a sentence, w is
a parse and p is the weight parameter associated with the production rules of the gram-
mar. Given a grammar and its associated p, a new sentence s’ is parsed to w’ such that
Prob(w'|s’, p) is the maximum among all possible parses of s’. The weight parameter p
is learned from a given training set of example sentences and their parses. In the learn-
ing process, given examples of sets of sentences and parses {(s1,w1), ..., (Sn, ws)}



one has to come up with the p that maximizes the probability that the s;’s in the training
set are parsed to the w;’s.

Motivated by stochastic grammars and with the goal to allow inductive logic pro-
grams to have associated probability distributions, [26] generalized stochastic gram-
mars to stochastic logic programs. In stochastic logic programs [26] a number in [0,1],
referred to as a “probability label,” is associated with each rule of a Horn logic pro-
gram with the added conditions that the rules be range restricted and for each predicate
symbol g, the probability labels for all clauses with ¢ in the head sum to 1. Thus, a
Stochastic logic program [26] P is a collection of clauses of the form

DAy A1y ..y Qy.

where p (referred to as the the probability label) belongs to [0, 1], and ag, a1, . .. a,
are atoms. The probability of an atom g with respect to a stochastic logic program P is
obtained by summing the probability of the various SLD-refutation of «— g with respect
to P, where the probability of a refutation is computed by multiplying the probability
of various choices; and doing appropriate normalization. For example, if the first atom
of a subgoal <— ¢’ unifies with the head of the stochastic clause p; : Cy, also with
the head of the stochastic clause po : C and so on up to the head of the stochastic
clause p,, : C,,, and the stochastic clause p; : Cj is chosen for the refutation, then
the probability of this choice is

Modularizing probability and logic aspects: Independent Choice Logic

Earlier in Section 2 we discussed how one can express logical uncertainty using logic
programming. One way to reason with probabilities in logic programming is to assign
probabilities to the “possible worlds™ defined by the approaches in Section 2. Such an
approach is taken by Poole’s Independent Choice Logic of [31,32], a refinement of his
earlier work on probabilistic Horn abduction [33].

There are three components of an Independent Choice Logic of interest here: a
choice space C, a rule base F and a probability distribution on C such that
YxecProb(X) = 1. A Choice space C is a set of sets of ground atoms such that if
X1 €C, X5 eCand X; # X, then X1 N X5 = (. An element of C is referred to as an
“alternative” and an element of an “alternative” is referred to as an “atomic choice”. A
rule base F is a logic program such that no atomic choice unifies with the head of any
of its rule and it has a unique stable model. The unique stable model condition can be
enforced by restrictions such as requiring the program to be an acyclic program without
disjunctions. C and F together define the set of possible worlds and the probability
distribution on C can then be used to assign probabilities to the possible worlds. These
probabilities can then be used in the standard way to define probabilities of formulas
and conditional probabilities.

Logic programs with distribution semantics: PRISM

The formalism of Sato [35], which he refers to as PRISM as a short form for “PRogram-
ming In Statistical Modeling”, is very similar to Independent Choice Logic. A PRISM
formalism has a possibly infinite collection of ground atoms, F, the set {2 of all in-
terpretations of F', and a completely additive probability measure Pr which quantifies
the likelihood of the interpretations. Pr is defined on some fixed o algebra of subsets
of 2 F-



In Sato’s framework interpretations of F' can be used in conjunction with a Horn
logic program R, which contains no rules whose heads unify with atoms from F'. Sato’s
logic program is a triple, IT = (F, Pp, R). The semantics of IT is given by a collection
217 of possible worlds and the probability measure Pjy. A set M of ground atoms in the
language of II belongs to {27 iff M is a minimal Herbrand model of a logic program
Ir U R for some interpretation Ir of F'. The completely additive probability measure
of Py is defined as an extension of Pg.

The emphasis of the original work by Sato and other PRISM related research is
on the use of the formalism for design and investigation of efficient algorithms for
statistical learning. The goal is to use the pair DB = (F, R) together with observations
of atoms from the language of DB to learn a suitable probability measure Pr.

Logic programming with annotated disjunctions

In the LPAD formalism of Vennekens et al. [40] rules have choices in their head with
associate probabilities. Thus an LPAD program consists of rules of the form:

(h1:a1) V...V (hyiap) < bi,... by

where h;’s are atoms, b;s are atoms or atoms preceded by not, and «; € [0, 1], such
that 2?21 «; = 1. An LPAD rule instance is of the form: hi < b1,...,bp.

The associated probability of the above rule instance is then said to be «;. An in-
stance of an LPAD program P is a logic program P’ obtained as follows: for each rule
in P exactly one of its instance is included in P’, and nothing else is in P’. The as-
sociated probability of an instance P’, denoted by 7(P’), of an LPAD program is the
product of the associated probability of each of its rules.

An LPAD program is said to be sound if each of its instance has a 2-valued well-
founded model. Given an LPAD program P, and a collection of atoms I, the probability
assigned to I by P is given as follows:

mp(l) = > m(P")

P’ 18 an instance of P and 1 is the well-founded model of p-

The probability of a formula ¢ assigned by an LPAD program P is then defined as:

mp(¢) = > mp (1)

¢ is satisfied by 1

4 Logic Programming with probabilities, causality and
generalized updates: P-log

An important design aspect of developing knowledge representation languages and rep-
resenting knowledge in them is to adequately address how knowledge is going to be up-
dated. If this is not thought through in the design and representation phase then updat-
ing a knowledge base may require major surgery. For this reason updating a knowledge
base in propositional logic or first-order logic is hard. This is also one of the motiva-
tions behind the development of non-monotonic logics which have constructs that allow
elaboration tolerance.



The probabilistic logic programming language P-log was developed with updates
and elaboration tolerance in mind. In particular, it allows one to easily change the do-
main of the event variables. In most languages the possible values of a random variable
get restricted with new observations. P-log with its probabilistic non-monotonicity al-
lows the other way round too. Another important aspect of updating in P-log is that it
differentiates between updating due to new observations and updating due to actions;
this is especially important when expressing causal knowledge.

Elaborating on the later point, an important aspect of probabilistic uncertainty that
is often glossed over is the proper representation of joint probability distributions. Since
the random variables in a joint probability distribution are often not independent of each
other, and since representing the joint probability distribution explicitly is exponential
in the number of variables, techniques such as Bayseian networks are used. However, as
pointed out by Pearl [30], such representations are not amenable to distinguish between
observing the value of a variable and execution of actions that change the value of the
variable. As a result prior to Pearl (and even now) most probability formalisms are not
able to express action queries such as the probability that X has value a given that Y’s
value is made to be b. Note that this is different from the query about the probability
that X has value a given that Y’s value is observed to be b. To be able to address this
accurately a causal model of probability is needed. P-log takes that view and is able to
express both the above kind of queries and distinguishes between them.

With the above motivations we give a brief presentation on P-log? starting with its
syntax and semantics and following up with several illustrative examples.

A P-log program consists of a declaration of the domain, a logic program without
disjunctions, a set of random selection rules, a set of probability atoms, and a collection
of observations and action atoms.

The declaration of the domain consists of sort declarations of the form
¢ = {x1,...,x,}. or consists of a logic program T" with a unique answer set A. In
the latter case x € ciff ¢(r) € A. The domain and range of attributes® are given by
statements of the form: a:cy X - Xcp— .

A random selection rule is of the form

[r]random(a(t) : {X : p(X)}) + B. (1

where 7 is a term used to name the rule and B is a collection of extended literals of
the form [ or not [, where [ is a literal. Statement (1) says that if B holds, the value of
a(t) is selected at random from the set {X : p(X)} Nrange(a) by experiment r, unless
this value is fixed by a deliberate action.

A probability atom is of the form:  pr,(a(t) =y |. B) =v.  wherev € [0,1],
B is a collections of extended literals, pr is a special symbol, r is the name of a random
selection rule for a(t), and pr,.(a(t) = y | B) = v says that if the value of a(t) is
fixed by experiment r, and B holds, then the probability that v causes a(t) = y is v.

2 Qur presentation is partly based on our earlier paper [4].

3 Attributes are relational variables. In probabilistic representations, a variable such as Color can
take the value from {red, green, blue, ... }. Now if we want talks about colors of cars, then
color is a function from a set of cars to {red, green, blue, ... }. In that case we call “color” an
attribute.



(Note that here we use ‘cause’ in the sense that B is an immediate or proximate cause
of a(t) = y, as opposed to an indirect cause.)

Observations and action atoms are of the form:  obs(l). do(a(t) = y)).

where [ is a literal. Observations are used to record the outcomes of random events,
i.e., random attributes, and attributes dependent on them.

We now illustrate the above syntax using an example from [4] about certain dices
being rolled. In that example, there are two dices owned by Mike and John respectively.
The domain declarations are given as follows:

dice = {dl,dg}.

score = {1,2,3,4,5,6}.

person = {mike, john}.

roll : dice — score.

owner : dice — person.

even : dice — Boolean.

The logic programming part includes the following:

owner(dy) = mike.

owner(ds) = john.

even(D) < roll(D) =Y,Y mod 2 = 0.

—even(D) « not even(D).

The fact that values of attribute roll : dice — score are random is expressed by the
statement

[ (D) ] random(roll(D))

The dice domain may include probability atoms that convey that the die owned by
John is fair, while the die owned by Mike is biased to roll 6 at a probability of .25.

Let us refer to the P-log program consisting of the above parts as 77 .

pr(roll(D) =Y |, owner(D) = john) = 1/6.

pr(roll(D) = 6 |, owner(D) = mike) = 1/4.

pr(roll(D) =Y | Y # 6, owner(D) = mike) = 3/20.

In this domain the observation {obs(roll(d;) = 4)} records the outcome of rolling
dice d;y. On the other hand the statement {do(roll(d;) = 4)} indicates that d; was
simply put on the table in the described position. One can have observations such as
obs(even(d;)) which means that it was observed that the dice d; had an even value.
Here, even though even(d;) is not a random attribute, it is dependent on the random
attribute roll(dy).

The semantics of a P-log program is given in two steps. First the various parts of
a P-log specification is translated to logic programs and then the answer sets of the
translated program is computed and are treated as possible worlds and probabilities are
computed for them. The translation of a P-log specification II to a logic program 7 (II)
is as follows:

1. Translating the declarations: For every sort declaration ¢ = {x1,...,2,} of II,
7(IT) contains ¢(x1), . . ., ¢(x,, ). For all sorts that are defined using a logic program
T in II, 7(II) contains T

2. Translating the Logic programming part:



(a) For each rule r in the logic programming part of I7, 7(IT) contains the rule
obtained by replacing each occurrence of an atom a(f) = y in 7 by a(t, y).
(b) For each attribute term a(t), 7(II) contains the rule:

—a(t, Y1) < a(t,Y2), Y1 # Ys. (2)

which guarantees that in each answer set a() has at most one value.
3. Translating the random selections:

(a) For an attribute a, we have the rule: intervene(a(t)) + do(a(t,Y)). where,
intuitively, intervene(a(t)) means that the value of a(?) is fixed by a deliberate
action. Semantically, a(t) will not be considered random in possible worlds
which satisfy intervene(a(t)).

(b) Each random selection rule of the form

[7] random(a(t) : {Z : p(2)}) « B.

with range(a) = {y1, ...,y } is translated to the following rule:

a(t,yy)or ... ora(t,yx) < B, not intervene(a(t)) 3)

If the dynamic range of a in the selection rule is not equal to its static range,
i.e. expression {Z : p(Z)} is not omitted, then we also add the rule

+ a(t,y), not p(y),B, not intervene(a(t)). “4)

Rule (3) selects the value of a(t) from its range while rule (4) ensures that the
selected value satisfies p.

4. 7(II) contains actions and observations of I7.

For each X-literal I, 7(IT) contains the rule: < obs(l), not I.

6. For each atom a(t) = y, 7(IT) contains the rule: a(¢,y) + do(a(t,y)).
The last but one rule guarantees that no possible world of the program fails to
satisfy observation /. The last rule makes sure the atoms that are made true by the
action are indeed true.

d

The answer sets of the above translation are considered the possible worlds of the
original P-log program. To illustrate how the above translation works, 7(77) of T} will
consist of the following:

dice(dy). dice(ds). score(1). score(2).

score(3). score(4). score(5). score(6).

person(mike). person(john).

owner(dy, mike). owner(ds, john).

even(D) < roll(D,Y),Y mod 2 = 0.

—even(D) «+ not even(D).

—roll(D, Y1) < roll(D,Y3),Y] # Ys.

—owner(D, Py) < owner(D, Py), P, # P>.

—even(D, By) + even(D, Bs), By # Bs.

intervene(roll(D)) <+ do(roll(D,Y)).



roll(D,1) or ... orroll(D,6) < B, not intervene(roll(D)).

+ obs(roll(D,Y)), not roll(D,Y).

+ obs(—roll(D,Y)), not —roll(D,Y).

roll(D,Y)) < do(roll(D,Y)).

The variables D, P, B’s, and Y’s range over dice, person, boolean, and score
respectively.

Before we explain how the probabilities are assigned to the possible worlds, we
mention a few conditions that the P-log programs are required to satisfy. They are:

(i) There can not be two random selection rules about the same attribute whose
bodies are simultaneously satisfied by a possible world.

(i1) There can not be two probability atoms about the same attribute whose condi-
tions can be simultaneously satisfied by a possible world.

(iii) A random selection rule can not conflict with a probability atom in such a way
that probabilities are assigned outside the range given in the random selection rule.

The probabilities corresponding to each of the possible worlds are now computed
in the following way:

(a) Computing an initial probability assignment P for each atom in a possible world:
For a possible world W if the P-log program contains pr,(a(t) = y | B) = v
where 7 is the generating rule of a(t) = y, W satsifies B, and W does not contain
intervene(a(t)), then P(W,a(t) = y) = v.

(b) For any a(t), the probability assignments obtained in step (a) are summed up
and for the other possible values of a(t) the remaining probability (i.e., 1 - the sum) is
uniformly divided.

(c) The unnormalized probability, fir (W), of a possible world W induced by a
given P-log program 1" is fip (W) = [[,,)e w (W, a(t) = y) where the product
is taken over atoms for which P(W, a(t) = y) is defined. The above measure is then
normalized to pr (W) so that the sum of it for all possible worlds W is 1.

Using the above measure, the probability of a formula F' with respect to a program
T is defined as Probr(F) = Yy pur(W).

We now show how P-log can be used to express updates not expressible in other
probabilistic logic programming languages. Lets continue with the dice rolling exam-
ple. Suppose we have a domain where the dices are normally rigged to roll 1 but once
in a while there may be an abnormal dice that rolls randomly. This can be expressed in
P-log by:

roll(D) = 1 < not abnormal (D)

random(roll(D)) < abnormal(D)

Updating such a P-log program with obs(abnormal(dy)) will expand the value that
roll(dy) can take.

Now let us consider an example that illustrates the difference between observa-
tional updates and action updates. Lets augment the dice domain with a new attribute
fire_works which becomes true when dice d; rolls to 6. This can be expressed by the
rule:

fire_works < roll(dy) = 6.

Now suppose we observe fire works. This observation can be added to the P-log
program as obs( fire_works), and when this observation is added to the P-log program



it will eliminate the earlier possible worlds where fire_works was not true and as a
result the probability that dice d; was rolled 6 will increase to 1. Now supposed instead
of observing the fire works someone goes and starts the fire work. In that case the update
to the P-log program would be do( fire_works = true). This addition will only add
fire_works to all the previous possible worlds and as a result the probability that dice
dy was rolled 6 will remain unchanged.

As suggested by the above examples, updating a P-log program basically involves
adding to it. Formally, the paper [4] defines a notion of coherence of P-log programs
and uses it to define updating a P-log program 7" by U as addition of U to T" with the
requirement that 7’UU be coherent. The paper also shows that the traditional conditional
probability Prob(A|B) defined as %ﬁgf) is equal to the Probpyops(p)(A) where
obs(B) = {obs(l) : | € B}.

Since the original work on P-log [3,4] which we covered in this section there have
been several new results. This includes work on using P-log to model causality and
counterfactual reasoning [5], implementation of P-log [19], an extension of P-log that
allows infinite domains [18] and modular programming in P-log [7].

5 Conclusion and Future directions

In this paper we have given a personal overview of representing and reasoning about
uncertainty in logic programming. We started with a review of representing logical un-
certainty in logic programming and then discussed some of the multi-valued and quan-
titative logic programming languages. We briefly discussed some of the probabilistic
logic programming languages. Finally we discussed logic programming languages that
have distinct logical and probabilistic components and concluded with the language of
P-log that has distinct logical and probabilistic components, that allows a rich variety of
updates and makes a distinction between observational updates and action updates. Our
overview borrowed many examples, definitions and explanations from the book [2] and
the articles [37] and [3,4]. We refer the reader to those articles and the original papers
for additional details.

Although a lot has been done, there still is a big gap between knowledge representa-
tion (KR) languages that are used by humans to encode knowledge, KR languages that
are learned and KR languages used in translating natural language to a formal language.
We hope these gaps will be narrowed in the future, and to that end we need to develop
ways to learn theories in the various logic programming languages that can express and
reason with uncertainty. For example, it remains a challenge to explore how techniques
from learning Bayes nets and statistical relational learning can be adapted to learn P-
log theories. P-log also needs more efficient interpreters and additional refinements in
terms of explicitly expressing probabilistic strategies.
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