Using Sparse Parameter Estimation for
Semantic Parsing

Jiayu Zhou, Jieping Ye, Juraj Dzifcak, Chitta Baral

Arizona State University

Abstract. This paper addresses the problem of semantic parsing, by
which natural language sentences are translated into a form which con-
veys their underlying meaning. Semantic parsing involves a parameter
estimation process, which is a convex optimization problem. The opti-
mization formulation of previous approaches often requires huge amount
of time to converge due to the high dimensional feature space. In this
paper we introduce a fast semantic parsing framework which uses ¢;-
norm regularized learning to get a sparse model and better convergence
speed. Experiments demonstrate overall higher performance of our se-
mantic parsing system using inverse A, generalization and ¢; regulariza-
tion. Regularized parameter updating shows significantly improvement
on the learning speed and reduced model size.

1 Introduction

In the field of natural language processing, semantic parsing refers to the process
by which natural language sentences are translated into a form which conveys
their underlying meaning, as opposed to traditional parsing which translates a
sentence into a representation of its syntactic structure. The underlying meaning
representation can be any kind of knowledge representation e.g. first-order logic,
database query languages, temporal logic, and answer set programming (ASP)[1].
In the broader field of artificial intelligence, semantic parsing has a considerable
advantage over traditional parsing in that it allows for high level reasoning tech-
niques to be applied, producing non-trivial inferences from the input text.

Intensive efforts are made in the area of semantic parsing, learning from
pairs of natural language (NL) sentence and corresponding semantic representa-
tion [3-9, 11]. Given a set of training samples of natural language sentences and
corresponding logical forms, these approaches build models which are capable of
translating unseen NL sentences to their correct logic forms. Recently it is also
shown that such frameworks, as proposed in [6] and others, do not limit to a
specific kind of NL [2] and can be used for multilingual purposes.

It is noteworthy that in the lexicon building process many works have in-
cluded handcrafted entries or rules, such as [5,6]. In this way different sets of
rules need to be built for different target languages, which restricts the target
languages that are applicable. In our paper we use an approach that makes use of
an existing syntactic parser and infers semantics of unknown words from known

ones, and the learnt semantics can be generalized to other unseen words of the
same syntactic category. This method is expected to learn the semantics that
cannot be easily covered by handcrafted rules and target languages are no longer
limited in the way that previous works did. Note that in this paper we focus on
the parameter estimation and therefore definitions and algorithms of inverse A
and generalization are given without proof. Details of inverse and generalization
and corresponding proofs will be elaborated in a separate paper[24].

In the parameter estimation parameter part, most existing works use maxi-
mum likelihood method [2, 3, 5, 6] or its similar dual form — the maximum entropy
method [7-9] to train on a log-linear model or conditional random field (CRF).
All these methods are readily solved by gradient descent methods because the
loss function formulated is a smooth convex problem.! In our proposed system we
add the /;-norm regularization to the loss function in order to introduce sparsity
to the model. Because the #1-norm is not differentiable at zero, and therefore
gradient methods cannot be directly used. To solve the non-smooth part, we
use the modified sub-gradient approach illustrated in Sec. 4, which gives more
reliable sparsity than directly use of sub-gradient.

We evaluate our system on two benchmark datasets: GeoQuery and CLANG.
GeoQuery is a set of 880 queries to a database of United States geography and
their corresponding English sentences. CLANG is a set of 600 rules to used for
directing simulated soccer game. We compare performance to previous meth-
ods[4,5,11,9,8,7] in terms of precision and recall. To further investigate the
effect of sparsity, we evaluate how our model works under different ¢; regular-
ization factor. We also visualize such sparsity in a small feature space showing
how a compact model generates in the training process.

2 Background

In our system semantics of words are represented by typed lambda calculus[13].
One advantage of using the lambda calculus is that the final logical form of a
sentence can take any types of semantics. Combinatory Categorical Grammar
(GGCQC)[14], a parsing formalism that tightly couples syntax and semantics, is
used to direct the application of semantic of words to get the semantic represen-
tation of sentences. The CCG grammar includes a lexicon A = {(w, cat, sem)},
where w is a word, cat is its syntactic category, and sem is the semantics of
the word. Methods described in [6, 5] are used to parse a sentence and give its
semantic representation.

Because of meaning and structural ambiguity, thus provided a sentence, there
may be multiple semantic representations in the parsing result. Probabilistic
CCG (PCCQG) is proposed for the disambiguation purpose and provides prob-
abilistic distributions of translated logical forms. Given a lexicon A, we are in-
terested in the probabilistic distribution of a particular logical representation

! The originally formulated likelihood function £ is a concave problem and gradient
ascent methods are actually used. Here we are using convex because we try to keep
on the convention of most optimization literatures.

y provided the natural language sentence x. We refer z as the parsing tree of
x that generates the logical representation y, the PCCG defines a conditional
distribution P(z, z|y) of (x, z) for a given sentence y.

In our system we employ the conditional random field (CRF) or log-linear
model for CCGs introduced by Clark & Curran [16]. We denote ¢ as our feature
function that maps the tuple (z, z,y) to IR?, where d is the number of features
we use in the model. The model is parameterized by a weight vector § € IR?.
The desired conditional distribution is given by

0 0(2,2,y)

P(x,2]y;0,4) = S) M

In the decision stage, the task of the model is to find the distribution of
logical representation y that has the highest probability:

arg max P(y|z; A) = arg maxZP(y, z|x; A) (2)
y v o

where z can be considered as a latent variable and is factored out. In our im-
plementation we use a dynamic programming algorithm that is similar to CKY
algorithm to calculate the probability.

In the estimation stage, we are given a set of training pairs {(z1, 1), (2, y2), - - .
(Tn,Yn)}, where n is the sample size. Given the parameter vector 6, the likeli-
hood of each pair is given by £;(6, A) = log P(y;|z;; 0, A). The object of training
process is to maximize the log-likelihood of the entire training set given by:

L(0,4) = log P(yi|z::0,4) = log P(y;, 2|0, A) (3)
i=1 z!

i=1
n n

= Z log Z bW |2;0,4):0 _ Z log Z et 12" |wi30,4)-0 (4)
i=1 2 i=1 2y’

In order to obtain the optimal value 6 that maximize £, we set its partial deriva-
tive with respect to each dimension of 6 to zero and get following equation:

OL(0,4) =OLi(0,4) e o
89] Z ae] *;;P(y |I’Lay1797/1) fj(ylaz7zl) (5)

= > P A 0,4) - £, 2) (6)

i=1y’,z’

i=1

Because there is no analytical solution if we set above equation to zero, gradient
methods are readily used in previous researches to solve this iteratively[17]. The
basic idea of stochastic gradient ascent that is widely used in previous works is
that perform
aL;(6, A1) dlog P(yi|z:; 0, A)
0, =0; +at) —="2 =0; + aft - 7
to each weight 6; until some convergence conditions are reached, where a(t) is
the step size, a function of number of total previous update times t.

3 Lexicon Learning

Lexicon acquisition is an important component of semantic parsing. Handcrafted
lexicon is only possible for systems with very limited vocabulary, and therefore
automatic lexicon learning methods are proposed [6, 5]. The proposed methods,
however, are heavily dependent on a table of rules and thus restrict the types of
semantics that can be extracted. In our system we use inverse A algorithm and
generalization in order to break such constraints?.

3.1 The Inverse A Operators

The inverse algorithm includes two inverse A operators: INVERSE-L and INVERSE-
R, which compute typed A-calculus F' given H and G such that FQG = H and
GQF = H respectively. In the following context we use J' to denote typed
terms. J; are used to denotes sub terms of J, v;, v and w denote variables, o;
represents atomic terms. f(-) represents a typed atomic formula. Note that the
list of A-abstractors of the form Avy,...,v; can be empty.

Definition 1 (Operator :). Consider two lists of typed A-elements A = (ay, ..., am)
and B = (a1,...,a,) and a formula H. The result of the operation H(A : B)
takes every typed A-element a; from H and is substituted by the corresponding
typed \-element b; of the list B until all elements have been substituted following

the order of the list, for each appearance of A in H.

Based on the definition the INVERSE-R function can be presented as:
Procedure INVERSE-R(H, G)

if Gis wow@J
then F = INVERSE-L(H,J)

if Jisasubterm of H and G is Aw.H(J : v)

then F=J

if Gisnot Av.w@J, Jis asub term of H and G is Aw. H(J(J1,...,Jm) :
wQJp, ..., @QJ,), where 1 < p,q,s <m.

then F =M\vi,...,v5.J(J1, .., Jm 1 Up,...,0q).

else F =NULL
Procedure INVERSE-L(H, G) is defined similarly.

One disadvantage of inverse operators is that they cannot be used when there
are more than one word with unknown semantics in the sentence. In such cases
we allow a trivial solution in which Ax.x is assigned as the semantic to the un-
known word under certain conditions. In our system any word not presenting in
the final semantics is a potential candidate to be assigned the trivial semantic
representation \z.x, such as word "the”. Once a non-trivial one is found, how-
ever, the system attempts to use it over the trivial one. Comparing to lexicon
entries generated by inverse, the trivial lexicon entries have much lower initial
weights.

2 Please note that details of inverse-\ and generalization are elaborated in another
paper and are not new contribution of this paper

3.2 Generalization

Inverse operators are able to obtain new semantic representation for particular
words in sentences. And we want to further extend the learned semantics to
words that are outside the training data. Given a word w with category cat, a
simple solution is to find some semantics of other words of the same category,
and build semantics for w based on that word. For example, suppose in the
lexicon we already have a lexicon entry fly of category S\NP with semantic
Az. fly(x). For each word w of the same category, the generalization function
GENERALIZE generates semantic expression A.w(z) and adds it to the lexicon.
This idea, however, has an obvious disadvantage that it generates large amount
of new lexicon entries,and clearly many of them will not be useful. Therefore we
only perform generalization whenever a sentence contains words with unknown
semantics.

We now present the generalization algorithm GENERALIZE(A, «), where A
is our lexicon and « is the word with unknown semantics. Denoting each lexicon
entry as triple | = (w, cat, sem), we can use l(w),l(cat) and [(sem) to represent
the word string, category and semantics of the entry respectively. The algorithm
of GENERALIZE(A, o) contains two sub-procedures. IDENTIFY (w, sem) iden-
tifies the parts of sem in which w is involved and REPLACE(sem, a, b) replaces
a with b in sem.

Procedure GENERALIZE(A, o)
forle A
if [(cat) = a(cat)
I = IDENTIFY ({(w),l(sem))
sem’ = REPLACE (I(sem), I, a(w))
A =AU (a(w), a(cat), sem’)

4 Sparse Parameter Estimation

While using inverse A and generalization helps us to find correct meanings of
unknown words, it also introduces many irrelevant entries to the dictionary,
which will never be used in the correct logic representation of any sentence. These
irrelevant entries, however, are used as lexical features and thus tremendously
increase time of parsing and also the converge time of parameter estimation.
This motivates us to introduce sparse to get a more compact model.

Recall that in our parameter estimation stage we are maximizing the objec-
tive function £ with respect to 8. In typical situations, however, direct training
the model is highly likely to cause overfitting problems [18], which means the
parameters are tuned to perform very good on the training data but have poor
predictive performance on the test data. To solve the problem, a regularization
term R(0) is usually introduced in the objective function that penalizes 6 from
being over-trained, and now we need to solve the optimization problem:

arg max O9) =arg m;xx(ﬁ(@, A) —R(0)) (8)

The most common regularization functions are the ¢, = ||0]|3 and ¢y = ||0||;
regularization. While using ¢2 norm has the obvious advantage over ¢; resulting
a smooth term, /1 norm regularization showed theoretically and empirically that
it yields models in which most of the features are irrelevant[19], i.e. it results in
sparse a model that we expect. The formulation then has the form:

arg max(L(9, 4) = B[6]|) (9)

where [is the parameter to control the degree of regularization. ¢ regularization
has a significant disadvantage however in that it is not differentiable at zero,
and as a consequence, the gradient-based optimization algorithm proposed in
(7) cannot be directly used. Using gradient-based algorithm on (9), we can get
following update

L;(0,4) — 2106,
o0

where N denotes number of iterations, £;(6, A) = log P(y;|z;; 0, A) is the likeli-
hood given jth training sample, 6% is the value of 6; at iteration k, n is number of
training samples. The simplest remedy of the non-smooth problem is to consider
a subgradient at zero and take advantage of the sign function o(z) as follows:
o8t = oF + oz(t)M — éa(t)a(@-) (11)
00 n
where o(z) =1if z > 0, o(z) = -1 if z < 0 and o(z) = 0 if z = 0. However,
this algorithm leads to a series of problems and cannot guarantee that we get
a compact model. Many approaches are proposed to solve the problem [20, 21].
In our system we adopt the ¢; regularization with cumulative penalty, a two-
step update process, whose main idea is to smooth out the effect of fluctuating
gradients by considering the cumulative effects from ¢; penalty[21].
The cumulative penalty method uses a two-step update strategy for each
iteration. First, we update the parameters with the derivative of the smooth

08 = 0F + a(t) (10)

part, as we do in the unregularized formulation. We denote the result by 0?%.
Then the cumulative penalty is applied on the update, denoted by 0;“. Let uy,
be the absolute value of the total /; penalty that each weight could have receive
up to the point. This can be accumulated as u = 225:1 a(t). Let ¢F be the
total £, penalty that 6; has actually received up to the current iteration: ¢¥ =

1
Zle(ﬂfﬂ - 0?2). The second update step can be presented in the following
way:

L, (0, A)

20;
it 0% >0 then 0% = max(0,6%) — (uy +)
0% <0 then 0%V = min(0,0") 1 (uy — ¢*))

We denote call two-step parameter update procedure SPARSE-UPDATE(H, A),
which gives the updated 6 as output.

9k+%

L =07 +at)

?

else if

Procedure SPARSE-UPDATE(4, A)
for 6; € features used in sample j
0; = 0; + a(t) 2L
APPLY-PENTALTY(6;)

Procedure APPLY-PENALTY (¢)
if ; > 0 then 0, = max(0,0;, — (v + ¢;))
else if ; < 0 then 6, = min(0,6; + (v — ¢))
¢ = qi + (0; — 2)

5 Overall Learning Algorithm

Fig. 5 presents our fast semantic parsing system using inverse A and generaliza-
tion. For each iteration there are two steps. First, new lexical entries are learned
using inverse algorithm and generalization, we get the new lexicon A**!. Then
the PCCG parameter 6 is updated by our sparse stochastic gradient method,
given the updated lexicon. By factor training samples out from the iterations,
this model can be trivially turned to online fashion.

Inputs and Initialization. The algorithm takes a training samples (NL sen-
tence, logical form) of n: S = {(z;,¥;) : ¢ = 1...n}, an initial lexicon Ay and
a parameter vector 6y whose elements are set to 0.01. We use lexical feature as
described in [6].

Step 1: Lexicon Update. In the lexicon update step the algorithm iterates
over all sentences n times. For each sentence, using the CCG parser to get its
corresponding parse tree. Inverse A\ algorithm is then performed on the tree
to learn unknown lexicon entries. All lexicon entries learnt are generalized and
stored in the lexicon.

Step 2: Sparse Parameter Update. For each training sample we update
the parameter 6 using the stochastic gradient ascent method on the ¢;-norm
regularized log-linear model, as discussed in Sec.4.

6 Experiment

In this section we conduct three kinds of experiments to evaluate different aspects
of the system. The first experiment compares our proposed system to the existing
systems, this shows how our system performs in terms of precision and recall.
Next, different sparsity settings (5) of model are evaluated independently within
our system, and we are able to inspect the relationship among precision, recall,
and sparsity. We want to impose moderate sparsity, by which we can quickly
obtain a model that is considerably compressed, without compromising much on
precision and recall. Finally we use a small lexicon to visualize how the sparsity
is produced in the feature space during the parameter estimation process.

We use only lexical features in our system, instead of other structure features
such as syntactic features and context features, because ¢1-norm does not con-
sider internal structures within the features. In the first two experiments we used

Input
S = {(zs,y:) : i = 1...n} : Training samples, z; are sentences and y; are its
corresponding expressions.
A° Initial lexicon.
0° Initial feature weights.
T Training iterations.

Algorithm
- FORt=1...T
— Step 1: (Lexical Generalization)
- FORi=1...n

e FORj=1...n
e Parse z; to get its parse tree z;
e Traverse z; and apply INVERSE-L, INVERSE-R and GENERALIZE to
find new A-calculus expressions of words and phrases «
o Set ATt =AU«
— Step 2: (Sparse Parameter Estimation)
— Set '™ = SPARSE-UPDATE (¢, A**1)

Output
AT+1

gTJrl,

: An update lexicon
An update feature weights.

Fig. 1. Overall learning framework of fast semantic parsing system using inverse A and
generalization.

10 fold cross validation on both datasets. The syntactic parser we use is the C&C
parser from Clark and Curran[16]. Precision and recall are two measurements
we use. Here precision is the percentage of returned semantic representation that
are correct and recall is the percentage of test data with correct logical semantic
representation parsed. Also we use F'I-measure, which is calculated in the way
that precision and recall are equally considered. For the convergence criteria we
use the difference of objective function value AO(#) < 10~

In the first experiment we compare across our system and previous systems
on the GeoQuery and CLANG respectively. INV+ is our semantic parsing frame-
work with trivial inverse and generalization, where ¢; regularization is disabled
(8 = 0). Disabling the regularization means the parameter estimation of INV+4
is equivalent to the one used in [6, 5]. For SPINV+ the sparsity 8 = 0.3 is used.
Other systems involved in our comparison are:GOLDSYN([7], WASP[8], SCIS-
SOR[10], KRISP[11], Semantic Parser by Zettlemoyer and Collins[5], and one in
the work by Lu et. al[4]. Result of this part is shown in Table 1.

From the result we see that INV+4+ and SPINV+ outperformed all other
systems in both datasets as we expected. Moderate sparsity as we use in SPINV+
only slightly reduces F-measure on GeoQuery, and produces even better results
on CLANG. Because of the large feature space the system produce from inverse
and generalization (around 32400 lexical features for GeoQuery and 26500 for
CLANG), overfit situations are likely to occur without proper regularization.
The f¢1-norm regularization, on the other hand, performs a feature selection

System Precision Recall F1 System Precision Recall F1

INV+ 93.41 89.04 91.17
SPINV+ 93.13 88.50 90.76
GOLDSYN 91.94 88.18 90.02
WASP 91.95 86.59 89.19

INV+ 85.74 76.63 80.92
SPINV+ 86.33 78.24 82.09
GOLDSYN 84.73 74.00 79.00

WASP 88.85 61.93 72.99
SCISSOR 95.50 77.20 85.38

SCISSOR 89.50 73.70 80.80
KRISP 93.34 71.70 81.10

KRISP 85.20 61.85 71.67
7C05 91.63 86.07 88.76 LUOS 8250 67.70 TA.40
LUO08 89.30 81.50 85.20

CLANG
GeoQuery

Table 1. Performance on GeoQuery and CLANG.

during the training process, as weights of some features are clipped to zero. This
explains why sparsity works better in some situations.

For the parameter estimation, INV+ does not converge and algorithm stops
when maximum iteration number 1000 is reached, while SPINV+ converges at
400 iterations. Also it is noticeable that SPINV+ uses only 20% features (with
non-zero weights) as does in INV+. With comparable performance as INV+,
SPINV+ strikingly reduces parameter estimation time and model size.

The next thing we are interested in from the ¢;-norm regularized model is
what models of different compression rates can bring us. We define the compression-
ratio to be (|0]]o—110"1l0)/(||0]0). where ||-]|o is zero norm, and is defined by the
non-zero elements in the vector z, and 6’ is the vector of weights after training.
Intuitively, the compress-ration denotes how many features are considered to be
irrelevant in comparison to the original feature space.

100 100

909 90
8ot 8of
70 or
60 60
G IS
50l N 50+ \\ —=— F1-Measure %
\ ~—e— F1-Measure % \xl ~—8— Compression Ratio %
L S F N
40 N —#&— Compression Ratio % 40 & Convergence x 10

—&— Convergence x 10

301 301

il T i

—O
10 , 10 ,
0.1 0.3 1 2 3 4 5 0.1 0.3 1 2 3 4 5
Regularization Factor Regularization Factor

Fig. 2. Sparsity Performance Evaluation

The evaluation of the performance of sparsity is shown in Fig. 2, where
the change of F1 measure, compression ratio, and convergence rate are plotted

against the change of regularization factor. The general pattern is: when the reg-
ularization factor increases, the F1-measure and convergence time decrease, and
meanwhile compression ratio increases, as we expect. In GeoQuery, if we consider
B = 0.1, the model has almost the same F1-measure as that of the unregularized
model, while it compresses around 80% features, leaving less than 20% features
with non-zero weights. This striking compression ratio enables us to deal with
much larger domains that all previous works cannot handle. Also the exponential
decreasing convergence time makes large-scale training corpus feasible. Similar
patterns are found in the CLANG dataset. While applying semantic parsing in
domain independent scenarios with huge size of feature space, ¢; regularization
allows us to choose a sparsity that balance among training speed, model size and
performance.

Fig. 3 shows how the weights change using a small lexicon with a single
natural language sentence, “John takes a plane”, used as the training set. The
first graph shows the evolution of the weights without regularization, while the
second shows the evolution when ¢;-norm regularization is employed. Note that
in our experimental setting, when new words are added to lexicon, they are
assigned a default weight of 0.01.

Without regularization, during each iteration of the algorithm, only those
weights for lexicon entries used in the current training sample are affected. Sup-
pose that for a given iteration our training sample is “John takes a plane”.
In this iteration on the weights for the lexicon entries of the worlds: john,
take, a, and plane will be affected. For this example, we have the correct
category john — john, and an incorrect one: john — A x.x@Qmary. With
each iteration the weight for john — john will increase, while the weight of
john — A x.x@mary will decrease. It is highly probable that the weight for the
incorrect category will fall below zero once the training process has finished.
Utilizing ¢1-norm regularization however avoids this problem. It is evident from
Fig. 3 that the weight for unused features approaches zero in the first several
training iterations. The use of clipping however causes to not fall below zero.

100

200

ano

400

s00

20 Most features are clipped -
600 zero in first couple of iteratior

oo =

Fig. 3. Weights of lexicon entries of the words: john, take, a, plane and some noise.

The ¢; training introduced some problems however. As we are trying to
remove all irrelevant features, lexicon entries whose weights are equal to zero
are removed. Fig. 3 shows that only one of the features is non-zero. This is
because weights of correct lexicon entries that do not contribute to determining
the probability of semantic representation being correct do not increase, but clip
to zero instead. For the sentence ” John takes a plane”, due to the introduction of
noise with regards to the semantics of the word john, only the correct semantic
representation of the word contributes to determining whether a parse is correct
or not.

7 Conclusion and Future Work

In this paper we presented a method of semantic parsing, which mapped natural
language sentences to their semantic representations. In the lexical learning part
the approach used an existing syntactic parser, inverse A operators and gener-
alization technique to learn semantics unknown words from syntax tree. In the
parameter estimation part we reformulated the objective function to be regu-
larized by ¢1-norm which introduced sparsity to the model and increased the
convergence rate. We evaluated the approach on two benchmark corpus and the
accuracy model showing that we outperformed many existing system in terms of
accuracy while largely reduced the parameter estimation time and model size.

For future work, we expect even higher performance after introducing struc-
tured feature into our system. Simple ¢1-norm regularized models, however, do
not take into consideration of complex structures within the features. A potential
solution is to use group lasso [22] or grouped tree structure[23] learning. Such ap-
proaches would allow the domain-independent large-scale semantic parsing. We
also want to extend the sentence-wise translation to discourse analysis, resulting
in a higher level understanding of natural language.

References

1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem
Solving. Cambridge University Press (2003)

2. Kwiatkowski, T., Zettlemoyer, L., Goldwater, S., Steedman, M.: Inducing Prob-
abilistic CCG Grammars from Logical Form with Higher-Order Unification. In
Proc. of the 2010 Conf. on Empirical Methods in Natural Language Processing
(EMNLP) (2010) 1223-1233

3. Zettlemoyer, L.S. , Collins, M. :Learning Context-dependent Mappings from
Sentences to Logical Form. In Proc. of the Joint Conf. of the Association for
Computational Linguistics and Int’l Joint Conf. on Natural Language Process-
ing (ACL-IJCNLP) (2009)

4. Lu, W., Ng, H.T., Lee, W.S., Zettlemoyer, L.:A Generative Model for Pars-
ing Natural Language to Meaning Representations. In Proc. of The Conf. on
Empirical Methods in Natural Language Processing (EMNLP) (2008)

5. Zettlemoyer, L.S., Collins, M.: Online Learning of Relaxed CCG Grammars for
Parsing to Logical Form. In Proc. of the Joint Conf. on Empirical Methods in

10.

11.

12.

13.
. Steedman, M.: The Syntactic Process. The MIT Press.
15.
16.
17.

18.
19.

20.

21.

22.
23.

24.

Natural Language Processing and Computational Natural Language Learning
(EMNLP-CoNLL) (2007)

Zettlemoyer, L.S., Collins, M.: Learning to Map Sentences to Logical Form:
Structured Classification with Probabilistic Categorial Grammars. In Proc. of
the 21st Conference on Uncertainty in Artificial Intelligence (UAI) (2005)

Ge, R., Mooney, R.J.:Learning a Compositional Semantic Parser using an Ex-
isting Syntactic Parser In the Joint Conf. of the 47th Annual Meeting of the
Association for Comp. Ling. and the 4th Int’l Joint Conf. on Natural Language
Processing of the Asian Federation of Natural Language Processing (ACL-
IJCNLP) (2009) 611-619

Wong, Y.W., Mooney, R.J.: Learning Synchronous Grammars for Semantic
Parsing with Lambda Calculus In Proc. of the 45th Annual Meeting of the
Association for Computational Linguistics (ACL) (2007) 960-967

Wong, Y.W., Mooney, R.J.: Learning for Semantic Parsing with Statistical Ma-
chine Translation In Proc. of the Human Language Technology Conference of
the North American Chapter of the Association for Computational Linguistics
(HLT/NAACL) (2006) 439-446

Ge, R., Mooney. R.J.: A Statistical Semantic Parser that Integrates Syntax
and Semantics. In Proc. of the Ninth Conference on Computational Natural
Language Learning

Kate, R.J., Mooney, R.J.: Using String-Kernels for Learning Semantic Parsers
In Proc. of the Joint 21st Int’l Conf. on Computational Linguistics and
44th Annual Meeting of the Association for Computational Linguistics (COL-
ING/ACL) (2006) 913-920

Zelle, J.M., Mooney, R.J.: Learning to parse database queries using inductive
logic programming. In Proc. of National Conference on Artificial Intelligence
(AAAT) (1996)

Carpenter, B.: Typed-Logical Semantics. The MIT Press.

Clark, S., Curran, J. R.: Log-linear models for wide-coverage CCG parsing.
In Proc. of the SIGDAT Conf. on Empirical Methods in Natural Language
Processing (2003)

Clark, S., Curran, J. R.: Wide-coverage efficient statistical parsing with CCG
and log linear model. Computational Linguistics (2007)

Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press
2004

](BishoL, C.M.: Pattern recognition and machine learning. Springer (2006)

Ng, A. Y.: Feature selection, £1 vs. {2 regularization and rotational invariance.
In Proc. of the 21st Int’l Conf. on Machine Learning (ICML) (2004)
Carpenter, B.: Lazy sparse stochastic gradient descent for regularized multi-
nomial logistic regression. Technical report, Alias-i (2008)

Tsuruoka, Y., Tsujii, J., Ananiadou, S.: Stochastic gradient descent training
for Ll-regularized log-linear models with cumulative penalty. In Proc. of the
4th Int’l Joint Conf. on Natural Language Processing of the AFNLP.(2009)
477-485

Liu, J., Ye, J.: Fast Overlapping Group Lasso. arXiv:1009.0306v1 (2010)

Liu, J., Ye, J.: Moreau-Yosida Regularization for Grouped Tree Structure
Learning. In Proc. of Advances in Neural Information Processing Systems
(NIPS) (2010)

[Hidden for review]: Using Inverse-A and Generalization to Translate English
to Formal Language. (Under Review)

