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Abstract 
 
Background 
With the large amount of pharmacological and biological knowledge available in 
literature, finding novel drug indications for existing drugs using in silico approaches has 
become increasingly feasible. Typical literature-based approaches generate new 
hypotheses in the form of protein-protein interactions networks by means of linking 
concepts based on their cooccurrences within abstracts. However, this kind of approaches 
tends to generate too many hypotheses, and identifying new drug indications from large 
networks can be a time-consuming process. 
Methodology 
In this work, we developed a method that acquires the necessary facts from literature and 
knowledge bases, and identifies new drug indications through automated reasoning. This 
is achieved by encoding the molecular effects caused by drug-target interactions and links 
to various diseases as domain knowledge in AnsProlog, a declarative language that is 
useful for automated reasoning, including reasoning with incomplete information. Unlike 
other literature-based approaches, our approach is more fine-grained, especially in 
identifying indirect relationships for drug indications. For example, it considers the 
domain knowledge involved in drug mechanism as well as the types and directionality of 
the interactions to generate inferences that are more biologically meaningful. 
Conclusion/Significance 
To evaluate the capability of our approach in inferring novel drug indications, we applied 
our method to 943 drugs from DrugBank and asked if any of these drugs have potential 
anti-cancer activities based on information on their targets and molecular interaction 
types alone. A total of 507 drugs were found to have the potential to be used for cancer 
treatments. Among the potential anti-cancer drugs, 67 out of 81 drugs (a recall of 82.7%) 
are indeed known cancer drugs. In addition, 144 out of 289 drugs (a recall of 49.8%) are 



non-cancer drugs that are currently tested in clinical trials for cancer treatments. These 
results suggest that our method is able to infer drug indications (original or alternative) 
based on their molecular targets and interactions alone and has the potential to discover 
novel drug indications for existing drugs. 

Introduction 

The current model of drug discovery and development is perceived as a costly and time-
consuming process [1]. To reduce the cost and shorten the duration for drug 
development, drug repurposing, also known as drug repositioning, has become an 
attractive alternative to traditional drug development aiming to shorten the development 
process. Drug repurposing is the process of finding a new indication for existing drug 
compounds. In other words, it is a discovery process on how an existing drug compound 
can be used for the treatment of diseases other than its original indication. Reusing these 
drug compounds has the advantage of bypassing many of the expensive steps of drug 
development, such as in vitro and in vivo screening, chemical optimization, toxicology, 
bulk manufacturing, formulation development. This reduces cost and development risks, 
as well as shortens the typical 10-17 year process of drug development to 3-12 years [2]. 
The best known success story of drug repositioning is the development of sildenafil, a 
compound that was developed by Pfizer and intended for the treatment of angina. Clinical 
trials of the drug showed unexpected side effects that led to the treatment of erectile 
dysfunction, and sildenafil became the blockbuster drug more commonly known as 
Viagra®. Further studies and repositioning of the drug compound showed yet another 
therapeutic indication for treating pulmonary arterial hypertension, marketed as 
Revatio®. This is due to the fact that sildenafil is an inhibitor of phosphodiesterase-5 
(PDE-5) proteins, and PDE-5 is known to be expressed in pulmonary hypertensive lungs 
[3]. 

The main concept behind drug repurposing is that novel drug indications can be 
identified based on the principle that the primary target of a drug can be associated with 
diseases other than its original drug indication. In addition, as drugs can act on multiple 
targets, secondary targets can be utilized for novel drug indications as well. Several 
systematic approaches of finding new uses for old drugs have been proposed. These 
methods can be broadly classified into two categories: target discovery based on chemical 
compound similarity [4] and literature-based discovery [5]. Compound similarity has 
been a popular approach to identify drug targets for drug repurposing. The assumption is 
that similar drug compounds have similar targets so that targets that are not shared 
between a pair of similar compounds can be identified as novel targets to the other. By 
identifying new targets for existing compounds, new drug indications can then be 
proposed. On the other hand, typical text mining methods focus on the extraction of 
knowledge such as protein-protein interactions from biomedical literature. These text 
mining efforts including the BioCreAtIvE challenge [6], a community effort that aims to 
advance the development of biological knowledge extraction systems, focus on the 
extraction of biological knowledge that is explicitly stated in the literature. Literature-
based discovery methods go a step further by identifying relevant knowledge through text 
mining so that new knowledge can be inferred from existing knowledge. Swanson’s ABC 
Model [7] is a popular literature-based discovery methodology that was proposed to link 



two concepts through a commonly shared concept. Scientific concepts A and C form a 
relationship when concept A cooccurs with concept B in one publication while concepts B 
and C cooccur in another publication. Variations of Swanson’s ABC models have been 
described in the literature for the identification of indirect relationships [8,9]. However, 
approaches based on cooccurrences of concepts within abstracts tend to generate too 
many hypotheses. Another direction for network-based approaches aims to uncover 
knowledge through the creation of biological networks. STITCH [10] and ChemProt [11] 
are examples of network-based approaches that take interactions extracted from literature 
and integrates with data from biological knowledge bases to create chemical compound-
protein interaction networks. This kind of approach in linking the concepts does not 
consider the inherent relationships between the pairs of concepts such as interaction type 
and directionality of interactions, thus leading to a large number of hypotheses. To handle 
large networks that are generated by means of literature mining and other data sources, 
visualization tools have been proposed to assist the discovery of novel drug indications 
[12,13].  

In this paper, we propose a new literature-based discovery approach for drug repurposing 
that integrates facts from various sources to infer novel indications by means of 
automated reasoning. Our approach captures the various effects of drug-target 
interactions inside cells as well as the molecular mechanisms of diseases. Using cancer as 
an example, we utilized the wealth of knowledge about cancer and encoded oncogenes 
and tumor suppressors as well as cancer-related biological processes as the domain 
knowledge for our method. Together with the protein-protein interactions and gene-
disease associations acquired from the literature, our approach identified drugs that are 
potential candidates for the treatment of cancer. By considering the interaction types and 
their directionality and the domain knowledge involved in the mechanism of action of 
drugs, our approach aims to produce biologically meaningful hypotheses for novel drug 
indications and can significantly reduce the number of hypotheses as compared to 
previous text mining and literature-based discovery approaches.  

Methods 

Our approach can be divided into three main components: (i) the knowledge acquisition 
component; (ii) the knowledge representation component; and (iii) the reasoning 
component. The knowledge acquisition component includes publicly available curated 
sources as well as the relevant facts for the identification of drug indications acquired 
using text mining. To automatically propose alternative drug indications, it is necessary 
to first represent the mechanism of drug action in the form of logic rules. With the facts 
acquired from the knowledge acquisition component and the logic rules defined in the 
knowledge representation component, the reasoning engine utilizes the logic rules to find 
interactions that link drugs with the corresponding drug indications. 

Mechanism of action of drugs 
The basic mechanism of drug action involves the activation or inhibition of the function 
of drug targets that are responsible for certain diseases, and this interaction translates into 
clinical effects of the drug. One example is the drug levodopa, which is an agonist that 



targets the dopamine receptors to increase dopamine levels for the treatment of 
Parkinson’s disease [14]. Inhibition or activation of drug targets such as oncogenes and 
tumor suppressors can also trigger cancer-related biological processes and pathways. An 
example of such drug action is erlotinib, an antagonist that targets the oncogene known as 
the epidermal growth factor receptor (EGFR) and alters the signal transduction in the 
EGFR signaling pathway [15]. It is typical that a drug interacts with multiple targets, in 
which the original indication is related to the primary target. Alternative indications can 
be hypothesized through the secondary targets and their corresponding roles in diseases. 
On the other hand, a target can be involved in various diseases and biological pathways. 
By studying the roles of the target in diseases and pathways, alternative indications can 
be proposed through deeper understanding of the targets. 

Knowledge acquisition 
To identify novel drug indications, the first step of our approach is to acquire various 
types of knowledge that are relevant to the mechanism of action (MOA) of the drug. Such 
knowledge includes (i) drug-target interactions; (ii) oncogenes and tumor suppressors; 
(iii) genes involved in cancer-related biological processes; (iv) gene-disease relations; 
(iv) protein-protein interactions. Table 1 provides a summary of sources that are used to 
acquire knowledge for our approach. DrugBank [16] was used as the source of 
knowledge for drug-target relations, i.e. whether a drug is an antagonist or an agonist for 
a drug target. Several sources are utilized as there is no single source of complete 
knowledge on oncogenes and tumor suppressors. Specifically UniProt1, Entrez Gene2 and 
CancerQuest3,4 were considered in our approach. For UniProt and Entrez Gene, the list of 
cancer genes was obtained by using the keywords “oncogene” and “tumor suppressor” as 
search criteria. Genes belonging to cancer-related biological processes such as “cell 
proliferation”, “apoptosis” and “angiogenesis” were obtained from the Gene Ontology 
annotations5.  
 
Table 1 – Different types of knowledge used in our approach and their sources 
Types of knowledge Sources 
Drug-target interactions DrugBank 
Oncogenes and tumor suppressors UniProt, Entrez Gene, CancerQuest 
Genes involved in cancer-related 
biological processes 

Gene Ontology 

Gene-disease relations Medline abstracts by text mining 
Protein-protein interactions Medline abstracts by text mining 

 
While databases such as PharmGKB [17] and IntAct [18] are great resources for gene-
disease relations and protein-protein interactions, such databases are limited in terms of 
the coverage of the literature due to the time-intensive process of manual curation. More 
importantly, it is commonly the case that the type of the interactions is not captured in 

                                                
1 UniProt: http://www.uniprot.org 
2 Entrez Gene: http://www.ncbi.nlm.nih.gov/gene 
3 Oncogenes from CancerQuest: http://www.cancerquest.org/oncogene-table 
4 Tumor suppressors from CancerQuest: http://www.cancerquest.org/tumor-suppressors-table 
5	
  Gene Ontology annotations: http://www.geneontology.org/GO.downloads.annotations.shtml	
  



these databases. This becomes an obstacle when the interactions from these databases are 
used in the discovery of new knowledge. Suppose we know that a protein interacts with 
an oncogene. The consequence of the interaction, i.e. whether the function of the 
oncogene is activated or suppressed due to the interaction, is an important factor when 
the interaction is considered as part of the mechanism of a drug for treating cancer. To 
capture the types of the interactions, our approach is to utilize text mining so that 
appropriate interactions can be identified efficiently from the literature. 
 
Our text mining approach is to rely on grammatical structures and keywords to capture 
the directionality and the types of the interactions for the extraction of gene-disease 
relations and protein-protein interactions. The parse tree query language (PTQL) [19] is 
a suitable language that allows extraction patterns to be defined over keywords and 
grammatical structures. PTQL is a query language designed for information extraction 
over a database of syntactic structures of text known as the parse tree database (PTDB). 
Our latest version of the PTDB contains a collection of 19 million Medline abstracts, and 
the Stanford parser [20] is utilized to create parse trees of sentences. BANNER [21] is 
used for the recognition of gene names from text, and the recognized gene names are then 
mapped to official gene symbols using GNAT [22]. By defining the keywords and 
extraction patterns in the form of PTQL queries, it becomes possible to extract the 
directionality and the types of interactions for gene-disease relations and protein-protein 
interactions. Specifically, the following types of interactions are extracted: (i) association 
of over- or under-expressed genes with diseases (denoted as <over-/under-expressed p, 
associated with, d>, where p corresponds to a gene/protein name and d for a disease 
name); (ii) stimulation or inhibition of proteins by other proteins (denoted as <p1, 
induces/inhibits, p2>, where p1 and p2 are gene/protein names and p1 acts on p2 in the 
interaction). Examples of these interactions are listed in Table 2. 
 
Table 2 – Examples of extracted gene-disease relationships and protein-protein 
interactions with their support evidences 
Evidences Extracted relationships 
The results of our study demonstrate that AMACR 
expression is upregulated in gastric cancer (PMID: 
18787636) 

<over-expressed AMACR, 
associated with, gastric cancer> 

Therefore, inactivation of Rb protein by HPV 18 
E7 protein may be associated with carcinogenesis 
of small cell carcinoma (PMID:14506638) 

<under-expressed RB1, 
associated with, small cell 
carcinoma> 

Moreover, HER-2 expression was stimulated by 
EGF addition in young cells (PMID:8028398) 

<EGF, induces, ERBB2> 

Inhibition of PPARgamma activity by TNF-alpha is 
involved in pathogenesis of insulin resistance 
(PMID: 18655773) 

<TNF, inhibits, PPARG> 

 
Knowledge representation 
To identify drug indications through automated reasoning, it is important to properly 
represent our knowledge on basic drug mechanism. This requires the formation of the 
logic facts for the knowledge acquired from various sources as described in the previous 



subsection. In addition, logic rules are used to represent the properties of drug 
mechanism. We adopted a popular knowledge representation language called AnsProlog 
[23,24] for the representation of the logic facts and rules.  
AnsProlog is a declarative language that is useful for reasoning, including reasoning with 
incomplete information. One of the advantages of using a declarative language is that we 
define what the program should achieve and not how it should be achieved. It is 
important to notice that AnsProlog is a declarative language different from Prolog. While 
Prolog is a programming language with roots in logic, it includes many non-logical 
features that are not declarative, making it unsuitable for knowledge representation. Here 
we give a brief introduction to the syntax of AnsProlog. 
An AnsProlog rule is of the form: 

l ← l0, …, lm, not lm+1, …, not ln. 
where lis are literals and not represents negation as failures. The intuitive meaning of the 
above rule is that if it is known that literals l0, . . ., lm are to be true and if lm+1, . . ., ln can 
assume to be false, then l must be true. A literal is defined as either an atom or an atom 
preceded by the symbol ¬ that indicates classical negation. If there is no literal l in the 
head of a rule, then the rule is referred as a constraint. On the other hand, if there are no 
literals in the body of a rule, then the rule is referred as a fact, and its short hand of the 
representation of a fact is simply the head literal itself. An answer set program is 
composed of a set of AnsProlog rules, and the interpretation of an answer set program is 
called answer sets. Readers can refer to [25] for more details on the syntax and semantics 
of AnsProlog. 
 
Logic facts 
Two basic types of logic facts are represented in our drug mechanism domain: (i) entities 
and classes such as proteins and drugs that are involved in drug mechanism; (ii) 
interactions such as gene-disease relationships. The class protein is represented in the 
form of protein(Prot), in which Prot is a variable for the class, and protein(tp53) is an 
instance of the class protein. The entities and their logic forms are shown in Table 3. 	
  
	
  
The class cancer-resisting biological process involves the following instances of Gene 
Ontology terms: 

• Negative regulation of cell proliferation (GO:0008285) 
• Positive regulation of apoptosis (GO:0043065) 
• Negative regulation of angiogenesis (GO:0016525) 

On the other hand, the class cancer-promoting biological process involves these 
instances: 

• Positive regulation of cell proliferation (GO:0008284) 
• Negative regulation of apoptosis (GO:0043066) 
• Positive regulation of angiogenesis (GO:0045766) 

 
For the interactions involved in the domain, they are represented with the predicate 
interaction for drug-target and protein-protein interactions and relation for gene-disease 
as well as gene-biological process relations. For instance, the logic form of the gene-
disease relation <over-expressed AMACR, associated with, gastric cancer> is represented 
as relation(overexpressed(amacr), associated_with, gastric_cancer) 



while interaction(egf, induces, erbb2) is the logic form for the protein-
protein interaction <EGF, induces, ERBB2>, and EGF is the interactor of the interaction 
that acts upon ERBB2, the interactee of the interaction. A complete list of logic forms for 
the interactions is shown in Table 4. 
	
  
Table 3 – Logic forms for the classes and entities involved in the drug mechanism 
domain 
Facts Logic forms	
   Examples	
  
Prot is a protein, e.g. P53 protein(Prot)	
   protein(tp53)	
  

Prot is an oncogene, e.g. 
EGFR 

oncogene(Prot)	
   oncogene(egfr)	
  

Prot is a tumor suppressor, e.g. 
P53 

suppressor(Prot)	
   suppressor(tp53) 

Dr is a drug, e.g. moclobemide drug(Dr) drug(moclobemide) 

Dise is a disease, e.g. 
depression  

disease(Dise) disease(depression) 

Bp is a cancer-promoting 
biological process, e.g. 
positive regulation of cell 
proliferation  

cancer_promoting
_bioprocess(Bp)  

cancer_promoting_bioprocess( 
  pos_reg_cell_proliferation) 

Bp is a cancer-resisting 
biological process, e.g. 
positive regulation of apoptosis  

cancer_resisting
_bioprocess(Bp)  

cancer_resisting_bioprocess( 
  pos_reg_apoptosis) 

	
  
Table 4 – Logic forms for the interactions involved in the drug mechanism domain 
Relations Logic forms	
  
Drug Dr induces the activity of protein Prot interaction(Dr, induces, Prot) 

Drug Dr inhibits the activity of protein Prot interaction(Dr, inhibits, Prot) 

Protein Prot1 induces the activity of Protein 
Prot2  

interaction(Prot1, induces, Prot2) 

Protein Prot1 inhibits the activity of Protein 
Prot2 

interaction(Prot1, inhibits, Prot2) 

Overexpressed protein Prot is associated 
with disease Dise 

relation(overexpressed(Prot), 
associated_with, Dise) 

Underexpressed protein Prot is associated 
with disease Dise 

relation(underexpressed(Prot), 
associated_with, Dise) 

Protein Prot plays a role in biological 
process Bp 

relation(Prot, is_associated, Bp) 

 
Logic rules 
In representing the process of drug mechanism, logic rules are used to describe how a 
drug triggers the effect of the proteins based on the acquired interactions. Through the 
effects of the proteins, a series of steps eventually leads to the therapeutic relationship 
between the drug and the corresponding disease. We represent each triggering step on 
how a drug Dr affects the state of a protein Prot in the form of trigger(Dr, Action, Prot, 
Step). Action is a class of effects such as activates (a drug activating a protein) and 



inactivates (a drug inhibiting a protein). Step is a variable indicating the order of the 
triggering step in the series. For instance, trigger(moclobemide, inactivates, maoa, 1) 
indicates that moclobemide inhibits the function of MAOA in step 1. 
 
The core idea of the representation of mechanism of actions is to encode the pre- and 
post-conditions of interactions, also known as the executability and direct effects of 
actions. Using the effect of the activation of a tumor suppressor (denoted as Prot) as an 
example, cancer is identified as an indication for drug Dr when activation of the tumor 
suppressor is triggered by Dr previously. This mechanism is captured by the following 
AnsProlog rule: 
 
trigger(Dr, treats, cancer, S+1) ← trigger(Dr, activates, Prot, S), suppressor(Prot),  

drug(Dr), step(S). 
 
The principles behind the representation of mechanism of drug action are described 
below: 

• Drug Dr triggers the inhibition (respectively activation) of protein Prot when Dr 
acts as an antagonist (respectively an agonist) for Prot. This is the initial step to 
trigger the mechanism. 

• Drug Dr triggers the activation (respectively inactivation) of the function of 
protein Prot2 when protein Prot1 has been activated by Dr and the activated 
Prot1 increases (respectively decreases) the expression of Prot2. 

• Drug Dr is identified as a treatment for cancer when protein Prot has been 
inhibited (respectively induced) by Dr and overexpressed (respectively 
underexpressed) Prot is known to be associated with cancer. 

• Drug Dr is identified as a treatment for cancer when oncogene Prot has been 
inhibited by Dr. 

• Drug Dr is identified as a treatment for cancer when tumor suppressor Prot has 
been activated by Dr. 

• Drug Dr is identified as a treatment for cancer when protein Prot, which is 
involved in cancer-promoting biological process, has been inhibited by Dr. 

• Drug Dr is identified as a treatment for cancer when protein Prot, which is 
involved in cancer-resisting biological process, has been activated by Dr. 

A list of AnsProlog logic rules describing the actions and effects involved in drug 
mechanism can be found in the supplementary information.  
	
  
Reasoning 
With the acquired facts in logic form and the drug mechanism of actions described in 
logic rules, the next step is to define our goal – find a series of steps that eventually 
identifies a possible drug indication. Unlike semantic technologies such as SPARQL 
where the user has to explicitly define the right kind of queries in order to link up various 
sources of knowledge, the AnsProlog logic rules defined in the previous section only 
describe the effects of actions for the next step given the state of the current step and the 
logic facts. It is the task of the reasoning component to link up various sources and assign 
ordering of the steps that lead to a series of steps for drug indication. Our expectation is 
that the inference has to include: (i) a series of steps that involves a triggering step on 



how a drug Dr can be used for the treatment of cancer in the form of trigger(Dr, treats, 
cancer, S); (ii) the triggering step trigger(Dr, treats, cancer, S) as the last step of the 
inference. To compute the answer sets that infer drug indications, an AnsProlog solver 
called clingo [26] is utilized to compute direct and indirect inferences based on the logic 
rules and the acquired logic facts. 
	
  
Scenarios	
  
Two types of inferences can be generated by our method: direct inference and indirect 
inference. Direct inference corresponds to drug indications that are directly triggered by 
drug targets, while drug targets play an indirect role in diseases in indirect inference. We 
illustrate each of the steps involved in inferring alternative drug indications for 
dipyridamole and tazarotene. 
	
  
Example of a direct inference: dipyridamole as a treatment for leukemia	
  
Dipyridamole is used to reduce blood clots through the inhibition of adenosine deaminase 
[PubMed-Health: Dipyridamole]. To find alternative indications for dipyridamole, the 
first step of our method is to acquire the necessary knowledge such as drug-target 
interactions and gene-disease relations. In this case, the following facts were acquired: 

• interaction(dipyridamole, inhibits, ada): dipyridamole acts as an 
antagonist for adenosine deaminase (ADA) [Source: DrugBank] 

• relation(overexpressed(ada), associated_with, cancer): High levels 
of adenosine deaminase (ADA) activity have been associated with normal T cell 
differentiation and T cell disease, such as acute lymphoblastic leukemia [Source: 
PMID: 6981287] 

Dipyridamole is proposed as a potential treatment for cancer as ADA can be inhibited by 
dipyridamole and overexpression of ADA is associated with acute lymphoblastic 
leukemia. As of September 2011, dipyridamole is under phase I clinical trial for 
treatment of hepatic metastases from solid tumors [27]. 

• trigger(dipyridamole, inactivates, ada, 1) 
• trigger(dipyridamole, treats, cancer, 2)	
  

Figure 1 illustrates the steps involved in the direct inference of drug indication for 
dipyridamole. 
	
  
Example of an indirect inference: tazarotene as a treatment for cancer 
Tazarotene is approved for the treatment of psoriasis and acne. The facts below are 
acquired from different sources to identify alternative indication of tazarotene. 

• interaction(tazarotene, induces, rara): tazarotene acts as an agonist 
for retinoic acid receptor alpha (RARA) [Source: DrugBank] 

• interaction(rara, inhibits, egfr): These results suggest that RAR 
ligand-associated down-regulation of EGFR activity reduces cell proliferation by 
reducing the magnitude and duration of EGF-dependent ERK1/2 activation. 
[Source: PMID: 11788593] 

• oncogene(efgr) [Source: CancerQuest]	
  
With the acquired facts and the logic rules, the following steps in the inference are 
triggered: 

• trigger(tazarotene, activates, RARA, 1)	
  



• trigger(tazarotene, inactivates, EGFR, 2)	
  
• trigger(tazarotene, treats, cancer, 3)	
  

The indirect inference generated by our method shows that RARA can be activated by the 
agonist tazarotene. The activated RARA inhibits EGFR expression, and the inhibition of 
the oncogene EGFR can lead to cancer treatment. This inference is illustrated in Figure 
1(b). As of April 2009, a phase II trial is currently underway to study the effectiveness of 
tazarotene in treating patients with basal cell skin cancer. The study is estimated to be 
completed by June 2013 [28]. 
 

 
Figure 1 – A diagrammatic view of (a) direct and (b) indirect inferences for 

dipyridamole and tazarotene as novel cancer indications. 

 
Results	
  

For the knowledge acquisition component, we first compiled a list of drugs from 
DrugBank that contain information on their targets and interaction types, i.e. whether a 
drug is an antagonist or agonist for a target. This results in a list of 943 drugs that 
constitute 1704 drug-target interactions. In addition, a list of 265 cancer-related genes 
was obtained from UniProt, Entrez Gene and CancerQuest and another 1420 genes that 
are involved in cancer-related biological processes were acquired from the Gene 
Ontology. Together with 16816 protein-protein interactions and 25866 gene-disease 
relations extracted from the literature, these form a knowledge base of facts that are 
relevant to the mechanism of actions of drugs. 

To assess the performance of our approach, our evaluation involves two aspects: (i) 
whether the drug indications suggested by our MOA-based approach are indeed the 
original indications of the drugs, without the direct use of such information; (ii) whether 
our suggested drug indications are currently under clinical trials for the indications 
according to ClinicalTrials.gov. Among the 943 drugs that were obtained from 
DrugBank, 81 of them are indicated as cancer drugs according to DrugBank. We also 
downloaded the records of the clinical trials from http://clinicaltrials.gov dated in 
December 2011. 289 drugs that do not have cancer as their original indications are found 
to be currently investigated as therapeutics for various types of cancers.  

Our method suggested 507 drugs that have the potential to be used for cancer treatments. 
Among the suggested drug uses, 67 out of 81 drugs (a recall of 82.7%) are indeed drugs 



with cancer as their original indications. In addition, 144 out of 289 drugs (a recall of 
49.8%) are non-cancer drugs that are in clinical trials for cancer. In other words, 211 out 
of the 507 inferred drug indications are confirmed to be cancer-related. These results, 
summarized in Table 5, show that our method is capable of assigning correct drug 
indications. We also compared the contribution in inferring drug indications among the 
various different sources of knowledge, i.e. the use of cancer-related genes (denoted as 
Cancer genes, genes involved in cancer-related biological processes (GO) and relations 
extracted from literature (Text mining). We found that the inferences generated based on 
each of the three sources has about the same reliability in terms of the number of 
inferences that are confirmed to be cancer-related. All three of them are in the range of 
41% to 42%, as illustrated in Table 5. This shows that relations extracted by means of 
text mining can be as reliable as other sources for inference of alternative indications. 
With the broad coverage of relations obtained from text mining, findings for alternative 
indications can be more comprehensive than solely using manual curated sources. 
 

Table 5 – Evaluation of the inferences using a list of 943 drugs based on original 
indication and clinical trials 

 Cancer 
genes 

GO Text 
mining 

All 

Cancer as original indication (81) 25 43 58 67 (82.7%) 
Non-cancer drugs under clinical 
trials for cancer (289) 

46 95 133 144 (49.8%) 

Total inferences 171 335 455 507 
% inferences confirmed to be 
cancer-related 

41.5% 41.2% 42.0% 41.6% 

 
We first performed analysis on the known cancer drugs that have been missed in our 
prediction. As indicated in Table 5, 67 of the 81 known cancer drugs are correctly 
predicted to be drugs for cancer treatment by our system. Among the 14 missed cancer 
drugs, interactions related to the drug targets of 8 of these cancer drugs cannot be found 
in the knowledge sources that were used by our system. The other 6 include contradictory 
interactions for the drugs and their drug targets within our knowledge sources. For 
example, PNP is one of the drug targets for cladribine, and it is known to be an agonist 
for PNP according to DrugBank. However, PNP is involved in the positive regulation of 
cell proliferation (GO:0042102) based on Gene Ontology. Activated PNP would lead to 
increase rate of cell proliferation, which is not ideal to be used for cancer treatment 
according to our system. Details of the analysis can be found in the supplementary 
information. 
 
We further characterize the remaining 296 drugs that do not have cancer as original 
indications nor found to be in clinical trials for cancer. We first categorized the drugs in 
major treatment categories, and found that 17.7% of these drugs are currently used for 
treatments of inflammation. Links between Inflammation and tumor progression has been 
previously established in literature[29]. Another major category is the treatment of 
cardiovascular diseases constituting about 21.2%. The distribution of the main disease 
types is summarized in Figure 2.  



 

 
 
 
 
Evaluation of text mining results 
The inference of new indications for drugs largely depends on the correctness of the 
interactions extracted from the literature. Here we performed evaluation for the extraction 
of gene-disease relations and protein-protein interactions using various corpora. We 
adopted a corpus of gene-disease relations annotated from 5720 GeneRIF sentences [30] 
using the altered expression category for the evaluation of our gene-disease relations. 
The altered expression category contains 1044 gene-disease relations that correspond to 
the change of gene expression and its relations with diseases.  In our evaluation we 
focused on relations that indicate overexpression or underexpression of genes to reflect 
our model of drug mechanism, and this forms a subset of 674 gene-disease relations. Our 
evaluation indicates that the extracted gene-disease relations result in a precision of 
93.61%. The results of the evaluation are summarized in Table 6. Further analysis 
revealed that 50% of the incorrect gene-disease relations (i.e. false positives) are due to 
negation and another 28% of the false positives involved incorrect interactors or 
interactees in the extracted relations. Examples of incorrectly extracted gene-disease 
relations are shown in Table 7. 
 
Table 6 – Performance of the extraction of gene-disease relations (GDRs) and 
protein-protein interactions (PPIs). 

 GDRs 
(Bundschus corpus) 

PPIs (Bioinfer corpus) 

True Positives (TP) 205 20 
False Positives (FP) 14 18 
False Negatives (FN) 469 150 
Precision 93.61% 52.63% 
Recall 30.42% 11.76% 
F-measure 45.91% 19.23% 

 
For protein-protein interactions, we performed the evaluation using the BioInfer corpus 
[31], one of the commonly used corpora for the evaluation of protein-protein interaction 

Figure 2 – Treatment distribution for the 296 inferred drugs that neither 
have cancer as the original indication nor in clinical trials for caner 



extraction. The BioInfer corpus contains 1100 sentences from Medline abstracts 
annotated with various biological relationships that include 425 protein-protein 
interactions. In this evaluation we focused on interactions that indicate the increase or 
decrease of the expression of a protein by another protein, and this forms a subset of 170 
protein-protein interactions. Our evaluation indicates that the extracted protein-protein 
interactions results in a precision of 52.63%. The results of the evaluation are 
summarized in Table 6. Further analysis revealed that 50% of the false positives are due 
to incorrect interactee and another 27.8% of the false positives involved incorrect 
interactors. The rest of the false positives include both incorrect interactors and 
interactees such that the pair of entities has no actual relation to each other. 
 
Table 7 – Examples of incorrectly extracted gene-disease relations due to negation 
(E1) and wrong interactor (E2). 
 Gene-disease relation Sentence 
E1 <overexpressed CCR7, associated 

with, lymphocyte-predominant 
Hodgkin disease> 

Up-regulation of CCR7 in classical but not 
in lymphocyte-predominant Hodgkin 
disease correlates with …. 

E2 <overexpressed Bcl-2, associated 
with, acute myelogenous 
leukemia> 

Synergistic induction of apoptosis by 
simultaneous disruption of the Bcl-2 and 
MEK / MAPK pathways in acute 
myelogenous leukemia. 

Discussion 
Automated reasoning is a powerful technique in artificial intelligence that enables 
knowledge inference based on domain knowledge and multiple data sources. In the 
biomedical domain the capabilities of reasoning have been demonstrated in the synthesis 
of pharmacokinetic pathways [32] and identification of drug-drug interactions [33]. Here 
we demonstrate the capability of automated reasoning to another important aspect of the 
drug development process – identification of novel drug indications for existing drugs. 
Unlike typical literature-based approaches that produce large network of biological 
entities based on coocurrences, our approach takes interaction types and directionality 
into consideration so that the search space is more computationally feasible. In addition, 
the hypotheses generated by our approach reflect the mechanism of action of drugs as 
well as the key mechanisms of cancer. This eliminates the time-consuming process of 
using network visualization to sift through the large network of interactions manually to 
identify novel drug indications. Our results showed that a significant number of drugs 
predicted by our method indeed have cancer as the original indication. Some of our 
findings even showed that the drugs are indeed currently under clinical trials for cancer. 

While our method is capable of making not only correct but also novel drug indications, 
our current approach is limited to the identification of cancer treatment. In addition, the 
false positives for the relations obtained from text mining may contribute to the overall 
false positives in our predictions. Further improvement of our text mining method is 
needed to produce even more reliable inferences. To predict alternative indications for 
other disease areas, the domain knowledge has to be extended to encode the mechanism 
of other kinds of diseases and signaling pathways. Another future direction is to capture 



chemical structure information of drug compounds in order to identify alternative drug 
indications. 
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