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Abstract

This paper develops a declarative language, P-log, that combines logical and probabilistic arguments in its reasoning. Answer
Set Prolog is used as the logical foundation, while causal Bayes nets serve as a probabilistic foundation. We give several non-
trivial examples and illustrate the use of P-log for knowledge representation and updating of knowledge. We argue that our
approach to updates is more appealing than existing approaches. We give sufficiency conditions for the coherency of P-log
programs and show that Bayes nets can be easily mapped to coherent P-log programs.
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1 Introduction

The goal of this paper is to define a knowledge representation language allowing natural, elaboration tolerant
representation of commonsense knowledge involving logic and probabilities. The result of this effort is a language
called P -log.

By a knowledge representation language, or KR language, we mean a formal language L with an entailment relation
E such that (1) statements of L capture the meaning of some class of sentences of natural language, and (2) when
a set S of natural language sentences is translated into a set T (S ) of statements of L, the formal consequences of
T (S ) under E are translations of the informal, commonsense consequences of S .

One of the best known KR languages is predicate calculus, and this example can be used to illustrate several
points. First, a KR language is committed to an entailment relation, but it is not committed to a particular inference
algorithm. Research on inference mechanisms for predicate calculus, for example, is still ongoing while predicate
calculus itself remains unchanged since the 1920’s.

Second, the merit of a KR language is partly determined by the class of statements representable in it. Inference
in predicate calculus, e.g., is very expensive, but it is an important language because of its ability to formalize a
broad class of natural language statements, arguably including mathematical discourse.

Though representation of mathematical discourse is a problem solved to the satisfaction of many, representation of
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other kinds of discourse remains an area of active research, including work on defaults, modal reasoning, temporal
reasoning, and varying degrees of certainty.

Answer Set Prolog (ASP) is a successful KR language with a large history of literature and an active community of
researchers. In the last decade ASP was shown to be a powerful tool capable of representing recursive definitions,
defaults, causal relations, special forms of self-reference, and other language constructs which occur frequently in
various non-mathematical domains (Baral 2003), and are difficult or impossible to express in classical logic and
other common formalisms. ASP is based on the answer set/stable models semantics (Gelfond et al. 1988) of logic
programs with default negation (commonly written as not ), and has its roots in research on non-monotonic logics.
In addition to the default negation the language contains “classical” or “strong” negation (commonly written as ¬)
and “epistemic disjunction” (commonly written as or).

Syntactically, an ASP program is a collection of rules of the form:

l0 or . . . or lk ← lk+1, . . . , lm ,not lm+1, . . . ,not ln

where l ’s are literals, i.e. expressions of the form p and ¬p where p is an atom. A rule with variables is viewed
as a schema - a shorthand notation for the set of its ground instantiations. Informally, a ground program Π can
be viewed as a specification for the sets of beliefs which could be held by a rational reasoner associated with Π.
Such sets are referred to as answer sets. An answer set is represented by a collection of ground literals. In forming
answer sets the reasoner must be guided by the following informal principles:

1. One should satisfy the rules of Π. In other words, if one believes in the body of a rule, one must also believe in
its head.

2. One should not believe in contradictions.

3. One should adhere to the rationality principle, which says: “Believe nothing you are not forced to believe.”

An answer set S of a program satisfies a literal l if l ∈ S ; S satisfies not l if l 6∈ S ; S satisfies a disjunction if it
satisfies at least one of its members. We often say that if p ∈ S then p is believed to be true in S , if ¬p ∈ S then p
is believed to be false in S . Otherwise p is unknown in S . Consider, for instance, an ASP program P1 consisting
of rules:

1. p(a).
2. ¬p(b).
3. q(c) ← not p(c),not ¬p(c).
4. ¬q(c) ← p(c).
5. ¬q(c) ← ¬p(c).

The first two rules of the program tell the agent associated with P1 that he must believe that p(a) is true and p(b)
is false. The third rule tells the agent to believe q(c) if he believes neither truth nor falsity of p(c). Since the agent
has reason to believe neither truth nor falsity of p(c) he must believe q(c). The last two rules require the agent
to include ¬q(c) in an answer set if this answer set contains either p(c) or ¬p(c). Since there is no reason for
either of these conditions to be satisfied, the program will have unique answer set S0 = {p(a),¬p(b), q(c)}. As
expected the agent believes that p(a) and q(c) are true and that p(b) is false, and simply does not consider truth
or falsity of p(c).

If P1 were expanded by another rule:

6. p(c) or ¬p(c)
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the agent will have two possible sets of beliefs represented by answer sets S1 = {p(a),¬p(b), p(c),¬q(c)} and
S2 = {p(a),¬p(b),¬p(c),¬q(c)}.

Now p(c) is not ignored. Instead the agent considers two possible answer sets, one containing p(c) and another
containing ¬p(c). Both, of course, contain ¬q(c).

The example illustrates that the disjunction (6), read as “believe p(c) to be true or believe p(c) to be false”, is
certainly not a tautology. It is often called the awareness axiom (for p(c)). The axiom prohibits the agent from
removing truth of falsity of p(c) from consideration. Instead it forces him to consider the consequences of believing
p(c) to be true as well as the consequences of believing it to be false.

The above intuition about the meaning of logical connectives of ASP1 and that of the rationality principle is
formalized in the definition of an answer set of a logic program (see Appendix III). There is a substantial amount of
literature on the methodology of using the language of ASP for representing various types of (possibly incomplete)
knowledge (Baral 2003).

There are by now a large number of inference engines designed for various subclasses of ASP programs. For
example, a number of recently developed systems, called answer set solvers, (Niemelä and Simons 1997; 2002 ;
Citrigno et al. 1997; Leone et al. 2006; Lierler 2005; Lin and Zhao 2004; Gebser et al. 2007) compute answer sets
of logic programs with finite Herbrand universes. Answer set programming, a programming methodology which
consists in reducing a computational problem to computing answer sets of a program associated with it, has been
successfully applied to solutions of various classical AI and CS tasks including planning, diagnostics, and config-
uration (Baral 2003). As a second example, more traditional query-answering algorithms of logic programming
including SLDNF based Prolog interpreter and its variants (Apt and Doets 1994; Chen, Swift and Warren 1995)
are sound with respect to stable model semantics of programs without ¬ and or.

However, ASP recognizes only three truth values: true, false, and unknown. This paper discusses an augmentation
of ASP with constructs for representing varying degrees of belief. The objective of the resulting language is to
allow elaboration tolerant representation of commonsense knowledge involving logic and probabilities. P-log was
first introduced in (Baral et al. 2004), but much of the material here is new, as discussed in the concluding section
of this paper.

A prototype implementation of P-log exists and has been used in promising experiments comparing its performance
with existing approaches (Gelfond et al. 2006). However, the focus of this paper is not on algorithms, but on precise
declarative semantics for P-log, basic mathematical properties of the language, and illustrations of its use. Such
semantics are prerequisite for serious research in algorithms related to the language, because they give a definition
with respect to which correctness of algorithms can be judged. As a declarative language, P-log stands ready to
borrow and combine existing and future algorithms from fields such as answer set programming, satisfiability
solvers, and Bayesian networks.

P-log extends ASP by adding probabilistic constructs, where probabilities are understood as a measure of the
degree of an agent’s belief. This extension is natural because the intuitive semantics of an ASP program is given
in terms of the beliefs of a rational agent associated with it. In addition to the usual ASP statements, the P-log
programmer may declare “random attributes” (essentially random variables) of the form a(X ) where X and the
value of a(X ) range over finite domains. Probabilistic information about possible values of a is given through
causal probability atoms, or pr -atoms. A pr -atom takes roughly the form

prr (a(t) = y |c B) = v

where a(t) is a random attribute, B a set of literals, and v ∈ [0, 1]. The statement says that if the value of a(t) is
fixed by experiment r , and B holds, then the probability that r causes a(t) = y is v .

1 It should be noted that the connectives of Answer Set Prolog are different from those of Propositional Logic.
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A P-log program consists of its logical part and its probabilistic part. The logical part represents knowledge which
determines the possible worlds of the program, including ASP rules and declarations of random attributes, while
the probabilistic part contains pr-atoms which determine the probabilities of those worlds. If Π is a P-log program,
the semantics of P-log associates the logical part of Π with a “pure” ASP program τ(Π). The semantics of a ground
Π is then given by

(i) a collection of answer sets of τ(Π) viewed as the possible sets of beliefs of a rational agent associated with Π,
and

(ii) a measure over the possible worlds defined by the collection of the probability atoms of Π and the principle of
indifference which says that possible values of random attribute a are assumed to be equally probable if we have
no reason to prefer one of them to any other.

As a simple example, consider the program

a : {1, 2, 3}.
random(a).
pr(a = 1) = 1/2.

This program defines a random attribute a with possible values 1, 2, and 3. The program’s possible worlds are
W1 = {a = 1}, W2 = {a = 2}, and W3 = {a = 3}. In accordance with the probability atom of the program, the
probability measure µ(W1) = 1/2. By the principle of indifference µ(W2) = µ(W3) = 1/4.

This paper is concerned with defining the syntax and semantics of P-log, and a methodology of its use for knowl-
edge representation. Whereas much of the current research in probabilistic logical languages focuses on learning,
our main purpose, by contrast, is to elegantly and straightforwardly represent knowledge requiring subtle logical
and probabilistic reasoning. A limitation of the current version of P-log is that we limit the discussion to models
with finite Herbrand domains. This is common for ASP and its extensions. A related limitation prohibits pro-
grams containing infinite number of random selections (and hence an uncountable number of possible worlds).
This means P-log cannot be used, for example, to describe stochastic processes whose time domains are infinite.
However, P-log can be used to describe initial finite segments of such processes, and this paper gives two small ex-
amples of such descriptions (Sections 5.3 and 5.4) and discusses one large example in Section 5.5. We believe the
techniques used by (Sato 1995) can be used to extend the semantics of P-log to account for programs with infinite
Herbrand domains. The resulting language would, of course, allow representation of processes with infinite time
domains. Even though such extension is theoretically not difficult, its implementation requires further research in
ASP solvers. This matter is a subject of future work. In this paper we do not emphasize P-log inference algorithms
even for programs with finite Herbrand domains, though this is also an obvious topic for future work. However, our
prototype implementation of P-log, based on an answer set solver Smodels (Niemelä and Simons 1997), already
works rather efficiently for programs with large and complex logical component and a comparatively small number
of random attributes.

The existing implementation of P-log was successfully used for instance in an industrial size application for di-
agnosing faults in the reactive control system (RCS) of the space shuttle (Balduccini et al. 2001; Balduccini et al.
2002). The RCS is the Shuttle’s system that has primary responsibility for maneuvering the aircraft while it is in
space. It consists of fuel and oxidizer tanks, valves, and other plumbing needed to provide propellant to the ma-
neuvering jets of the Shuttle. It also includes electronic circuitry: both to control the valves in the fuel lines and to
prepare the jets to receive firing commands. Overall, the system is rather complex, in that it includes 12 tanks, 44
jets, 66 valves, 33 switches, and around 160 computer commands (computer-generated signals).

We believe that P-log has some distinctive features which can be of interest to those who use probabilities. First,
P-log probabilities are defined by their relation to a knowledge base, represented in the form of a P-log program.
Hence we give an account of the relationship between probabilistic models and the background knowledge on
which they are based. Second, P-log gives a natural account of how degrees of belief change with the addition
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of new knowledge. For example, the standard definition of conditional probability in our framework becomes
a theorem, relating degrees of belief computed from two different knowledge bases, in the special case where
one knowledge base is obtained from the other by the addition of observations which eliminate possible worlds.
Moreover, P-log can accommodate updates which add rules to a knowledge base, including defaults and rules
introducing new terms.

Another important feature of P-log is its ability to distinguish between conditioning on observations and on delib-
erate actions. The distinction was first explicated in (Pearl 2000), where, among other things, the author discusses
relevance of the distinction to answering questions about desirability of various actions (Simpson paradox dis-
cussed in section 5.2 gives a specific example of such a situation). In Pearl’s approach the effect of a deliberate
action is modeled by an operation on a graph representing causal relations between random variables of a domain.
In our approach, the semantics of conditioning on actions is axiomatized using ASP’s default negation, and these
axioms are included as part of the translation of programs from P-log to ASP. Because Pearl’s theory of causal
Bayesian nets (CBN’s) acts as the probabilistic foundation of P-log, CBN’s are defined precisely in Appendix II,
where it is shown that each CBN maps in a natural way to a P-log program.

The last characteristic feature of P-log we would like to mention here is its probabilistic non-monotonicity —
that is, the ability of the reasoner to change his probabilistic model as a result of new information. Normally
any solution of a probabilistic problem starts with construction of probabilistic model of a domain. The model
consists of a collection of possible worlds and the corresponding probability measure, which together determine
the degrees of the reasoner’s beliefs. In most approaches to probability, new information can cause a reasoner to
abandon some of his possible worlds. Hence, the effect of update is monotonic, i.e. it can only eliminate possible
worlds. Formalisms in which an update can cause creation of new possible worlds are called “probabilistically
non-monotonic”. We claim that non-monotonic probabilistic systems such as P-log can nicely capture changes in
the reasoner’s probabilistic models.

To clarify the argument let us informally consider the following P-log program (a more elaborate example involving
a Moving Robot will be given in Section 5.3).

a : {1, 2, 3}.
a = 1 ← not abnormal .
random(a) ← abnormal .

Here a is an attribute with possible values 1, 2, and 3. The second rule of the program says that normally the value
of a is 1. The third rule tells us that under abnormal circumstances a will randomly take on one of its possible
values. Since the program contains no atom abnormal the second rule concludes a = 1. This is the only possible
world of the program, µ(a = 1) = 1, and hence the value of a is 1 with probability 1. Suppose, however, that
the program is expanded by an atom abnormal . This time the second rule is not applicable, and the program has
three possible worlds: W1 = {a = 1}, W2 = {a = 2}, and W3 = {a = 3}. By the principle of indifference
µ(W1) = µ(W2) = µ(W3) = 1/3 – attribute a takes on value 1 with probability 1/3.

The rest of the paper is organized as follows. In Section 2 we give the syntax of P-log and in Section 3 we give its
semantics. In Section 4 we discuss updates of P-log programs. Section 5 contains a number of examples of the use
of P-log for knowledge representation and reasoning. The emphasis here is on demonstrating the power of P-log
and the methodology of its use. In Section 6 we present sufficiency conditions for consistency of P-log programs
and use it to show how Bayes nets are special cases of consistent P-log programs. Section 7 contains a discussion
of the relationship between P-log and other languages combining probability and logic programming. Section
8 discusses conclusions and future work. Appendix I contains the proofs of the major theorems, and appendix
II contains background material on causal Bayesian networks. Appendix III contains the definition and a short
discussion of the notion of an answer set of a logic program.
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2 Syntax of P-log

A probabilistic logic program (P-log program) Π consists of (i) a sorted signature, (ii) a declaration, (iii) a regular
part, (iv) a set of random selection rules, (v) a probabilistic information part, and (vi) a set of observations and
actions. Every statement of P-log must be ended by a period.

(i) Sorted Signature: The sorted signature Σ of Π contains a set O of objects and a set F of function symbols.
The set F is a union of two disjoint sets, Fr and Fa . Elements of Fr are called term building functions. Elements
of Fa are called attributes.

Terms of P-log are formed in a usual manner using function symbols from Fr and objects from O . Expressions of
the form a(t), where a is an attribute and t is a vector of terms of the sorts required by a , will be referred to as
attribute terms. (Note that attribute terms are not terms). Attributes with the range {true, false} are referred to as
Boolean attributes or relations. We assume that the number of terms and attributes over Σ is finite. Note that, since
our signature is sorted, this does not preclude the use of function symbols. The example in Section 5.5 illustrates
such a use.

Atomic statements are of the form a(t) = t0, where t0 is a term, t is a vector of terms, and a is an attribute (we
assume that t and t are of the sorts required by a). An atomic statement, p, or its negation, ¬p is referred to as a
literal (or Σ-literal, if Σ needs to be emphasized); literals p and ¬p are called contrary; by l we denote the literal
contrary to l ; expressions l and not l where l is a literal and not is the default negation of Answer Set Prolog
are called extended literals. Literals of the form a(t) = true , a(t) = false, and ¬(a(t) = t0) are often written as
a(t), ¬a(t), and a(t) 6= t0 respectively. If p is a unary relation and X is a variable then an expression of the form
{X : p(X )} will be called a set-term. Occurrences of X in such an expression are referred to as bound.

Terms and literals are normally denoted by (possibly indexed) letters t and l respectively. The letters c and a ,
possibly with indices, are used as generic names for sorts and attributes. Other lower case letters denote objects.
Capital letters normally stand for variables.

Similar to Answer Set Prolog, a P-log statement containing unbound variables is considered a shorthand for the
set of its ground instances, where a ground instance is obtained by replacing unbound occurrences of variables
with properly sorted ground terms. Sorts in a program are indicated by the declarations of attributes (see below).
In defining semantics of our language we limit our attention to finite programs with no unbound occurrences of
variables. We sometimes refer to programs without unbound occurrences of variables as ground.

(ii) Declaration: The declaration of a P-log program is a collection of definitions of sorts and sort declarations for
attributes.

A sort c can be defined by explicitly listing its elements,

c = {x1, . . . , xn}· (1)

or by a logic program T with a unique answer set A. In the latter case x ∈ c iff c(x ) ∈ A.

The domain and range of an attribute a are given by a statement of the form:

a : c1 × . . .× cn → c0· (2)

For attributes without parameters we simply write a : c0.

The following example will be used throughout this section.

Example 1
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[Dice Example: program component D1]
Consider a domain containing two dice owned by Mike and John respectively. Each of the dice will be rolled once.
A P-log program Π0 modeling the domain will have a signature Σ containing the names of the two dice, d1 and
d2, an attribute roll mapping each die to the value it indicates when thrown, which is an integer from 1 to 6, an
attribute owner mapping each die to a person, relation even(D), where D ranges over dice , and “imported” or
“predefined” arithmetic functions + and mod . The corresponding declarations, D1, will be as follows:

dice = {d1, d2}·
score = {1, 2, 3, 4, 5, 6}·
person = {mike, john}·
roll : dice → score·
owner : dice → person·
even : dice → Boolean· 2

(iii) Regular part: The regular part of a P-log program consists of a collection of rules of Answer Set Prolog
(without disjunction) formed using literals of Σ.

Example 2

[Dice Example (continued): program component D2]
For instance, the regular part D2 of program Π0 may contain the following rules:

owner(d1) = mike·
owner(d2) = john·
even(D) ← roll(D) = Y ,Y mod 2 = 0·
¬even(D) ← not even(D)·
Here D and Y range over dice and score respectively. 2

(iv) Random Selection: This section contains rules describing possible values of random attributes. More precisely
a random selection is a rule of the form

[ r ] random(a(t) : {X : p(X )}) ← B · (3)

where r is a term used to name the rule and B is a collection of extended literals of Σ. The name [ r ] is optional
and can be omitted if the program contains exactly one random selection for a(t). Sometimes we refer to r as
an experiment. Statement (3) says that if B holds, the value of a(t) is selected at random from the set {X :
p(X )}∩ range(a) by experiment r , unless this value is fixed by a deliberate action. If B in (3) is empty we simply
write

[ r ] random(a(t) : {X : p(X )})· (4)

If {X : p(X )} is equal to the range(a) then rule (3) may be written as

[ r ] random(a(t)) ← B · (5)

Sometimes we refer to the attribute term a(t) as random and to {X : p(X )} ∩ range(a) as the dynamic range of
a(t) via rule r . We also say that a literal a(t) = y occurs in the head of (3) for every y ∈ range(a), and that any
ground instance of p(X ) and literals occurring in B occur in the body of (3).
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Example 3

[Dice Example (continued)]
The fact that values of attribute roll : dice → score are random is expressed by the statement

[ r(D) ] random(roll(D)). 2

(v) Probabilistic Information: Information about probabilities of random attributes taking particular values is
given by probability atoms (or simply pr-atoms) which have the form:

prr (a(t) = y |c B) = v · (6)

where v ∈ [0, 1], B is a collections of extended literals, pr is a special symbol not belonging to Σ, r is the name of
a random selection rule for a(t), and prr (a(t) = y |c B) = v says that if the value of a(t) is fixed by experiment
r , and B holds, then the probability that r causes a(t) = y is v . (Note that here we use ‘cause’ in the sense that
B is an immediate or proximate cause of a(t) = y , as opposed to an indirect cause.) If W is a possible world
of a program containing (6) and W satisfies both B and the body of rule r , then we will refer to v as the causal
probability of the atom a(t) = y in W .

We say that a literal a(t) = y occurs in the head of (6), and that literals occurring in B occur in the body of (6).

If B is empty we simply write

prr (a(t) = y) = v · (7)

If the program contains exactly one rule generating values of a(t) = y the index r may be omitted.

Example 4

[Dice Example (continued): program component D3]
For instance, the dice domain may include D3 consisting of the random declaration of roll(D) given in Example 3
and the following probability atoms:

pr(roll(D) = Y |c owner(D) = john) = 1/6·
pr(roll(D) = 6 |c owner(D) = mike) = 1/4.
pr(roll(D) = Y |c Y 6= 6, owner(D) = mike) = 3/20.

The above probability atoms convey that the die owned by John is fair, while the die owned by Mike is biased to
roll 6 at a probability of ·25. 2

(vi) Observations and actions: Observations and actions are statements of the respective forms

obs(l) · do(a(t) = y))·
where l is a literal. Observations are used to record the outcomes of random events, i.e., random attributes, and
attributes dependent on them. The dice domain may, for instance, contain {obs(roll(d1) = 4)} recording the
outcome of rolling die d1. The statement do(a(t) = y) indicates that a(t) = y is made true as a result of a
deliberate (non-random) action. For instance, {do(roll(d1) = 4)}may indicate that d1 was simply put on the table
in the described position. Similarly, we may have obs(even(d1)). Here, even though even(d1) is not a random
attribute, it is dependent on the random attribute roll(d1). If B is a collection of literals obs(B) denotes the set
{obs(l) | l ∈ B}. Similarly for do.

The precise meaning of do and obs is captured by axioms (9 – 13) in the next section and discussed in Example
18, and in connection with Simpson’s Paradox in section 5.2. More discussion of the difference between actions
and observations in the context of probabilistic reasoning can be found in (Pearl 2000).



Probabilistic reasoning with answer sets 9

Note that limiting observable formulas to literals is not essential. It is caused by the syntactic restriction of Answer
Set Prolog which prohibits the use of arbitrary formulas. The restriction could be lifted if instead of Answer Set
Prolog we were to consider, say, its dialect from (Lifschitz et al. 1999). For the sake of simplicity we decided to
stay with the original definition of Answer Set Prolog.

A P-log program Π can be viewed as consisting of two parts. The logical part, which is formed by declarations,
regular rules, random selections, actions and observations, defines possible worlds of Π. The probabilistic part
consisting of probability atoms defines a measure over the possible worlds, and hence defines the probabilities of
formulas. (If no probabilistic information on the number of possible values of a random attribute is available we
assume that all these values are equally probable).

3 Semantics of P-log

The semantics of a ground P-log program Π is given by a collection of the possible sets of beliefs of a rational
agent associated with Π, together with their probabilities. We refer to these sets as possible worlds of Π. We will
define the semantics in two stages. First we will define a mapping of the logical part of Π into its Answer Set
Prolog counterpart, τ(Π). The answer sets of τ(Π) will play the role of possible worlds of Π. Next we will use the
probabilistic part of Π to define a measure over the possible worlds, and the probabilities of formulas.

3.1 Defining possible worlds:

The logical part of a P-log program Π is translated into an Answer Set Prolog program τ(Π) in the following way.

1. Sort declarations: For every sort declaration c = {x1, . . . , xn} of Π, τ(Π) contains c(x1), . . . , c(xn).
For all sorts that are defined using an Answer Set Prolog program T in Π, τ(Π) contains T .

2. Regular part:
In what follows (possibly indexed) variables Y are free variables. A rule containing these variables will be
viewed as shorthand for a collection of its ground instances with respect to the appropriate typing.

(a) For each rule r in the regular part of Π, τ(Π) contains the rule obtained by replacing each occurrence
of an atom a(t) = y in r by a(t , y).

(b) For each attribute term a(t), τ(Π) contains the rule:

¬a(t ,Y1) ← a(t ,Y2),Y1 6= Y2· (8)

which guarantees that in each answer set a(t) has at most one value.
3. Random selections:

(a) For an attribute a , we have the rule:

intervene(a(t)) ← do(a(t ,Y ))· (9)

Intuitively, intervene(a(t)) means that the value of a(t) is fixed by a deliberate action. Semantically,
a(t) will not be considered random in possible worlds which satisfy intervene(a(t)).

(b) Each random selection rule of the form

[ r ] random(a(t) : {Z : p(Z )}) ← B ·
with range(a) = {y1, . . . , yk} is translated to the following rules in Answer Set Prolog2

a(t , y1) or . . . or a(t , yk ) ← B ,not intervene(a(t))· (10)

2 Our P-log implementation uses an equivalent rule 1{a(t ,Z ) : c0(Z ) : p(Z )}1 ← B ,not intervene(a(t)) from the input language of
Smodels.
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If the dynamic range of a in the selection rule is not equal to its static range, i.e. expression {Z : p(Z )}
is not omitted, then we also add the rule

← a(t , y),not p(y),B ,not intervene(a(t))· (11)

Rule (10) selects the value of a(t) from its range while rule (11) ensures that the selected value satisfies
p.

4. τ(Π) contains actions and observations of Π.
5. For each Σ-literal l , τ(Π) contains the rule:

← obs(l),not l · (12)

6. For each atom a(t) = y , τ(Π) contains the rule:

a(t , y) ← do(a(t , y))· (13)

The rule (12) guarantees that no possible world of the program fails to satisfy observation l . The rule (13)
makes sure the atoms that are made true by the action are indeed true.

This completes our definition of τ(Π).

Before we proceed with some additional definitions let us comment on the difference between rules 12 and 13.
Since the P-log programs T ∪ obs(l) and T ∪{← not l} have possible worlds which are identical except for pos-
sible occurrences of obs(l), the new observation simply eliminates some of the possible worlds of T . This reflects
understanding of observations in classical probability theory. In contrast, due to the possible non-monotonicity of
the regular part of T , possible worlds of T ∪ do(l) can be substantially different from those of T (as opposed to
merely fewer in number); as we will illustrate in Section 5.3.

Definition 1

[Possible worlds]
An answer set of τ(Π) is called a possible world of Π. 2

The set of all possible worlds of Π will be denoted by Ω(Π). When Π is clear from context we will simply write
Ω. Note that due to our restriction on the signature of P-log programs possible worlds of Π are always finite.

Example 5

[Dice example continued: P-log program T1]
Let T1 be a P-log program consisting of D1, D2 and D3 described in Examples 1, 2, 3 and 4. The Answer Set
Prolog counterpart τ(T1) of T1 will consist of the following rules:

dice(d1). dice(d2). score(1). score(2).
score(3). score(4). score(5). score(6).
person(mike). person(john).
owner(d1,mike). owner(d2, john).

even(D) ← roll(D ,Y ),Y mod 2 = 0.

¬even(D) ← not even(D).

intervene(roll(D)) ← do(roll(D ,Y )).

roll(D , 1) or . . . or roll(D , 6) ← B ,not intervene(roll(D)).

¬roll(D ,Y1) ← roll(D ,Y2),Y1 6= Y2.
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¬owner(D ,P1) ← owner(D ,P2),P1 6= P2.

¬even(D ,B1) ← even(D ,B2),B1 6= B2.

← obs(roll(D ,Y )),not roll(D ,Y ).

← obs(¬roll(D ,Y )),not ¬roll(D ,Y ).

roll(D ,Y )) ← do(roll(D ,Y )).

The translation also contains similar obs and do axioms for other attributes which have been omitted here.

The variables D , P , B ’s, and Y ’s range over dice , person , boolean , and score respectively. (In the input language
of Lparse used by Smodels(Niemelä and Simons 1997) and several other answer set solving systems this typing
can be expressed by the statement

#domain dice(D), person(P), score(Y ).

Alternatively c(X ) can be added to the body of every rule containing variable X with domain c. In the rest of the
paper we will ignore these details and simply use Answer Set Prolog with the typed variables as needed.)

It is easy to check that τ(T1) has 36 answer sets which are possible worlds of P-log program T1. Each such world
contains a possible outcome of the throws of the dice, e.g. roll(d1, 6), roll(d2, 3). 2

3.2 Assigning measures of probability:

There are certain reasonableness criteria which we would like our programs to satisfy. These are normally easy to
check for P-log programs. However, the conditions are described using quantification over possible worlds, and so
cannot be axiomatized in Answer Set Prolog. We will state them as meta-level conditions, as follows (from this
point forward we will limit our attention to programs satisfying these criteria):

Condition 1

[Unique selection rule]
If rules

[ r1 ] random(a(t) : {Y : p1(Y )}) ← B1·
[ r2 ] random(a(t) : {Y : p2(Y )}) ← B2·

belong to Π then no possible world of Π satisfies both B1 and B2. 2

The above condition follows from the intuitive reading of random selection rules. In particular, there cannot be two
different random experiments each of which determines the value of the same attribute.

Condition 2

[Unique probability assignment]
If Π contains a random selection rule

[ r ] random(a(t) : {Y : p(Y )}) ← B ·
along with two different probability atoms

prr (a(t) |c B1) = v1 and prr (a(t) |c B2) = v2·
then no possible world of Π satisfies B , B1, and B2. 2
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The justification of Condition 2 is as follows: If the conditions B1 and B2 can possibly both hold, and we do not
have v1 = v2, then the intuitive readings of the two pr-atoms are contradictory. On the other hand if v1 = v2, the
same information is represented in multiple locations in the program which is bad for maintenance and extension
of the program.

Note that we can still represent situations where the value of an attribute is determined by multiple possible causes,
as long as the attribute is not explicitly random. To illustrate this point let us consider a simple example from
(Vennekens et al. 2006).

Example 6

[Multiple Causes: Russian roulette with two guns]
Consider a game of Russian roulette with two six-chamber guns. Each of the guns is loaded with a single bullet.
What is the probability of the player dying if he fires both guns?

Note that in this example pulling the trigger of the first gun and pulling the trigger of the second gun are two
independent causes of the player’s death. That is, the mechanisms of death from each of the two guns are separate
and do not influence each other.

The logical part of the story can be encoded by the following P-log program Πg :

gun = {1, 2}.
pull trigger : gun → boolean . % pull trigger(G) says that the player pulls the trigger of gun G .
fatal : gun → boolean . % fatal(G) says that the bullet from gun G is sufficient to kill the player.
is dead : boolean . % is dead says that the player is dead.
[r(G)] : random(fatal(G)) ← pull trigger(G).
is dead ← fatal(G).
¬is dead ← not is dead .
pull trigger(G).

Here the value of the random attribute fatal(1), which stands for “Gun 1 causes a wound sufficient to kill the
player” is generated at random by rule r(1). Similarly for fatal(2). The attribute is dead , which stands for the
death of the player, is described in terms of fatal(G) and hence is not explicitly random. To define the probability
of fatal(G) we will assume that when the cylinder of each gun is spun, each of the six chambers is equally likely
to fall under the hammer. Thus,

prr(1)(fatal(1)) = 1/6.
prr(2)(fatal(2)) = 1/6.

Intuitively the probability of the player’s death will be 11/36. At the end of this section we will learn how to
compute this probability from the program.

Suppose now that due to some mechanical defect the probability of the first gun firing its bullet (and therefore
killing the player) is not 1/6 but, say, 11/60. Then the probability atoms above will be replaced by

prr(1)(fatal(1)) = 11/60.
prr(2)(fatal(2)) = 1/6.

The probability of the player’s death defined by the new program will be 0 · 32. Obviously, both programs satisfy
Conditions 1 and 2 above.

Note however that the somewhat similar program

gun = {1, 2}.
pull trigger : gun → boolean .
is dead : boolean .



Probabilistic reasoning with answer sets 13

[r(G)] : random(is dead) ← pull trigger(G).
pull trigger(G).

does not satisfies Condition 1 and hence will not be allowed in P-log. 2

The next example presents a slightly different version of reasoning with multiple causes.

Example 7

[Multiple Causes: The casino story]
A roulette wheel has 38 slots, two of which are green. Normally, the ball falls into one of these slots at random.
However, the game operator and the casino owner each have buttons they can press which “rig” the wheel so
that the ball falls into slot 0, which is green, with probability 1/2, while the remaining slots are all equally likely.
The game is rigged in the same way no matter which button is pressed, or if both are pressed. In this example,
the rigging of the game can be viewed as having two causes. Suppose in this particular game both buttons were
pressed. What is the probability of the ball falling into slot 0?

The story can be represented in P-log as follows:

slot = {zero, double zero, 1 · ·36}.
button = {1, 2}.
pressed : button → boolean .
rigged : boolean .
falls in : slot .
[r ] : random(falls in).
rigged ← pressed(B).
¬rigged ← not rigged .
pressed(B).
prr (falls in = zero|crigged) = 1/2.

Intuitively, the probability of the ball falling into slot zero is 1/2. The same result will be obtained by our formal
semantics. Note that the program obviously satisfies Conditions 1 and 2. However the following similar program
violates Condition 2.

slot = {zero, double zero, 1 · ·36}.
button = {1, 2}.
pressed : button → boolean .
falls in : slot .
[r ] : random(falls in).
pressed(B).
prr (falls in = zero|cpressed(B)) = 1/2.

Condition 2 is violated here because two separate pr-atoms each assign probability to the literal falls in = zero.
Some other probabilistic logic languages allow this, employing various systems of “combination rules” to compute
the overall probabilities of literals whose probability values are multiply assigned. The study of combination rules
is quite complex, and so we avoid it here for simplicity. 2

Condition 3

[No probabilities assigned outside of dynamic range]
If Π contains a random selection rule

[ r ] random(a(t) : {Y : p(Y )}) ← B1·
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along with probability atom

prr (a(t) = y |c B2) = v ·
then no possible world W of Π satisfies B1 and B2 and not intervene(a(t)) but fails to satisfy p(y). 2

The condition ensures that probabilities are only assigned to logically possible outcomes of random selections. It
immediately follows from the intuitive reading of statements (3) and (6).

To better understand the intuition behind our definition of probabilistic measure it may be useful to consider an
intelligent agent in the process of constructing his possible worlds. Suppose he has already constructed a part V
of a (not yet completely constructed) possible world W , and suppose that V satisfies the precondition of some
random selection rule r . The agent can continue his construction by considering a random experiment associated
with r . If y is a possible outcome of this experiment then the agent may continue his construction by adding the
atom a(t) = y to V . To define the probabilistic measure µ of the possible world W under construction, we need
to know the likelihood of y being the outcome of r , which we will call the causal probability of the atom a(t) = y
in W . This information can be obtained from a pr-atom prr (a(t) = y) = v of our program or computed using the
principle of indifference. In the latter case we need to consider the collection R of possible outcomes of experiment
r . For example if y ∈ R, there is no probability atom assigning probability to outcomes of R, and |R| = n , then
the causal probability of a(t = y) in W will be 1/n .

Let v be the causal probability of a(t) = y . The atom a(t) = y may be dependent, in the usual probabilistic
sense, with other atoms already present in the construction. However v is not read as the probability of a(t) = y ,
but the probability that, given what the agent knows about the possible world at this point in the construction, the
experiment determining the value of a(t) will have a certain result. Our assumption is that these experiments are
independent, and hence it makes sense that v will have a multiplicative effect on the probability of the possible
world under construction. (This approach should be familiar to those accustomed to working with Bayesian nets.)
This intuition will be captured by the following definitions.

Definition 2

[Possible outcomes]
Let W be a consistent set of literals of Σ, Π be a P-log program, a be an attribute, and y belong to the range of a .
We say that the atom a(t) = y is possible in W with respect to Π if Π contains a random selection rule r for a(t),
where if r is of the form (3) then p(y) ∈ W and W satisfies B , and if r is of the form (5) then W satisfies B . We
also say that y is a possible outcome of a(t) in W with respect to Π via rule r , and that r is a generating rule for
the atom a(t) = y . 2

Recall that, based on our convention, if the range of a is boolean then we can just say that a(t) and ¬a(t) are
possible in W . (Note that by Condition 1, if W is a possible world of Π then each atom possible in W has exactly
one generating rule.)

Note that, as discussed above, there is some subtlety here because we are describing a(t) = y as possible, though
not necessarily true, with respect to a particular set of literals and program Π.

For every W ∈ Ω(Π) and every atom a(t) = y possible in W we will define the corresponding causal probability
P(W , a(t) = y). Whenever possible, the probability of an atom a(t) = y will be directly assigned by pr-atoms
of the program and denoted by PA(W , a(t) = y). To define probabilities of the remaining atoms we assume that
by default, all values of a given attribute which are not assigned a probability are equally likely. Their probabilities
will be denoted by PD(W , a(t) = y). (PA stands for assigned probability and PD stands for default probability).

For each atom a(t) = y possible in W :

1. Assigned probability:
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If Π contains prr (a(t) = y |c B) = v where r is the generating rule of a(t) = y , B ⊆ W , and W does not
contain intervene(a(t)), then

PA(W , a(t) = y) = v

2. Default probability:
For any set S , let |S | denote the cardinality of S . Let Aa(t)(W ) = {y | PA(W , a(t) = y) is defined}, and
a(t) = y be possible in W such that y 6∈ Aa(t)(W ). Then let

αa(t)(W ) =
∑

y∈A
a(t)(W )

PA(W , a(t) = y)

βa(t)(W ) = |{y : a(t) = y is possible in W and y 6∈ Aa(t)(W )}|

PD(W , a(t) = y) =
1− αa(t)(W )

βa(t)(W )

3. Finally, the causal probability P(W , a(t) = y) of a(t) = y in W is defined by:

P(W , a(t) = y) =

{
PA(W , a(t) = y) if y ∈ Aa(t)(W )
PD(W , a(t) = y) otherwise·

Example 8

[Dice example continued: P-log program T1]
Recall the P-log program T1 from Example 5. The program contains the following probabilistic information:

pr(roll(d1) = i |c owner(d1) = mike) = 3/20, for each i such that 1 ≤ i ≤ 5·
pr(roll(d1) = 6 |c owner(d1) = mike) = 1/4·
pr(roll(d2) = i |c owner(d2) = john) = 1/6, for each i such that 1 ≤ i ≤ 6·
We now consider a possible world

W = {owner(d1,mike), owner(d2, john), roll(d1, 6), roll(d2, 3), . . .}
of T1 and compute P(W , roll(di) = j ) for every die di and every possible score j .

According to the above definition, PA(W , roll(di) = j ) and P(W , roll(di) = j ) are defined for every random
atom (i.e. atom formed by a random attribute) roll(di) = j in W as follows:

P(W , roll(d1) = i) = PA(W , roll(d1) = i) = 3/20, for each i such that 1 ≤ i ≤ 5·
P(W , roll(d1) = 6) = PA(W , roll(d1) = 6) = 1/4·
P(W , roll(d2) = i) = PA(W , roll(d2) = i) = 1/6, for each i such that 1 ≤ i ≤ 6· 2

Example 9

[Dice example continued: P-log program T1·1]
In the previous example all random atoms of W were assigned probabilities. Let us now consider what will happen
if explicit probabilistic information is omitted. Let D3·1 be obtained from D3 by removing all probability atoms
except

pr(roll(D) = 6 |c owner(D) = mike) = 1/4.

Let T1·1 be the P-log program consisting of D1, D2 and D3·1 and let W be as in the previous example. Only the
atom roll(d1) = 6 will be given an assigned probability:

P(W , roll(d1) = 6) = PA(W , roll(d1) = 6) = 1/4.
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The remaining atoms receive the expected default probabilities:

P(W , roll(d1) = i) = PD(W , roll(d1) = i) = 3/20, for each i such that 1 ≤ i ≤ 5·
P(W , roll(d2) = i) = PD(W , roll(d2) = i) = 1/6, for each i such that 1 ≤ i ≤ 6· 2

Now we are ready to define the measure, µΠ, induced by the P-log program Π.

Definition 3

[Measure]

1. Let W be a possible world of Π. The unnormalized probability, µ̂Π(W ), of a possible world W induced by
Π is

µ̂Π(W ) =
∏

a(t,y)∈ W

P(W , a(t) = y)

where the product is taken over atoms for which P(W , a(t) = y) is defined.

2. Suppose Π is a P-log program having at least one possible world with nonzero unnormalized probability.
The measure, µΠ(W ), of a possible world W induced by Π is the unnormalized probability of W divided
by the sum of the unnormalized probabilities of all possible worlds of Π, i.e.,

µΠ(W ) =
µ̂Π(W )∑

Wi∈Ω µ̂Π(Wi)

When the program Π is clear from the context we may simply write µ̂ and µ instead of µ̂Π and µΠ respectively. 2

The unnormalized measure of a possible world W corresponds, from the standpoint of classical probability, to the
unconditional probability of W . Each random atom a(t) = y in W is thought of as the outcome of a random
experiment that takes place in the construction of W , and P(W , a(t) = y) is the probability of that experiment
having the result a(t) = y in W . The multiplication in the definition of unnormalized measure is justified by an
assumption that all experiments performed in the construction of W are independent. This is subtle because the
experiments themselves do not show up in W — only their results do, and the results may not be independent.3

Example 10

[Dice example continued: T1 and T1·1]
The measures of the possible worlds of Example 9 are given by

µ({roll(d1, 6), roll(d2, y), . . .}) = 1/24, for 1 ≤ y ≤ 6, and

µ({roll(d1, u), roll(d2, y), . . .}) = 1/40, for 1 ≤ u ≤ 5 and 1 ≤ y ≤ 6.

where only random atoms of each possible world are shown. 2

Now we are ready for our main definition.

3 For instance, in the upcoming Example 18, random attributes arsenic and death respectively reflect whether or not a given rat eats arsenic,
and whether or not it dies. In that example, death and arsenic are clearly dependent. However, we assume that the factors which determine
whether a poisoning will lead to death (such as the rat’s constitution, and the strength of the poison) are independent of the factors which
determine whether poisoning occurred in the first place.



Probabilistic reasoning with answer sets 17

Definition 4

[Probability]
Suppose Π is a P-log program having at least one possible world with nonzero unnormalized probability. The
probability, PΠ(E ), of a set E of possible worlds of program Π is the sum of the measures of the possible worlds
from E , i.e.

PΠ(E ) =
∑

W∈E

µΠ(W )·

2

When Π is clear from the context we may simply write P instead of PΠ.

The function PΠ is not always defined, since not every syntactically correct P-log program satisfies the condition
of having at least one possible world with nonzero unnormalized measure. Consider for instance a program Π
consisting of facts
p(a)·
¬p(a)·
The program has no answer sets at all, and hence here PΠ is not defined. The following proposition, however,
says that when PΠ is defined, it satisfies the Kolmogorov axioms of probability. This justifies our use of the term
“probability” for the function PΠ. The proposition follows straightforwardly from the definition.

Proposition 1

[Kolmogorov Axioms]
For a P-log program Π for which the function PΠ is defined we have

1. For any set E of possible worlds of Π, PΠ(E ) ≥ 0.

2. If Ω is the set of all possible worlds of Π then PΠ(Ω) = 1.

3. For any disjoint subsets E1 and E2 of possible worlds of Π, PΠ(E1 ∪ E2) = PΠ(E1) + PΠ(E2). 2

In logic-based probability theory a set E of possible worlds is often represented by a propositional formula F such
that W ∈ E iff W is a model of F . In this case the probability function may be defined on propositions as

P(F ) =def P({W : W is a model of F}).
The value of P(F ) is interpreted as the degree of reasoner’s belief in F . A similar idea can be used in our frame-
work. But since the connectives of Answer Set Prolog are different from those of Propositional Logic the notion
of propositional formula will be replaced by that of formula of Answer Set Prolog (ASP formula). In this paper we
limit our discussion to relatively simple class of ASP formulas which is sufficient for our purpose.

Definition 5

[ASP Formulas (syntax)]
For any signature Σ

• An extended literal of Σ is an ASP formula.

• if A and B are ASP formulas then (A ∧ B) and (A or B) are ASP formulas. 2

For example, ((p ∧ not q ∧ ¬r) or (not r)) is an ASP formula but (not (not p)) is not. More general definition
of ASP formulas which allows the use of negations ¬ and not in front of arbitrary formulas can be found in
(Lifschitz et al. 2001).

Now we define the truth (W ` A) and falsity (W a A) of an ASP formula A with respect to a possible world W :
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Definition 6

[ASP Formulas (semantics)]

1. For any Σ-literal l , W ` l if l ∈ W ; W a l if l ∈ W .

2. For any extended Σ-literal not l , W ` not l if l 6∈ W ; W a not l if l ∈ W .

3. W ` (A1 ∧A2) if W ` A1 and W ` A2; W a (A1 ∧A2) if W a A1 or W a A2.

4. W ` (A1 or A2) if W ` A1 or W ` A2; W a (A1 or A2) if W a A1 and W a A2. 2

An ASP formula A which is neither true nor false in W is undefined in W . This introduces some subtlety. The
axioms of modern mathematical probability are viewed as axioms about measures on sets of possible worlds,
and as such are satisfied by P-log probability measures. However, since we are using a three-valued logic, some
classical consequences of the axioms for the probabilities of formulae fail to hold. Thus, all theorems of classical
probability theory can be applied in the context of P-log; but we must be careful how we interpret set operations in
terms of formulae. For example, note that formula (l or not l ) is true in every possible world W . However formula
(p or ¬p) is undefined in any possible world containing neither p nor ¬p. Thus if P is a P-log probability measure,
we will always have P(not l) = 1− P(l), but not necessarily P(¬l) = 1− P(l).

Consider for instance an ASP program P1 from the introduction. If we expand P1 by the appropriate declarations
we obtain a program Π1 of P-log. It’s only possible world is W0 = {p(a),¬p(b), q(c)}. Since neither p nor q are
random, its measure, µ(W0) is 1 (since the empty product is 1). However, since the truth value of p(c) or ¬p(c)
in W0 is undefined, PΠ1(p(c) or ¬p(c)) = 0. This is not surprising since W0 represents a possible set of beliefs
of the agent associated with Π1 in which p(c) is simply ignored. (Note that the probability of formula q(c) which
expresses this fact is properly equal to 1).

Let us now look at program Π2 obtained from Π1 by declaring p to be a random attribute. This time p(c) is not
ignored. Instead the agent considers two possibilities and constructs two complete4 possible worlds:
W1 = {p(a),¬p(b), p(c),¬q(c)} and
W2 = {p(a),¬p(b),¬p(c),¬q(c)}.
Obviously PΠ2(p(c) or ¬p(c)) = 1.

It is easy to check that if all possible worlds of a P-log program Π are complete then PΠ(l or ¬l) = 1. This is the
case for instance when Π contains no regular part, or when the regular part of Π consists of definitions of relations
p1, . . . , pn (where a definition of a relation p is a collection of rules which determines the truth value of atoms
built from p to be true or false in all possible worlds).

Now the definition of probability can be expanded to ASP formulas.

Definition 7

[Probability of Formulas]
The probability with respect to program Π of a formula A, PΠ(A), is the sum of the measures of the possible
worlds of Π in which A is true, i.e.

PΠ(A) =
∑

W`A
µΠ(W )·

2

As usual when convenient we omit Π and simply write P instead of PΠ.

4 A possible world W of program Π is called complete if for any ground atom a from the signature of Π, a ∈ W or ¬a ∈ W .
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Example 11

[Dice example continued]
Let T1 be the program from Example 5. Then, using the measures computed in Example 10 and the definition of
probability we have, say

PT1(roll(d1) = 6) = 6 ∗ (1/24) = 1/4.
PT1(roll(d1) = 6 ∧ even(d2)) = 3 ∗ (1/24) = 1/8. 2

Example 12

[Causal probability equal to 1]
Consider the P-log program Π0 consisting of:

a : boolean .
random a .
pr(a) = 1·
The translation of its logical part, τ(Π0), will consist of the following:

intervene(a) ← do(a).

intervene(a) ← do(¬a).

a or ¬a ← not intervene(a).

← obs(a),not a .

← obs(¬a),not ¬a .

a ← do(a).

¬a ← do(¬a).

τ(Π0) has two answer sets W1 = {a, . . .} and W2 = {¬a, . . .}. The probabilistic part of Π0 will lead to the
following probability assignments.

P(W1, a) = 1.
P(W1,¬a) = 0.
P(W2, a) = 1.
P(W2,¬a) = 0.

µ̂Π0(W1) = 1.
µ̂Π0(W2) = 0.
µΠ0(W1) = 1.
µΠ0(W2) = 0.

This gives us PΠ0(a) = 1. 2

Example 13

[Guns example continued]
Let Πg be the P-log program from Example 6. It is not difficult to check that the program has four possi-
ble worlds. All four contain {gun(1), gun(2), pull trigger(1), pull trigger(2)}. Suppose now that W1 contains
{fatal(1),¬fatal(2)}, W2 contains {¬fatal(1), fatal(2)}, W3 contains {fatal(1), fatal(2)}, and W4 contains
{¬fatal(1),¬fatal(2)}. The first three worlds contain is dead , the last one contains ¬is dead . Then



20 C. Baral, M. Gelfond and N. Rushton

µΠg (W1) = 1/6 ∗ 5/6 = 5/36.
µΠg (W2) = 5/6 ∗ 1/6 = 5/36.
µΠg

(W3) = 1/6 ∗ 1/6 = 1/36.
µΠg

(W4) = 5/6 ∗ 5/6 = 25/36.

and hence

PΠg (is dead) = 11/36. 2

As expected, this is exactly the intuitive answer from Example 6. A similar argument can be used to compute
probability of rigged from Example 7.

Even if PΠ satisfies the Kolmogorov axioms it may still contain questionable probabilistic information. For in-
stance a program containing statements pr(p) = 1 and pr(¬p) = 1 does not seem to have a clear intuitive
meaning. The next definition is meant to capture the class of programs which are logically and probabilistically
coherent.

Definition 8

[Program Coherency]
Let Π be a P-log program and Π′ be obtained from Π by removing all observations and actions. Π is said to be
consistent if Π has at least one possible world.

We will say that a consistent program Π is coherent if

• PΠ is defined.

• For every selection rule r with the premise K and every probability atom prr (a(t) = y |c B) = v of Π, if
PΠ′(B ∪K ) is not equal to 0 then PΠ′∪obs(B)∪obs(K )(a(t) = y) = v . 2

Coherency intuitively says that causal probabilities entail corresponding conditional probabilities. We now give
two examples of programs whose probability functions are defined, but which are not coherent.

Example 14

Consider the programs Π5:

a : boolean .
random a .
a·
pr(a) = 1/2·
and Π6:

a : {0, 1, 2}.
random a .
pr(a = 0) = pr(a = 1) = pr(a = 2) = 1/2·
Neither program is coherent. Π5 has one possible world W = {a}. We have µ̂Π5(W ) = 1/2, µΠ5(W ) = 1, and
PΠ5(a) = 1. Since pr(a) = 1/2, Π5 violates condition (2) of coherency.

Π6 has three possible worlds, {a = 0}, {a = 1}, and {a = 2} each with unnormalized probability 1/2. Hence
PΠ6(a = 0) = 1/3, which is different from pr(a = 0) which is 1/2; thus making Π6 incoherent. 2

The following two propositions give conditions on the probability atoms of a P-log program which are necessary
for its coherency.
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Proposition 2

Let Π be a coherent P-log program without any observations or actions, and a(t) be an attribute term from the
signature of Π. Suppose that Π contains a selection rule

[r ] random(a(t) : {X : p(X )}) ← B1·

and there is a subset c = {y1, . . . , yn} of the range of a(t) such that for every possible world W of Π satisfying
B1, we have {Y : W ` p(Y )} = {y1, . . . , yn}. Suppose also that for some fixed B2, Π contains probability
atoms of the form

prr (a(t) = yi |c B2) = pi ·
for all 1 ≤ i ≤ n . Then

PΠ(B1 ∧ B2) = 0 or
n∑

i=1

pi = 1

2

Proof: Let Π̂ = Π ∪ obs(B1) ∪ obs(B2) and let PΠ(B1 ∧ B2) 6= 0. From this, together with rule 12 from the
definition of the mapping τ from section 3.1, we have that Π̂ has a possible world with non-zero probability. Hence
by Proposition 1, PΠ̂ satisfies the Kolmogorov Axioms. By Condition 2 of coherency, we have PΠ̂(a(t) = yi) =
pi , for all 1 ≤ i ≤ n . By rule 12 of the definition of τ we have that every possible world of Π̂ satisfies B1.
This, together with rules 8, 10, and 11 from the same definition implies that every possible world of Π̂ contains
exactly one literal of the form a(t) = y where y ∈ c. Since PΠ̂ satisfies the Kolmogorov axioms we have that if
{F1, . . . ,Fn} is a set of literals exactly one of which is true in every possible world of Π̂ then

n∑

i=1

PΠ̂(Fi) = 1

This implies that
n∑

i=1

pi =
n∑

i=1

PΠ̂(a(t) = yi) = 1

The proof of the following is similar:

Proposition 3

Let Π be a coherent P-log program without any observations or actions, and a(t) be an attribute term from the
signature of Π. Suppose that Π contains a selection rule

[r ] random(a(t) : p) ← B1·

and there is a subset c = {y1, . . . , yn} of the range of a(t) such that for every possible world W of Π satisfying
B1, we have {Y : W ` p(Y )} = {y1, . . . , yn}. Suppose also that for some fixed B2, Π contains probability
atoms of the form

prr (a(t) = yi |c B2) = pi ·
for some 1 ≤ i ≤ n . Then

PΠ(B1 ∧ B2) = 0 or
n∑

i=1

pi ≤ 1

2
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4 Belief Update in P-log

In this section we address the problem of belief updating — the ability of an agent to change degrees of belief
defined by his current knowledge base. If T is a P-log program and U is a collection of statements such that
T ∪U is coherent we call U an update of T . Intuitively U is viewed as new information which can be added to an
existent knowledge base, T . Explicit representation of the agent’s beliefs allows for a natural treatment of belief
updates in P-log. The reasoner should simply add the new knowledge U to T and check that the result is coherent.
If it is then the new degrees of the reasoner’s beliefs are given by the function PT∪U . As mentioned before we plan
to expand our work on P-log with allowing its regular part be a program in CR-Prolog (Balduccini and Gelfond
2003) which has a much more liberal notion of consistency than Answer Set Prolog. The resulting language will
allow a substantially larger set of possible updates.

In what follows we compare and contrast different types of updates and investigate their relationship with the
updating mechanisms of more traditional Bayesian approaches.

4.1 P-log Updates and Conditional Probability

In Bayesian probability theory the notion of conditional probability is used as the primary mechanism for updating
beliefs in light of new information. If P is a probability measure (induced by a P-log program or otherwise), then
the conditional probability P(A|B) is defined as P(A ∧ B)/P(B), provided P(B) is not 0. Intuitively, P(A|B)
is understood as the probability of a formula A with respect to a background theory and a set B of all of the
agent’s additional observations of the world. The new evidence B simply eliminates the possible worlds which do
not satisfy B . To emulate this type of reasoning in P-log we first assume that the only formulas observable by the
agent are literals. (The restriction is needed to stay in the syntactic boundaries of our language. As mentioned in
Section 2 this restriction is not essential and can be eliminated by using a syntactically richer version of Answer
Set Prolog.) The next theorem gives a relationship between classical conditional probability and updates in P-log.
Recall that if B is a set of literals, adding the observation obs(B) to a program Π has the effect of removing all
possible worlds of Π which fail to satisfy B .

Proposition 4

[Conditional Probability in P-log]
For any coherent P-log program T , formula A, and a set of Σ-literals B such that PT (B) 6= 0,

PT∪obs(B)(A) = PT (A ∧ B)/PT (B)

In other words,

PT (A|B) = PT∪obs(B)(A)

2

Proof:

Let us order all possible worlds of T in such a way that
{w1 · · · wj} is the set of all possible worlds of T that contain both A and B ,
{w1 · · · wl} is the set of all possible worlds of T that contain B , and
{w1 · · · wn} is the set of all possible worlds of T .

Programs of Answer Set Prolog are monotonic with respect to constraints, i.e. for any program Π and a set of
constraints C , X is an answer set of Π ∪ C iff it is an answer set of P satisfying C . Hence the possible worlds of
T ∪ obs(B) will be all and only those of T that satisfy B . In what follows, we will write µ and µ̂ for µT and µ̂T ,
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respectively. Now, by the definition of probability in P-log, if PT (B) 6= 0, then

PT∪obs(B)(A) =
∑j

i=1 µ̂(wi)∑l
i=1 µ̂(wi)

Now if we divide both the numerator and denominator by the normalizing factor for T , we have
∑j

i=1 µ̂(wi)∑l
i=1 µ̂(wi)

=
∑j

i=1 µ̂(wi)/
∑n

i=1 µ̂(wi)∑l
i=1 µ̂(wi)/

∑n
i=1 µ̂(wi)

=
∑j

i=1 µ(wi)∑l
i=1 µ(wi)

=
PT (A ∧ B)

PT (B)

This completes the proof. 2

Example 15

[Dice example: upgrading the degree of belief]
Let us consider program T1 from Example 8 and a new observation even(d2). To see the influence of this new evi-
dence on the probability of d2 showing a 4 we can compute PT2(roll(d2) = 4) where T2 = T1∪{obs(even(d2))}.
Addition of the new observations eliminates those possible worlds of T1 in which the score of d2 is not even. T2

has 18 possible worlds. Three of them, containing roll(d1) = 6, have the unnormalized probabilities 1/24 each.
The unnormalized probability of every other possible world is 1/40. Their measures are respectively 1/12 and
1/20, and hence PT2(roll(d2) = 4) = 1/3. By Proposition 4 the same result can be obtained by computing
standard conditional probability PT1(roll(d2) = 4|even(d2)). 2

Now we consider a number of other types of P-log updates which will take us beyond the updating abilities of the
classical Bayesian approach. Let us start with an update of T by

B = {l1, . . . , ln}· (14)

where l ’s are literals.

To understand a substantial difference between updating Π by obs(l) and by a fact l one should consider the ASP
counterpart τ(Π) of Π. The first update correspond to expanding τ(Π) by the denial ← not l while the second
expands τ(Π) by the fact l . As discussed in Appendix III constraints and facts play different roles in the process
of forming agent’s beliefs about the world and hence one can expect that Π ∪ {obs(l)} and Π ∪ {l} may have
different possible worlds.

The following examples show that it is indeed the case.

Example 16

[Conditioning on obs(l) versus conditioning on l ]
Consider a P-log program T

p : {y1, y2}.
q : boolean .
random(p).
¬q ← not q , p = y1.
¬q ← p = y2.

It is easy to see that no possible world of T contains q and hence PT (q) = 0. Now consider the set B = {q , p =
y1} of literals. The program T ∪ obs(B) has no possible worlds, and hence the PT∪obs(B)(q) is undefined. In
contrast, T ∪ B has one possible world, {q , p = y1, . . .} and hence PT∪B (q) = 1. The update B allowed the
reasoner to change its degree of belief in q from 0 to 1, a thing impossible in the classical Bayesian framework. 2
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Note that since for T and B from Example 16 we have that PT (B) = 0, the classical conditional probability
of A given B is undefined. Hence from the standpoint of classical probability Example 16 may not look very
surprising. Perhaps somewhat more surprisingly, PT∪obs(B)(A) and PT∪B (A) may be different even when the
classical conditional probability of A given B is defined.

Example 17

[Conditioning on obs(l) versus conditioning on l ]
Consider a P-log program T

p : {y1, y2}.
q : boolean .
random(p).
q ← p = y1.
¬q ← not q .

It is not difficult to check that program T has two possible worlds, W1, containing {p = y1, q} and W2,
containing {p = y2,¬q}. Now consider an update T ∪ obs(q). It has one possible world, W1. Program
T ∪ {q} is however different. It has two possible worlds, W1 and W3 where W3 contains {p = y2, q};
µT∪{q}(W1) = µT∪{q}(W3) = 1/2. This implies that PT∪obs(q)(p = y1) = 1 while PT∪{q}(p = y1) = 1/2.
2

Note that in the above cases the new evidence contained a literal formed by an attribute, q , not explicitly defined as
random. Adding a fact a(t) = y to a program for which a(t) is random in some possible world will usually cause
the resulting program to be incoherent.

4.2 Updates Involving Actions

Now we discuss updating the agent’s knowledge by the effects of deliberate intervening actions, i.e. by a collection
of statements of the form

do(B) = {do(a(t) = y) : (a(t) = y) ∈ B} (15)

As before the update is simply added to the background theory. The results however are substantially different
from the previous updates. The next example illustrates the difference.

Example 18

[Rat Example]
Consider the following program, T , representing knowledge about whether a certain rat will eat arsenic today, and
whether it will die today.

arsenic, death : boolean·
[ 1 ] random(arsenic)·
[ 2 ] random(death)·
pr(arsenic) = 0 · 4·
pr(death |c arsenic) = 0 · 8·
pr(death |c ¬arsenic) = 0 · 01·
The above program tells us that the rat is more likely to die today if it eats arsenic. Not only that, the intuitive
semantics of the pr atoms expresses that the rat’s consumption of arsenic carries information about the cause of his
death (as opposed to, say, the rat’s death being informative about the causes of his eating arsenic).
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An intuitive consequence of this reading is that seeing the rat die raises our suspicion that it has eaten arsenic,
while killing the rat (say, with a pistol) does not affect our degree of belief that arsenic has been consumed. The
following computations show that the principle is reflected in the probabilities computed under our semantics.

The possible worlds of the above program, with their unnormalized probabilities, are as follows (we show only
arsenic and death literals):

w1 : {arsenic, death}· µ̂(w1) = 0 · 4 ∗ 0 · 8 = 0 · 32
w2 : {arsenic,¬death}· µ̂(w2) = 0 · 4 ∗ 0 · 2 = 0 · 08
w3 : {¬arsenic, death}· µ̂(w3) = 0 · 6 ∗ 0 · 01 = 0 · 06
w4 : {¬arsenic,¬death}· µ̂(w4) = 0 · 6 ∗ 0 · 99 = 0 · 54

Since the unnormalized probabilities add up to 1, the respective measures are the same as the unnormalized prob-
abilities. Hence,

PT (arsenic) = µ(w1) + µ(w3) = 0 · 32 + 0 · 08 = 0 · 4
To compute probability of arsenic after the observation of death we consider the program T1 = T∪{obs(death)}
The resulting program has two possible worlds, w1 and w3, with unnormalized probabilities as above. Normaliza-
tion yields

PT1(arsenic) = 0 · 32/(0 · 32 + 0 · 06) = 0 · 8421

Notice that the observation of death raised our degree of belief that the rat had eaten arsenic.

To compute the effect of do(death) on the agent’s belief in arsenic we augment the original program with the
literal do(death). The resulting program, T2, has two answer sets, w1 and w3. However, the action defeats the
randomness of death so that w1 has unnormalized probability 0 ·4 and w3 has unnormalized probability 0 ·6. These
sum to one so the measures are also 0 · 4 and 0 · 6 respectively, and we get

PT2(arsenic) = 0 · 4
Note this is identical to the initial probability PT (arsenic) computed above. In contrast to the case when the effect
(that is, death) was passively observed, deliberately bringing about the effect did not change our degree of belief
about the propositions relevant to the cause.

Propositions relevant to a cause, on the other hand, give equal evidence for the attendant effects whether they are
forced to happen or passively observed. For example, if we feed the rat arsenic, this increases its chance of death,
just as if we had observed the rat eating the arsenic on its own. The conditional probabilities computed under our
semantics bear this out. Similarly to the above, we can compute

PT (death) = 0 · 38
PT∪{do(arsenic)}(death) = 0 · 8
PT∪{obs(arsenic)}(death) = 0 · 8 2

Note that even though the idea of action based updates comes from Pearl, our treatment of actions is technically
different from his. In Pearl’s approach, the semantics of the do operator are given in terms of operations on graphs
(specifically, removing from the graph all directed links leading into the acted-upon variable). In our approach the
semantics of do are given by non-monotonic axioms (9) and (10) which are introduced by our semantics as part
of the translation of P-log programs into ASP. These axioms are triggered by the addition of do(a(t) = y) to the
program.
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4.3 More Complex Updates

Now we illustrate updating the agent’s knowledge by more complex regular rules and by probabilistic information.

Example 19

[Adding defined attributes]
In this example we show how updates can be used to expand the vocabulary of the original program. Consider for
instance a program T1 from the die example 5. An update, consisting of the rules

max score : boolean·
max score ← score(d1) = 6, score(d2) = 6.

introduces a new boolean attribute, max score, which holds iff both dice roll the max score. The probability of
max score is equal to the product of probabilities of score(d1) = 6 and score(d2) = 6. 2

Example 20

[Adding new rules]
Consider a P-log program T

d = {1, 2}.
p : d → boolean .
random(p(X )).

The program has four possible worlds: W1 = {p(1), p(2)}, W2 = {¬p(1), p(2)}, W3 = {p(1),¬p(2)}, W4 =
{¬p(1),¬p(2)}. It is easy to see that PT (p(1)) = 1/2. What would be the probability of p(1) if p(1) and p(2)
were mutually exclusive? To answer this question we can compute PT∪B (p(1)) where

B = {¬p(1) ← p(2); ¬p(2) ← p(1)}.

Since T ∪B has three possible worlds, W2,W3,W4, we have that PT∪B (p(1)) = 1/3. The new evidence forced
the reasoner to change the probability from 1/2 to 1/3. 2

The next example shows how a new update can force the reasoner to view a previously non-random attribute as
random.

Example 21

[Adding Randomness]
Consider T consisting of the rules:

a1, a2, a3 : boolean .
a1 ← a2·
a2 ← not ¬a2·
The program has one possible world, W = {a1, a2}.

Now let us update T by B of the form:

¬a2·
random(a1) ← ¬a2·
The new program, T ∪ B , has two possible worlds
W1 = {a1,¬a2} and
W2 = {¬a1,¬a2}
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The degree of belief in a1 changed from 1 to 1/2. 2

Example 22

[Adding Causal Probability]
Consider programs T1 consisting of the rules:

a : boolean .
random(a).

and T2 consisting of the rules:

a : boolean .
random(a).
pr(a) = 1/2.

The programs have the same possible worlds, W1 = {p} and W2 = {¬p}, and the same probability functions
assigning 1/2 to W1 and W2. The programs however behave differently under simple update U = {pr(a) = 1/3}.
The updated T1 simply assigns probability 1/3 and 2/3 to W1 and W2 respectively. In contrast the attempt to apply
the same update to T2 fails, since the resulting program violates Condition 2 from 3.2. This behavior may shed
some light on the principle of indifference. According to (Jr and Teng 2001) “One of the oddities of the principle of
indifference is that it yields the same sharp probabilities for a pair of alternatives about which we know nothing at
all as it does for the alternative outcomes of a toss of a thoroughly balanced and tested coin”. The former situation
is reflected in T1 where principle of indifference is used to assign default probabilities. The latter case is captured
by T2, where pr(a) = 1/2 is the result of some investigation. Correspondingly the update U of T1 is viewed as
simple additional knowledge - the result of study and testing. The same update to T2 contradicts the established
knowledge and requires revision of the program. 2

It is important to notice that an update in P-log cannot contradict original background information. An attempt to
add ¬a to a program containing a or to add pr(a) = 1/2 to a program containing pr(a) = 1/3 would result in
an incoherent program. It is possible to expand P-log to allow such new information (referred to as “revision” in
the literature) but the exact revision strategy seems to depend on particular situations. If the later information is
more trustworthy then one strategy is justified. If old and new information are “equally valid”, or the old one is
preferable then other strategies are needed. The classification of such revisions and development of the theory of
their effects is however beyond the scope of this paper.

5 Representing knowledge in P-log

This section describes several examples of the use of P-log for formalization of logical and probabilistic reasoning.
We do not claim that the problems are impossible to solve without P-log; indeed, with some intelligence and effort,
each of the examples could be treated using a number of different formal languages, or using no formal language
at all. The distinction claimed for the P-log solutions is that they arise directly from transcribing our knowledge
of the problem, in a form which bears a straightforward resemblance to a natural language description of the same
knowledge. The “straightforwardness” includes the fact that as additional knowledge is gained about a problem, it
can be represented by adding to the program, rather than by modifying existing code. All of the examples of this
section have been run on our P-log interpreter.
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5.1 Monty Hall problem

We start by solving the Monty Hall Problem, which gets its name from the TV game show hosted by Monty Hall
(we follow the description from http://www.io.com/∼kmellis/monty.html). A player is given the opportunity to
select one of three closed doors, behind one of which there is a prize. Behind the other two doors are empty rooms.
Once the player has made a selection, Monty is obligated to open one of the remaining closed doors which does
not contain the prize, showing that the room behind it is empty. He then asks the player if he would like to switch
his selection to the other unopened door, or stay with his original choice. Here is the problem: does it matter if he
switches?

The answer is YES. In fact switching doubles the player’s chance to win. This problem is quite interesting, be-
cause the answer is felt by most people — often including mathematicians — to be counter-intuitive. Most people
almost immediately come up with a (wrong) negative answer and are not easily persuaded that they made a mis-
take. We believe that part of the reason for the difficulty is some disconnect between modeling probabilistic and
non-probabilistic knowledge about the problem. In P-log this disconnect disappears which leads to a natural cor-
rect solution. In other words, the standard probability formalisms lack the ability to explicitly represent certain
non-probabilistic knowledge that is needed in solving this problem. In the absence of this knowledge, wrong con-
clusions are made. This example is meant to show how P-log can be used to avoid this problem by allowing us to
specify relevant knowledge explicitly. Technically this is done by using a random attribute open with the dynamic
range defined by regular logic programming rules.

The domain contains the set of three doors and three 0-arity attributes, selected , open and prize . This will be
represented by the following P-log declarations (the numbers are not part of the declaration; we number statements
so that we can refer back to them):

1 · doors = {1, 2, 3}·
2 · open, selected , prize : doors·
The regular part contains rules that state that Monty can open any door to a room which is not selected and which
does not contain the prize.

3 · ¬can open(D) ← selected = D ·
4 · ¬can open(D) ← prize = D ·
5 · can open(D) ← not ¬can open(D)·
The first two rules are self-explanatory. The last rule, which uses both classical and default negations, is a typical
ASP representation of the closed world assumption (Reiter 1978) — Monty can open any door except those which
are explicitly prohibited.

Assuming the player selects a door at random, the probabilistic information about the three attributes of doors can
be now expressed as follows:

6 · random(prize)·
7 · random(selected)·
8 · random(open : {X : can open(X )})·

Notice that rule (8) guarantees that Monty selects only those doors which can be opened according to rules (3)–(5).
The knowledge expressed by these rules (which can be extracted from the specification of the problem) is often
not explicitly represented in probabilistic formalisms leading to reasoners (who usually do not realize this) to insist
that their wrong answer is actually correct.

The P-Log program Πmonty0 consisting of the logical rules (1)-(8) represents our knowledge of the problem do-
main. It has the following 12 possible worlds:
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W1 = {selected = 1, prize = 1, open = 2, · · ·}.
W2 = {selected = 1, prize = 1, open = 3, · · ·}.
W3 = {selected = 1, prize = 2, open = 3, · · ·}.
W4 = {selected = 1, prize = 3, open = 2, · · ·}.
W5 = {selected = 2, prize = 1, open = 3, · · ·}.
W6 = {selected = 2, prize = 2, open = 1, · · ·}.
W7 = {selected = 2, prize = 2, open = 3, · · ·}.
W8 = {selected = 2, prize = 3, open = 1, · · ·}.
W9 = {selected = 3, prize = 1, open = 2, · · ·}.
W10 = {selected = 3, prize = 2, open = 1, · · ·}.
W11 = {selected = 3, prize = 3, open = 1, · · ·}.
W12 = {selected = 3, prize = 3, open = 2, · · ·}.

According to our definitions they will be assigned various probability measures. For instance, selected has three
possible values in each Wi , none of which has assigned probabilities. Hence, according to the definition of the
probability of an atom in a possible world from Section 3.2,

P(Wi , selected = j ) = 1/3

for each i and j . Similarly for prize

P(Wi , prize = j ) = 1/3

Consider W1. Since can open(1) 6∈ W1 the atom open = 1 is not possible in W1 and the corresponding prob-
ability P(W1, open = 1) is undefined. The only possible values of open in W1 are 2 and 3. Since they have no
assigned probabilities

P(W1, open = 2) = PD(W1, open = 2) = 1/2

P(W1, open = 3) = PD(W1, open = 3) = 1/2

Now consider W4. W4 contains can open(2) and no other can open atoms. Hence the only possible value of
open in W4 is 2, and therefore

P(W4, open = 2) = PD(W4, open = 2) = 1

The computations of other values of P(Wi , open = j ) are similar.

Now to proceed with the story, first let us eliminate an orthogonal problem of modeling time by assuming that we
observed that the player has already selected door 1, and Monty opened door 2 revealing that it did not contain the
prize. This is expressed as:

obs(selected = 1) · obs(open = 2) · obs(prize 6= 2)·
Let us refer to the above P-log program as Πmonty1. Because of the observations Πmonty1 has two possible worlds
W1, and W4: the first containing prize = 1 and the second containing prize = 3. It follows that

µ̂(W1) = P(W1, selected = 1)× P(W1, prize = 1)× P(W1, open = 2) = 1/18

µ̂(W4) = P(W1, selected = 1)× P(W1, prize = 3)× P(W1, open = 2) = 1/9

µ(W1) = 1/18
1/18+1/9 = 1/3

µ(W4) = 1/9
1/18+1/9 = 2/3

PΠmonty1(prize = 1) = µ(W1) = 1/3

PΠmonty1(prize = 3) = µ(W4) = 2/3
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Changing doors doubles the player’s chance to win.

Now consider a situation when the player assumes (either consciously or without consciously realizing it) that
Monty could have opened any one of the unopened doors (including one which contains the prize). Then the
corresponding program will have a new definition of can open . The rules (3–5) will be replaced by

¬can open(D) ← selected = D ·
can open(D) ← not ¬can open(D)·
The resulting program Πmonty2 will also have two possible worlds containing prize = 1 and prize = 3 respec-
tively, each with unnormalized probability of 1/18, and therefore PΠmonty2(prize = 1) = 1/2 and PΠmonty2(prize =
3) = 1/2. In that case changing the door will not increase the probability of getting the prize.

Program Πmonty1 has no explicit probabilistic information and so the possible results of each random selection are
assumed to be equally likely. If we learn, for example, that given a choice between opening doors 2 and 3, Monty
opens door 2 four times out of five, we can incorporate this information by the following statement:

9 · pr(open = 2 |c can open(2), can open(3)) = 4/5

A computation similar to the one above shows that changing doors still increases the players chances to win. Of
course none of the above computations need be carried out by hand. The interpreter will do them automatically.

In fact changing doors is advisable as long as each of the available doors can be opened with some positive
probability. Note that our interpreter cannot prove this general result even though it will give proper advice for any
fixed values of the probabilities.

The problem can of course be generalized to an arbitrary number n of doors simply by replacing rule (1) with
doors = {1, . . . ,n}.

5.2 Simpson’s paradox

Let us consider the following story from (Pearl 2000): A patient is thinking about trying an experimental drug and
decides to consult a doctor. The doctor has tables of the recovery rates that have been observed among males and
females, taking and not taking the drug.

Males:
fraction_of_population recovery_rate

drug 3/8 60%
-drug 1/8 70%

Females:

fraction_of_population recovery_rate

drug 1/8 20%
-drug 3/8 30%
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What should the doctor’s advice be? Assuming that the patient is a male, the doctor may attempt to reduce the
problem to checking the following inequality involving classical conditional probabilities:

P(recover |male,¬drug) < P(recover |male, drug) (16)

The corresponding probabilities, if directly calculated from the tables5, are 0 · 7 and 0 · 6. The inequality fails, and
hence the advice is not to take the drug. A similar argument shows that a female patient should not take the drug.

But what should the doctor do if he has forgotten to ask the patient’s sex? Following the same reasoning, the doctor
might check whether the following inequality is satisfied:

P(recover |¬drug) < P(recover |drug) (17)

This will lead to an unexpected result. P(recovery |drug) = 0 · 5 while P(recovery |¬drug) = 0 · 4. The drug
seems to be beneficial to patients of unknown sex — though similar reasoning has shown that the drug is harmful
to the patients of known sex, whether they are male or female!

This phenomenon is known as Simpson’s Paradox: conditioning on A may increase the probability of B among
the general population, while decreasing the probability of B in every subpopulation (or vice-versa). In the current
context, the important and perhaps surprising lesson is that classical conditional probabilities do not faithfully
formalize what we really want to know: what will happen if we do X? In (Pearl 2000) Pearl suggests a solution
to this problem in which the effect of deliberate action A on condition C is represented by P(C |do(A)) — a
quantity defined in terms of graphs describing causal relations between variables. Correct reasoning therefore
should be based on evaluating the inequality

P(recover |do(¬drug)) < P(recover |do(drug)) (18)

instead of (17); this is also what should have been done for (16).

To calculate (18) using Pearl’s approach one needs a causal model and it should be noted that multiple causal
models may be consistent with the same statistical data. P-log allows us to express causality and we can determine
the probability PΠ of a formula C given that action A is performed by computing PΠ∪{do(A)}(C ).

Using the tables and added assumption about the direction of causality6 between the variables, we have the values
of the following causal probabilities:

pr(male) = 0 · 5.
pr(recover |c male, drug) = 0 · 6.
pr(recover |c male,¬drug) = 0 · 7.
pr(recover |c ¬male, drug) = 0 · 2.
pr(recover |c ¬male,¬drug) = 0 · 3.
pr(drug |c male) = 0 · 75.
pr(drug |c ¬male) = ·25.

These statements, together with declarations:

male, recover , drug : boolean
[1] random(male).

5 If the tables are treated as giving probabilistic information, then we get the following: P(male) = P(¬male) = 0 · 5. P(drug) =
P(¬drug) = 0 · 5. P(recover | male, drug) = 0 · 6. P(recover | male,¬drug) = 0 · 7. P(recover | ¬male, drug) = 0 · 2.
P(recover | ¬male,¬drug) = 0 · 3. P(drug | male) = 0 · 75. P(drug | ¬male) = 0 · 25.

6 A different assumption about the direction of causality may lead to a different conclusion.
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[2] random(recover).
[3] random(drug).

constitute a P-log program, Π, that formalizes the story.

The program describes eight possible worlds containing various values of the attributes. Each of these worlds and
their unnormalized and normalized probabilities is calculated below.

W1 = {male, recover , drug}. µ̂(W1) = 0 · 5× 0 · 6× 0 · 75 = 0 · 225. µ(W1) = 0 · 225.
W2 = {male, recover ,¬drug}. µ̂(W2) = 0 · 5× 0 · 7× 0 · 75 = 0 · 2625. µ(W2) = 0 · 2625.
W3 = {male,¬recover , drug}. µ̂(W3) = 0 · 5× 0 · 4× 0 · 75 = 0 · 15. µ(W3) = 0 · 15.
W4 = {male,¬recover ,¬drug}. µ̂(W4) = 0 · 5× 0 · 3× 0 · 75 = 0 · 1125. µ(W4) = 0 · 1125.
W5 = {¬male, recover , drug}. µ̂(W5) = 0 · 5× 0 · 2× 0 · 25 = 0 · 025. µ(W5) = 0 · 025.
W6 = {¬male, recover ,¬drug}. µ̂(W6) = 0 · 5× 0 · 3× 0 · 35 = 0 · 0375. µ(W6) = 0 · 0375.
W7 = {¬male,¬recover , drug}. µ̂(W7) = 0 · 5× 0 · 8× 0 · 25 = 0 · 1. µ(W7) = 0 · 1.
W8 = {¬male,¬recover ,¬drug}. µ̂(W8) = 0 · 5× 0 · 7× 0 · 25 = 0 · 0875. µ(W8) = 0 · 0875.

Now let us compute PΠ1(recover) and PΠ2(recover) respectively, where Π1 = Π ∪ {do(drug)} and Π2 =
Π ∪ {do(¬drug)}.

The four possible worlds of Π1 and their unnormalized and normalized probabilities are as follows:

W ′
1 = {male, recover , drug}. µ̂(W ′

1) = 0 · 5× 0 · 6× 1 = 0 · 3. µ(W ′
1) = 0 · 3.

W ′
3 = {male,¬recover , drug}. µ̂(W ′

3) = 0 · 5× 0 · 4× 1 = 0 · 2. µ(W ′
3) = 0 · 2.

W ′
5 = {¬male, recover , drug}. µ̂(W ′

5) = 0 · 5× 0 · 2× 1 = 0 · 1. µ(W ′
5) = 0 · 1.

W ′
7 = {¬male,¬recover , drug}. µ̂(W ′

7) = 0 · 5× 0 · 8× 0 · 1 = 0 · 4. µ(W ′
7) = 0 · 4.

From the above we obtain PΠ1(recover) = ·4.

The four possible worlds of Π2 and their unnormalized and normalized probabilities are as follows:

W ′
2 = {male, recover ,¬drug}. µ̂(W ′

2) = 0 · 5× 0 · 7× 1 = 0 · 35. µ(W ′
2) = 0 · 35.

W ′
4 = {male,¬recover ,¬drug}. µ̂(W ′

4) = 0 · 5× 0 · 3× 1 = 0 · 15. µ(W ′
4) = 0 · 15.

W ′
6 = {¬male, recover ,¬drug}. µ̂(W ′

6) = 0 · 5× 0 · 3× 1 = 0 · 15. µ(W ′
6) = 0 · 15.

W ′
8 = {¬male,¬recover ,¬drug}. µ̂(W ′

8) = 0 · 5× 0 · 7× 1 = 0 · 35. µ(W ′
8) = 0 · 35.

From the above we obtain PΠ2(recover) = ·5. Hence, if one assumes the direction of causality that we assumed,
it is better not to take the drug than to take the drug.

Similar calculations also show the following:

PΠ∪{obs(male),do(drug)}(recover) = 0 · 6
PΠ∪{obs(male),do(¬drug)}(recover) = 0 · 7
PΠ∪{obs(¬male),do(drug)}(recover) = 0 · 2
PΠ∪{obs(¬male),do(¬drug)}(recover) = 0 · 3
I.e., if we know the person is male then it is better not to take the drug than to take the drug, the same if we know
the person is female, and both agree with the case when we do not know if the person is male or female.

The example shows that queries of the form “What will happen if we do X ?” can be easily stated and answered
in P-log. The necessary P-log reasoning is nonmonotonic and is based on rules (9) and (10) from the definition of
τ(Π).
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5.3 A Moving Robot

Now we consider a formalization of a problem whose original version, not containing probabilistic reasoning, first
appeared in (Iwan and Lakemeyer 2002).

There are rooms, say r0, r1, r2 reachable from the current position of a robot. The rooms can be open or closed. The
robot cannot open the doors. It is known that the robot navigation is usually successful. However, a malfunction
can cause the robot to go off course and enter any one of the open rooms.

We want to be able to use our formalization for correctly answering simple questions about the robot’s behavior
including the following scenario: the robot moved toward open room r1 but found itself in some other room. What
room can this be?

As usual we start with formalizing this knowledge. We need the initial and final moments of time, the rooms, and
the actions.

time = {0, 1} rooms = {r0, r1, r2}·
We will need actions:

go in : rooms → boolean·
break : boolean .

ab : boolean .

The first action consists of the robot attempting to enter the room R at time step 0. The second is an exogenous
breaking action which may occur at moment 0 and alter the outcome of this attempt. In what follows, (possibly
indexed) variables R will be used for rooms.

A state of the domain will be modeled by a time-dependent attribute, in , and a time independent attribute open .
(Time dependent attributes and relations are often referred to as fluents).

open : rooms → boolean·
in : time → rooms·
The description of dynamic behavior of the system will be given by the rules below:

First two rules state that the robot navigation is usually successful, and a malfunctioning robot constitutes an
exception to this default.

1. in(1) = R ← go in(R),not ab·
2. ab ← break ·
The random selection rule (3) below plays a role of a (non-deterministic) causal law. It says that a malfunctioning
robot can end up in any one of the open rooms.

3. [r ] random(in(1) : {R : open(R)}) ← go in(R), break ·
We also need inertia axioms for the fluent in .

4a. in(1) = R ← in(0) = R,not ¬in(1) = R·
4b. in(1) 6= R ← in(0) 6= R,not in(1) = R·
Finally, we assume that only closed doors will be specified in the initial situation. Otherwise doors are assumed to
be open.

5. open(R) ← not ¬open(R)·
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The resulting program, Π0, completes the first stage of our formalization. The program will be used in conjunction
with a collection X of atoms of the form in(0) = R, ¬open(R), go in(R), break which satisfies the following
conditions: X contains at most one atom of the form in(0) = R (robot cannot be in two rooms at the same time);
X has at most one atom of the form go in(R) (robot cannot move to more than one room); X does not contain a
pair of atoms of the form ¬open(R), go in(R) (robot does not attempt to enter a closed room); and X does not
contain a pair of atoms of the form ¬open(R), in(0) = R (robot cannot start in a closed room). A set X satisfying
these properties will be normally referred to as a valid input of Π0.

Given an input X1 = {go in(r0)} the program Π0 ∪ X1 will correctly conclude in(1) = r0. The input
X2 = {go in(r0), break} will result in three possible worlds containing in(1) = r0, in(1) = r1 and in(1) = r2
respectively. If, in addition, we are given ¬open(r2) the third possible world will disappear, etc.

Now let us expand Π0 by some useful probabilistic information. We can for instance consider Π1 obtained from
Π0 by adding:

8. prr (in(1) = R |c go in(R), break) = 1/2·
(Note that for any valid input X , Condition 3 of Section 3.2 is satisfied for Π1 ∪ X , since rooms are assumed to
be open by default and no valid input may contain ¬open(R) and go in(R) for any R.) Program T1 = Π1 ∪ X1

has the unique possible world which contains in(1) = r0. Hence, PT1(in(1) = r0) = 1.

Now consider T2 = Π1 ∪ X2. It has three possible worlds: W0 containing in(1) = r0, and W1,W2 containing
in(1) = r1 and in(1) = r2 respectively. PT2(W0) is assigned a probability of 1/2, while PT2(W1) = PT2(W2) =
1/4 by default. Therefore PT2(in(1) = r0) = 1/2. Here the addition of break to the knowledge base changed the
degree of reasoner’s belief in in(1) = r0 from 1 to 1/2. This is not possible in classical Bayesian updating, for
two reasons. First, the prior probability of break is 0 and hence it cannot be conditioned upon. Second, the prior
probability of in(1) = r0 is 1 and hence cannot be diminished by classical conditioning. To account for this change
in the classical framework requires the creation of a new probabilistic model. However, each model is a function
of the underlying background knowledge; and so P-log allows us to represent the change in the form of an update.

5.4 Bayesian squirrel

In this section we consider an example from (Hilborn and Mangel 1997) used to illustrate the notion of Bayesian
learning. One common type of learning problem consists of selecting from a set of models for a random phe-
nomenon by observing repeated occurrences of the phenomenon. The Bayesian approach to this problem is to
begin with a “prior density” on the set of candidate models and update it in light of our observations.

As an example, Hilborn and Mangel describe the Bayesian squirrel. The squirrel has hidden its acorns in one of
two patches, say Patch 1 and Patch 2, but can’t remember which. The squirrel is 80% certain the food is hidden in
Patch 1. Also, it knows there is a 20% chance of finding food per day when it looking in the right patch (and, of
course, a 0% probability if it’s looking in the wrong patch).

To represent this knowledge in P-log’s program Π we introduce sorts

patch = {p1, p2}.

day = {1 . . .n}.

(where n is some constant, say, 5)

and attributes

hidden in : patch .

found : patch ∗ day → boolean .
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look : day → patch .

Attribute hidden in is always random. Hence we include

[r1] random (hidden in).

found is random only if the squirrel is looking for food in the right patch, i.e. we have

[r2] random (found(P ,D)) ← hidden in = P , look(D) = P .

The regular part of the program consists of the closed world assumption for found :

¬found(P ,D) ← not found(P ,D).

Probabilistic information of the story is given by statements:

prr1(hidden in = p1) = 0 · 8.

prr2(found(P ,D)) = 0 · 2.

This knowledge, in conjunction with description of the squirrel’s activity, can be used to compute probabilities of
possible outcomes of the next search for food.

Consider for instance program Π1 = Π ∪ {do(look(1) = p1)}. The program has three possible worlds

W 1
1 = {look(1) = p1, hidden in = p1, found(p1, 1), . . .},

W 1
2 = {look(1) = p1, hidden in = p1,¬found(p1, 1), . . .},

W 1
3 = {look(1) = p1, hidden in = p2,¬found(p1, 1), . . .},

with probability measures µ(W1) = 0 · 16, µ(W2) = 0 · 64, µ(W3) = 0 · 2.

As expected

PΠ1(hidden in = p1) = 0 · 8, and

PΠ1(found(p1, 1)) = 0 · 16.

Suppose now that the squirrel failed to find its food during the first day, and decided to continue her search in the
first patch next morning.

The failure to find food in the first day should decrease the squirrel’s degree of belief that the food is hidden in
patch one, and consequently decreases her degree of belief that she will find food by looking in the first patch
again. This is reflected in the following computation:

Let Π2 = Π1 ∪ {obs(¬found(p1, 1)), do(look(2) = p1)}.

The possible worlds of Π2 are:

W 2
1 = W ∪ {hidden in = p1, look(2) = p1, found(p1, 2) . . .},

W 2
2 = W ∪ {hidden in = p1, look(2) = p1,¬found(p1, 2) . . .},

W 2
3 = W ∪ {hidden in = p2, look(2) = p1,¬found(p1, 2) . . .}.

where W = {look(1) = p1,¬found(p1, 1)}·
Their probability measures are

µ(W 2
1 ) = ·128/ · 84 = ·152, µ(W 2

2 ) = ·512/ · 84 = ·61, µ(W 2
3 ) = ·2/ · 84 = ·238.
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Consequently,

PΠ2(hidden in = p1) = 0 · 762, and PΠ2(found(p1, 2)) = 0 · 152, and so on.

After a number of unsuccessful attempts to find food in the first patch the squirrel can come to the conclusion that
food is probably hidden in the second patch and change her search strategy accordingly.

Notice that each new experiment changes the squirrel’s probabilistic model in a non-monotonic way. That is, the set
of possible worlds resulting from each successive experiment is not merely a subset of the possible worlds of the
previous model. The program however is changed only by the addition of new actions and observations. Distinctive
features of P-log such as the ability to represent observations and actions, as well as conditional randomness, play
an important role in allowing the squirrel to learn new probabilistic models from experience.

For comparison, let’s look at a classical Bayesian solution. If the squirrel has looked in patch 1 on day 1 and not
found food, the probability that the food is hidden in patch 1 can be computed as follows. First, by Bayes Theorem,

P(hidden = 1|¬found(p1, 1)) =
P(¬find(1)| hidden in = p1) ∗ P(hidden in = p1)

P(¬found(p1, 1))
The denominator can then be rewritten as follows:

P(¬find(1))

= P(¬found(p1, 1) ∪ hidden in = 1) + P(¬found(p1, 1) ∪ hidden in = p2)

= P(¬found(p1, 1)| hidden in = p1) ∗ P(hidden in = p1) + P(hidden in = p2)

= 0 · 8 ∗ 0 · 8 + 0 · 2
= 0 · 84

Substitution yields

P(hidden in = p1| ¬found(p1, 1)) = (0 · 8 ∗ 0 · 8)/0 · 84 = 0 · 762

Discussion

Note that the classical solution of this problem does not contain any formal mention of the action look(2) = p1.
We must keep this informal background knowledge in mind when constructing and using the model, but it does
not appear explicitly. To consider and compare distinct action sequences, for example, would require the use of
several intuitively related but formally unconnected models. In Causal Bayesian nets (or P-log), by contrast, the
corresponding programs may be written in terms of one another using the do-operator.

In this example we see that the use of the do-operator is not strictly necessary. Even if we were choosing between
sequences of actions, the job could be done by Bayes theorem, combined with our ability to juggle several intu-
itively related but formally distinct models. In fact, if we are very clever, Bayes Theorem itself is not necessary
— for we could use our intuition of the problem to construct a new probability space, implicitly based on the
knowledge we want to condition upon.

However, though not necessary, Bayes theorem is very useful — because it allows us to formalize subtle reasoning
within the model which would otherwise have to be performed in the informal process of creating the model(s).
Causal Bayesian nets carry this a step further by allowing us to formalize interventions in addition to observa-
tions, and P-log yet another step by allowing the formalization of logical knowledge about a problem or family of
problems. At each step in this hierarchy, part of the informal process of creating a model is replaced by a formal
computation.

As in this case, probabilistic models are often most easily described in terms of the conditional probabilities of
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effects given their causes. From the standpoint of traditional probability theory, these conditional probabilities are
viewed as constraints on the underlying probability space. In a learning problem like the one above, Bayes Theorem
can then be used to relate the probabilities we are given to those we want to know: namely, the probabilities of
evidence-given-models with the probabilities of models-given-evidence. This is typically done without describing
or even thinking about the underlying probability space, because the given conditional probabilities, together with
Bayes Theorem, tell us all we need to know. The use of Bayes Theorem in this manner is particular to problems
with a certain look and feel, which are loosely classified as “Bayesian learning problems”.

From the standpoint of P-log things are somewhat different. Here, all probabilities are defined with respect to
bodies of knowledge, which include models and evidence in the single vehicle of a P-log program. Within this
framework, Bayesian learning problems do not have such a distinctive quality. They are solved by writing down
what we know and issuing a query, just like any other problem. Since P-log probabilities satisfy the axioms of
probability, Bayes Theorem still applies and could be useful in calculating the P-log probabilities by hand. On the
other hand, it is possible and even natural to approach these problems in P-log without mentioning Bayes Theorem.
This would be awkward in ordinary mathematical probability, where the derivation of models from knowledge is
considerably less systematic.

5.5 Maneuvering the Space Shuttle

So far we have presented a number of small examples to illustrate various features of P-log. In this section we
outline our use of P-log for an industrial size application: diagnosing faults in the reactive control system (RCS) of
the Space Shuttle.

To put this work in the proper perspective we need to briefly describe the history of the project. The RCS actuates
the maneuvering of the shuttle. It consists of fuel and oxidizer tanks, valves, and other plumbing needed to provide
propellant to the shuttle’s maneuvering jets. It also includes electronic circuitry, both to control the valves in the
fuel lines, and to prepare the jets to receive firing commands. To perform a maneuver, Shuttle controllers (i.e.,
astronauts and/or mission controllers) must find a sequence of commands which delivers propellant from tanks to
a proper combination of jets.

Answer Set Programming (without probabilities) was successfully used to design and implement the decision
support system USA-Adviser (Balduccini et al. 2001; Balduccini et al. 2002), which, given information about
the desired maneuver and the current state of the system (including its known faults), finds a plan allowing the
controllers to achieve this task. In addition the USA-Advisor is capable of diagnosing an unexpected behavior of
the system. The success of the project hinged on Answer Set Prolog’s ability to describe controllers’ knowledge
about the system, the corresponding operational procedures, and a fair amount of commonsense knowledge. It also
depended on the existence of efficient ASP solvers.

The USA-Advisor is build on a detailed but straightforward model of the RCS. For instance, the hydraulic part of
the RCS can be viewed as a graph whose nodes are labeled by tanks containing propellant, jets, junctions of pipes,
etc. Arcs of the graph are labeled by valves which can be opened or closed by a collection of switches. The graph
is described by a collection of ASP atoms of the form connected(n1, v ,n2) (valve v labels the arc from n1 to
n2) and controls(s, v) (switch s controls valve v ). The description of the system may also contain a collection of
faults, e.g. a valve can be stuck, it can be leaking, or have a bad circuitry. Similar models exists for electrical part
of the RCS and for the connection between electrical and hydraulic parts. Overall, the system is rather complex, in
that it includes 12 tanks, 44 jets, 66 valves, 33 switches, and around 160 computer commands (computer-generated
signals).

In addition to simple description of the RCS, USA-Advisor contains knowledge of the system’s dynamic behavior.
For instance the axiom

¬faulty(C ) ← not may be faulty(C )·
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says that in the absence of evidence to the contrary, components of the RCS are assumed to be working properly
(Note that concise representation of this knowledge depends critically on the ability of ASP to represent defaults.)
the axioms

h(state(S , open),T + 1) ← occurs(flip(S ),T ),
h(state(S , closed),T ),
¬faulty(S )·

h(state(S , closed),T + 1) ← occurs(flip(S ),T ),
h(state(S , open),T ),
¬faulty(S )·

express the direct effect of an action of flipping switch S . Here state is a function symbol with the first parameter
ranging over switches and valves and the second ranging over their possible states; flip is a function symbol
whose parameter is of type switch. Predicate symbol h (holds) has the first parameters ranging over fluents and
the second one ranging over time-steps; two parameters of occur are of type action and time-step respectively.
Note that despite the presence of function symbols our typing guarantees finiteness of the Herbrand universe of the
program. The next axiom describes the connections between positions of switches and valves.

h(state(V ,P),T ) ← controls(S ,V ),
h(state(S ,P),T ),
¬fault(V , stuck)·

A recursive rule
h(pressurized(N2),T ) ← connected(N1,V ,N2),

h(pressurized(N1),T ),
h(state(V , open),T ),
¬fault(V , leaking)·

describes the relationship between the values of relation pressurized(N ) for neighboring nodes. (Node N is
pressurized if it is reached by a sufficient quantity of the propellant). These and other axioms, which are rooted
in a substantial body of research on actions and change, describe a comparatively complex effect of a simple flip
operation which propagates the pressure through the system.

The plan to execute a desired maneuver can be extracted by a simple procedural program from answer sets of
a program Πs ∪ PM , where Πs consists of the description of the RCS and its dynamic behavior, and PM is a
“planning module,” containing a statement of the goal (i.e., maneuver), and rules needed for ASP-based planning.
Similarly, the diagnosis can be extracted from answer sets of Πs ∪DM , where the diagnostic module DM contains
unexpected observations, together with axioms needed for the ASP diagnostics.

After the development of the original USA-Advisor, we learned that, as could be expected, some faults of the RCS
components are more likely than others, and, moreover, reasonable estimates of the probabilities of these faults can
be obtained and utilized for finding the most probable diagnosis of unexpected observations. Usually this is done
under the assumption that the number of multiple faults of the system is limited by some fixed bound.

P-log allowed us to write software for finding such diagnoses. First we needed to expand Πs by the corresponding
declarations including the statement

[r(C ,F )] random(fault(C ,F )) ← may be faulty(C )·
where may be fault(C ,F ) is a boolean attribute which is true if component C may (or may not) have a fault of
type F . The probabilistic information about faults is given by the pr -atoms, e.g.

prr(V ,stack)(fault(V , stuck)|c may be faulty(V )) = 0 · 0002·
etc. To create a probabilistic model of our system, the ASP diagnostic module finds components relevant to the
agent’s unexpected observations, and adds them to DM as a collection of atoms of the form may be faulty(c).
Each possible world of the resulting program (viz., P = Πs ∪DM ) uniquely corresponds to a possible explanation
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of the unexpected observation. The system finds possible worlds with maximum probability measure and returns
diagnoses defined by these worlds, where an “explanation” consists of all atoms of the form fault(c, f ) in a
given possible world. This system works very efficiently if we assume that maximum number, n , of faults in the
explanation does not exceed two (a practically realistic assumption for our task). If n equals 3 the computation
is substantially slower. There are two obvious ways to improve efficiency of the system: improve our prototype
implementation of P-log or reduce the number of possibly faulty components returned by the original diagnostic
program or both. We are currently working in both of these directions. It is of course important to realize that
the largest part of all these computations is not probabilistic and is performed by the ASP solvers, which are
themselves quite mature. However the conceptual blending of ASP with probabilities achieved by P-log allowed
us to successfully express our probabilistic knowledge, and to define the corresponding probabilistic model, which
was essential for the success of the project.

6 Proving Coherency of P-log Programs

In this section we state theorems which can be used to show the coherency of P-log programs. The proofs of the
theorems are given in an Appendix I. We begin by introducing terminology which makes it easier to state the
theorems.

6.1 Causally ordered programs

Let Π be a (ground) P-log program with signature Σ.

Definition 9

[Dependency relations]
Let l1 and l2 be literals of Σ. We say that

1. l1 is immediately dependent on l2, written as l1 ≤i l2, if there is a rule r of Π such that l1 occurs in the head
of r and l2 occurs in the r ’s body;

2. l1 depends on l2, written as l1 ≤ l2, if the pair 〈l1, l2〉 belongs to the reflexive transitive closure of relation
l1 ≤i l2;

3. An attribute term a1(t1) depends on an attribute term a2(t2) if there are literals l1 and l2 formed by a1(t1)
and a2(t2) respectively such that l1 depends on l2. 2

Example 23

[Dependency]
Let us consider a version of the Monty Hall program consisting of rules (1) – (9) from Subsection 5.1. Let us denote
it by Πmonty3. From rules (3) and (4) of this program we conclude that ¬can open(d) is immediately dependent
on prize = d and selected = d for every door d . By rule (5) we have that for every d ∈ doors , can open(d)
is immediately dependent on ¬can open(d). By rule (8), open = d1 is immediately dependent on can open(d2)
for any d1, d2 ∈ doors . Finally, according to (9), open = 2 is immediately dependent on can open(2) and
can open(3). Now it is easy to see that an attribute term open depends on itself and on attribute terms prize and
selected , while each of the latter two terms depends only on itself. 2
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Definition 10

[Leveling function]
A leveling function, | |, of Π maps attribute terms of Σ onto a set [0,n] of natural numbers. It is extended to other
syntactic entities over Σ as follows:

|a(t) = y | = |a(t) 6= y | = |not a(t) = y | = |not a(t) 6= y | = |a(t)|
We’ll often refer to |e| as the rank of e . Finally, if B is a set of expressions then |B | = max ({|e| : e ∈ B}). 2

Definition 11

[Strict probabilistic leveling and reasonable programs]
A leveling function | | of Π is called strict probabilistic if

1. no two random attribute terms of Σ have the same level under | | ;

2. for every random selection rule [r ] random(a(t) : {y : p(y)}) ← B of Π we have
|a(t) = y | ≤ |{p(y) : y ∈ range(a)} ∪ B |;

3. for every probability atom prr (a(t) = y |c B) of Π we have |a(t)| ≤ |B |;
4. if a1(t1) is a random attribute term, a2(t2) is a non-random attribute term, and a2(t2) depends on a1(t1)

then |a2(t2)| ≥ |a1(t1)|.

A P-log program Π which has a strict probabilistic leveling function is called reasonable. 2

Example 24

[Strict probabilistic leveling for Monty Hall]
Let us consider the program Πmonty3 from Example 23 and a leveling function

|prize| = 0
|selected | = 1
|can open(D)| = 1
|open| = 2

We claim that this leveling is a strict probabilistic levelling. Conditions (1)–(3) of the definition can be checked
directly. To check the last condition it is sufficient to notice that for every D the only random attribute terms on
which non-random attribute term can open(D) depends are selected and prize . 2

Let Π be a reasonable program with signature Σ and leveling | |, and let a1(t1), . . . , an(tn) be an ordering of its
random attribute terms induced by | |. By Li we denote the set of literals of Σ which do not depend on literals
formed by aj (tj ) where i ≤ j . Πi for 1 ≤ i ≤ n + 1 consists of all declarations of Π, along with the regular
rules, random selection rules, actions, and observations of Π such that every literal occurring in them belongs to
Li . We’ll often refer to Π1, . . . , Πn+1 as a | |-induced structure of Π.

Example 25

[Induced structure for Monty Hall]
To better understand this construction let us consider a leveling function | | from Example 24. It induces the
following ordering of random attributes of the corresponding program.

a1 = prize.
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a2 = selected .
a3 = open .

The corresponding languages are

L1 = ∅
L2 = {prize = d : d ∈ doors}
L3 = L2 ∪ {selected = d : d ∈ doors} ∪ {can open(d) : d ∈ doors} ∪ {¬can open(d) : d ∈ doors}
L4 = L3 ∪ {open = d : d ∈ doors}
Finally, the induced structure of the program is as follows (numbers refer to the numbered statements of Subsection
5.1.

Π1 = {1, 2}
Π2 = {1, 2, 6}
Π3 = {1, . . . , 7}
Π4 = {1, . . . , 8} 2

Before proceeding we introduce some terminology.

Definition 12

[Active attribute term]
If there is y such that a(t) = y is possible in W with respect to Π, we say that a(t) is active in W with respect to
Π. 2

Definition 13

[Causally ordered programs]
Let Π be a P-log program with a strict probabilistic leveling | | and let ai be the i th random attribute of Π with
respect to | |. We say that Π is causally ordered if

1. Π1 has exactly one possible world;

2. if W is a possible world of Πi and atom ai(t i) = y0 is possible in W with respect to Πi+1 then the program
W ∪Πi+1 ∪ obs(ai(t i) = y0) has exactly one possible world; and

3. if W is a possible world of Πi and ai(t i) is not active in W with respect to Πi+1 then the program W ∪Πi+1

has exactly one possible world. 2

Intuitively, a program is causally ordered if (1) all nondeterminism in the program results from random selections,
and (2) whenever a random selection is active in a given possible world, the possible outcomes of that selection
are not constrained in that possible world by logical rules or other random selections. The following is a simple
example of a program which is not causally ordered, because it violates the second condition. By comparison with
Example 12, it also illustrates the difference between the statements a and pr(a) = 1.

Example 26

[A non-causally ordered programs]
Consider the P-log program Π consisting of:

1 · a : boolean .
2 · random a .
3 · a·
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The only leveling function for this program is |a| = 0, hence L1 = ∅ while L2 = {a,¬a}; and Π1 = {1}
while Π2 = {1, 2, 3}. Obviously, Π1 has exactly one possible world, namely W1 = ∅. Both literals, a and ¬a are
possible in W1 with respect to Π2. However, W1 ∪Π2 ∪ obs(¬a) has no possible worlds, and hence the program
does not satisfy Condition 2 of the definition of causally ordered.

Now let us consider program Π′ consisting of rules (1) and (2) of Π and the rules

b ← not ¬b, a .
¬b ← not b, a .

The only strict probabilistic leveling function for this program maps a to 0 and b to 1. The resulting languages are
L1 = ∅ and L2 = {a,¬a, b,¬b}. Hence Π′1 = {1} and Π′2 = Π′. As before, W1 is empty and a and ¬a are both
possible in W1 with respect to Π′2. It is easy to see that program W1 ∪ Π′2 ∪ obs(a) has two possible worlds, one
containing b and another containing ¬b. Hence Condition 2 of the definition of causally ordered is again violated.

Finally, consider program Π′′ consisting of rules:

1 · a, b : boolean .
2 · random(a).
3 · random(b) ← a .
4 · ¬b ← ¬a .
5 · c ← ¬b.
6 · ¬c.

It is easy to check that c immediately depends on ¬b, which in turn immediately depends on a and ¬a . b im-
mediately depends on a . It follows that any strict probabilistic leveling function for this program will lead to the
ordering a, b of random attribute terms. Hence L1 = {¬c}, L2 = {¬c, a,¬a}, and L3 = L2 ∪ {b,¬b, c}. This
implies that Π′′1 = {1, 6}, Π′′2 = {1, 2, 6}, and Π′′3 = {1, . . . , 6}. Now consider a possible world W = {¬c,¬a}
of Π′′2 . It is easy to see that the second random attribute, b, is not active in W with respect to Π′′3 , but W ∪Π′′3 has
no possible world. This violates Condition 3 of causally ordered.

Note that all the above programs are consistent. A program whose regular part consists of the rule p ← not p
is neither causally ordered nor consistent. Similarly, the program obtained from Π above by adding the atom
pr(a) = 1/2 is neither causally ordered nor consistent. 2

Example 27

[Monty Hall program is causally ordered]
We now show that the Monty Hall program Πmonty3 is causally ordered. We use the strict probabilistic leveling
and induced structure from the Examples 24 and 25. Obviously, Π1 has one possible world W1 = ∅. The atoms
possible in W1 with respect to Π2 are prize = 1, prize = 2, prize = 3. So we must check Condition 2 from the
definition of causally ordered for every atom prize = d from this set. It is not difficult to show that the translation
τ(W1 ∪ Π2 ∪ obs(prize = d)) is equivalent to logic program consisting of the translation of declarations into
Answer Set Prolog along with the following rules:

prize(1) or prize(2) or prize(3).
¬prize(D1) ← prize(D2),D1 6= D2.
← obs(prize(1)),not prize(d).
obs(prize(d)).

where D1 and D2 range over the doors. Except for the possible occurrences of observations this program is equiv-
alent to
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¬prize(D1) ← prize(D2),D1 6= D2.
prize(d).

which has a unique answer set of the form

{prize(d),¬prize(d1),¬prize(d2)} (19)

(where d1 and d2 are the other two doors besides d ). Now let W2 be an arbitrary possible world of Π2, and l be an
atom possible in W2 with respect to Π3. To verify Condition 2 of the definition of causally ordered for i = 2, we
must show that W2 ∪ Π2 ∪ obs(l) has exactly one answer set. It is easy to see that W2 must be of the form (19),
and l must be of the form selected = d ′ for some door d ′.

Similarly to above, the translation of W2 ∪ Π3 ∪ obs(selected(d ′)) has the same answer sets (except for possible
occurrences of observations) as the program consisting of W2 along with the following rules:

selected(d ′).
¬selected(D1) ← selected(D2),D1 6= D2.
¬can open(D) ← selected(D).
¬can open(D) ← prize(D).
can open ← not ¬can open(D).

If negated literals are treated as new predicate symbols we can view this program as stratified. Hence the program
obtained in this way has a unique answer set. This means that the above program has at most one answer set; but it
is easy to see it is consistent and so it has exactly one. It now follows that Condition 2 is satisfied for i = 2.

Checking Condition 2 for i = 3 is similar, and completes the proof. 2

“Causal ordering” is one of two conditions which together guarantee the coherency of a P-log program. Causal
ordering is a condition on the logical part of the program. The other condition — that the program must be “unitary”
— is a condition on the pr -atoms. It says that, basically, assigned probabilities, if any, must be given in a way that
permits the appropriate assigned and default probabilities to sum to 1. In order to define this notion precisely, and
state the main theorem of this section, we will need some terminology.

Let Π be a ground P-log program containing the random selection rule

[r ] random(a(t) : {Y : p(Y )}) ← K ·

We will refer to a ground pr-atom

prr (a(t) = y |c B) = v ·
as a pr-atom indexing r . We will refer to B as the body of the pr -atom. We will refer to v as the probability
assigned by the pr -atom.

Let W1 and W2 be possible worlds of Π satisfying K . We say that W1 and W2 are probabilistically equivalent
with respect to r if

1. for all y , p(y) ∈ W1 if and only if p(y) ∈ W2, and
2. For every pr -atom q indexing r , W1 satisfies the body of q if and only if W2 satisfies the body of q .

A scenario for r is an equivalence class of possible worlds of Π satisfying K , under probabilistic equivalence with
respect to r .

Example 28
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[Rat Example Revisited]
Consider the program from Example 18 involving the rat, and its possible worlds W1,W2,W3,W4. All four
possible worlds are probabilistically equivalent with respect to Rule [1]. With respect to Rule [2] W1 is equivalent
to W2, and W3 is equivalent to W4. Hence Rule [2] has two scenarios, {W1,W2} and {W3,W4}. 2

range(a(t), r , s) will denote the set of possible values of a(t) in the possible worlds belonging to scenario s of
rule r . This is well defined by (1) of the definition of probabilistic equivalence w.r.t. r . For example, in the rat
program, range(death, 2, {W1,W2}) = {true, false}.

Let s be a scenario of rule r . A pr -atom q indexing r is said to be active in s if every possible world of s satisfies
the body of q .

For a random selection rule r and scenario s of r , let atr (s) denote the set of probability atoms which are active
in s . For example, at2({W1,W2}) is the singleton set {pr(death |c arsenic) = 0 · 8}.

Definition 14

[Unitary Rule]
Rule r is unitary in Π, or simply unitary , if for every scenario s of r , one of the following conditions holds:

1. For every y in range(a(t), r , s), atr (s) contains a pr -atom of the form prr (a(t) = y |c B) = v , and
moreover the sum of the values of the probabilities assigned by members of atr (s) is 1; or

2. There is a y in range(a(t), r , s) such that atr (s) contains no pr -atom of the form prr (a(t) = y |c B) = v ,
and the sum of the probabilities assigned by the members of atr (s) is less than or equal to 1. 2

Definition 15

[Unitary Program]
A P-log program is unitary if each of its random selection rules is unitary. 2

Example 29

[Rat Example Revisited]
Consider again Example 18 involving the rat. There is clearly only one scenario, s1, for the Rule
[ 1 ] random(arsenic), which consists of all possible worlds of the program. at1(s1) consists of the single pr -
atom pr(arsenic) = 0 · 4. Hence the scenario satisfies Condition 2 of the definition of unitary.

We next consider the selection rule [ 2 ]random(death)· There are two scenarios for this rule: sarsenic , consisting
of possible worlds satisfying arsenic, and its complement snoarsenic . Condition 2 of the definition of unitary is
satisfied for each element of the partition. 2

We are now ready to state the main theorem of this section, the proof of which will be given in Appendix I.

Theorem 1

[Sufficient Conditions for Coherency]
Every causally ordered, unitary P-log program is coherent. 2

Using the above examples one can easily check that the rat, Monty Hall, and Simpson’s examples are causally
ordered and unitary, and therefore coherent.
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For the final result of this section, we give a result that P-log can represent the probability distribution of any finite
set of random variables each taking finitely many values in a classical probability space.

Theorem 2

[Embedding Probability Distributions in P-log]
Let x1, . . . , xn be a nonempty vector of random variables, under a classical probability P , taking finitely many
values each. Let Ri be the set of possible values of each xi , and assume Ri is nonempty for each i . Then there
exists a coherent P-log program Π with random attributes x1, . . . , xn such that for every vector r1, . . . , rn from
R1 × · · ×Rn , we have

P(x1 = r1, . . . , xn = rn) = PΠ(x1 = r1, . . . , xn = rn) (20)

2

The proof of this theorem appears in Appendix I. It is a corollary of this theorem that if B is a finite Bayesian
network, each of whose nodes is associated with a random variable taking finitely many possible values, then there
is a P-log program which represents the same probability distribution as B . This by itself is not surprising, and
could be shown trivially by considering a single random attribute whose values range over possible states of a
given Bayes net. Our proof, however, shows something more – namely, that the construction of the P-log program
corresponds straightforwardly to the graphical structure of the network, along with the conditional densities of its
variables given their parents in the network. Hence any Bayes net can be represented by a P-log program which is
“syntactically isomorphic” to the network, and preserves the intuitions present in the network representation.

7 Relation with other work

As we mention in the first sentence of this paper, the motivation behind developing P-log is to have a knowledge
representation language that allows natural and elaboration tolerant representation of common-sense knowledge
involving logic and probabilities. While some of the other probabilistic logic programming languages such as
(Poole 1993; Poole 2000) and (Vennekens et al. 2004; Vennekens 2007) have similar goals, many other probabilistic
logic programming languages have “statistical relational learning (SRL)” (Getoor et al. 2007) as one of their main
goals and as a result they perhaps consciously sacrifice on the knowledge representation dimensions. In this section
we describe the approaches in (Poole 1993; Poole 2000) and (Vennekens et al. 2004; Vennekens 2007) and compare
them with P-log. We also survey many other works on probabilistic logic programming, including the ones that
have SRL as one of their main goals, and relate them to P-log from the perspective of representation and reasoning.

7.1 Relation with Poole’s work

Our approach in this paper has a lot of similarity (and many differences) with the works of Poole (Poole 1993;
Poole 2000). To give a somewhat detailed comparison, we start with some of the definitions from (Poole 1993).

7.1.1 Overview of Poole’s probabilistic Horn abduction

In Poole’s probabilistic Horn abduction (PHA), disjoint declarations are an important component. We start with
their definition. (In our adaptation of the original definitions we consider the grounding of the theory, so as to make
it simpler.)
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Definition 16

Disjoint declarations are of the form disjoint([h1 : p1 ; . . . ; hn : pn ]), where his are different ground atoms –
referred to as hypotheses or assumables, pis are real numbers and p1 + . . . + pn = 1. 2

We now define a PHA theory.

Definition 17

A probabilistic Horn abduction (PHA) theory is a collection of definite clauses and disjoint declarations such that
no atom occurs in two disjoint declarations. 2

Given a PHA theory T , the facts of T , denoted by FT consists of

• the collection of definite clauses in T , and
• for every disjoint declarations D in T , and for every hi and hj , i 6= j in D , integrity constraints of the form:
← hi , hj .

The hypotheses of T , denoted by HT , is the set of hi occurring in disjoint declarations of T .

The prior probability of T is denoted by PT and is a function HT → [0, 1] defined such that PT (hi) = pi

whenever hi : pi is in a disjoint declaration of T . Based on this prior probability and the assumption, denoted by
(Hyp-independent), that hypotheses that are consistent with FT are (probabilistically) independent of each other,
we have the following definition of the joint probability of a set of hypotheses.

Definition 18

Let {h1, . . . , hk} be a set of hypotheses where each hi is from a disjoint declaration. Then, their joint probability
is given by PT (h1)× . . .× PT (hk ). 2

Poole (Poole 1993) makes the following additional assumptions about FT and HT :

1. (Hyp-not-head) There are no rules in FT whose head is a member of HT . (i.e., hypotheses do not appear in
the head of rules.)

2. (Acyclic-definite) FT is acyclic.
3. (Completion-cond) The semantics of FT is given via its Clark’s completion.
4. (Body-not-overlap) The bodies of the rules in FT for an atom are mutually exclusive. (i.e., if we have

a ← Bi and a ← Bj in FT , where i 6= j , then Bi and Bj can not be true at the same time.)

Poole presents his rationale behind the above assumptions, which he says makes the language weak. His rationale
is based on his goal to develop a simple extension of Pure Prolog (definite logic programs) with Clark’s completion
based semantics, that allows interpreting the number in the hypotheses as probabilities. Thus he restricts the syntax
to disallow any case that might make the above mentioned interpretation difficult.

We now define the notions of explanations and minimal explanations and use it to define the probability distribution
and conditional probabilities embedded in a PHA theory.

Definition 19

If g is a formula, an explanation of g from 〈FT ,HT 〉 is a subset D of HT such that FT ∪D |= g and FT ∪D has
a model.

A minimal explanation of g is an explanation of g such that no strict subset is an explanation of g 2
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Poole proves that under the above mentioned assumptions, if min expl(g ,T ) is the set of all minimal explanations
of g from 〈FT ,HT 〉 and Comp(T ) is the Clark’s completion of FT then

Comp(T ) |= (g ≡
∨

ei ∈ min expl(g,T)

ei)

Definition 20

For a formula g , its probability P with respect to a PHA theory T is defined as:

P(g) =
∑

ei ∈ min expl(g,T)

PT (ei)

2

Conditional probabilities are defined using the standard definition:

P(α|β) =
P(α ∧ β)

P(β)

We now relate his work with ours.

7.1.2 Poole’s PHA compared with P-log

• The disjoint declarations in PHA have some similarity with our random declarations. Following are some of
the main differences:

— (Disj1) The disjoint declarations assign probabilities to the hypothesis in that declaration. We use
probability atoms to specify probabilities, and our random declarations do not mention probabilities.

— (Disj2) Our random declarations have conditions. We also specify a range for the attributes. Both the
conditions and attributes use predicates that are defined using rules. The usefulness of this is evident
from the formulation of the Monty Hall problem where we use the random declaration
random(open : {X : can open(X )}).
The disjoint declarations of PHA theories do not have conditions and they do not specify ranges.

— (Disj3) While the hypotheses in disjoint declarations are arbitrary atoms, our random declarations are
about attributes.

• (Pr-atom-gen) Our specification of the probabilities using pr-atoms is more general than the probability
specified using disjoint declarations. For example, in specifying the probabilities of the dices we say:
pr(roll(D) = Y |c owner(D) = john) = 1/6.

• (CBN) We directly specify the conditional probabilities in causal Bayes nets, while in PHA only prior
probabilities are specified. Thus expressing a Bayes network is straightforward in P-log while in PHA it
would necessitate a transformation.

• (Body-not-overlap2) Since Poole’s PHA assumes that the definite rules with the same hypothesis in the head
have bodies that can not be true at the same time, many rules that can be directly written in our formalism
need to be transformed so as to satisfy the above mentioned condition on their bodies.

• (Gen) While Poole makes many a-priori restrictions on his rules, we follow the opposite approach and ini-
tially do not make any restrictions on our logical part. Thus we have an unrestricted logical knowledge
representation language (such as ASP or CR-Prolog) at our disposal. We define a semantic notion of consis-
tent P-log programs and give sufficiency conditions, more general than Poole’s restrictions, that guarantee
consistency.
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• (Obs-do) Unlike us, Poole does not distinguish between doing and observing.
• (Gen-upd) We consider very general updates, beyond an observation of a propositional fact or an action that

makes a propositional fact true.
• (Prob-def) Not all probability numbers need be explicitly given in P-log. It has a default mechanism to

implicitly assume certain probabilities that are not explicitly given. This often makes the representation
simpler.

• Our probability calculation is based on possible worlds, which is not the case in PHA, although Poole’s later
formulation of Independent Choice Logic (Poole 1997; Poole 2000) (ICL) uses possible worlds.

7.1.3 Poole’s ICL compared with P-log

Poole’s Independent Choice Logic (Poole 1997; Poole 2000) refines his PHA by replacing the set of disjoint
declarations by a choice space (where individual disjoint declarations are replaced by alternatives, and a hypothesis
in an individual disjoint declaration is replaced by an atomic choice), by replacing definite programs and their
Clark’s completion semantics by acyclic normal logic programs and their stable model semantics, by enumerating
the atomic choices across alternatives and defining possible worlds7 rather than using minimal explanation based
abduction, and in the process making fewer assumptions. In particular, the assumption Completion-cond is no
longer there, the assumption Body-not-overlap is only made in the context of being able to obtain the probability
of a formula g by adding the probabilities of its explanations, and the assumption Acyclic-definite is relaxed to
allow acyclic normal programs; while the assumptions Hyp-not-head and Hyp-independent remain in slightly
modified form by referring to atomic choices across alternatives rather than hypothesis across disjoint statements.
Nevertheless, most of the differences between PHA and P-log carry over to the differences between ICL and P-log.
In particular, all the differences mentioned in the previous section – with the exception of Body-not-overlap2 –
remain, modulo the change between the notion of hypothesis in PHA to the notion of atomic choices in ICL.

7.2 LPAD : Logic programming with annotated disjunctions

In recent work (Vennekens et al. 2004) Vennekens et al. have proposed the LPAD formalism. An LPAD program
consists of rules of the form:

(h1 : α1) ∨ . . . ∨ (hn : αn) ← b1, . . . , bm

where hi ’s are atoms, bis are atoms or atoms preceded by not, and αis are real numbers in the interval [0, 1], such
that

∑n
i=1 αi = 1.

An LPAD rule instance is of the form:

hi ← b1, . . . , bm .

The associated probability of the above rule instance is then said to be αi .

An instance of an LPAD program P is a (normal logic program) P ′ obtained as follows: for each rule in P exactly
one of its instance is included in P ′, and nothing else is in P ′. The associated probability of an instance P ′, denoted
by π(P ′), of an LPAD program is the product of the associated probability of each of its rules.

An LPAD program is said to be sound if each of its instances has a 2-valued well-founded model. Given an LPAD
program P , and a collection of atoms I , the probability assigned to I by P is given as follows:

7 Poole’s possible worlds are very similar to ours except that he explicitly assumes that the possible worlds whose core would be obtained by
the enumeration, can not be eliminated by the acyclic programs through constraints. We do not make such an assumption, allow elimination of
such cores, and if elimination of one or more (but not all) possible worlds happen then we use normalization to redistribute the probabilities.
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πP (I ) =
∑

P ′ is an instance of P and I is the well-founded model of P ′

π(P ′)

The probability of a formula φ assigned by an LPAD program P is then defined as:

πP (φ) =
∑

φ is satisfied by I

πP (I )

7.2.1 Relating LPAD with P-log

LPAD is richer in syntax than PHA or ICL in that its rules (corresponding to disjoint declarations in PHA and
a choice space in ICL) may have conditions. In that sense it is closer to the random declarations in P-log. Thus,
unlike PHA and ICLP, and similar to P-log, Bayes networks can be expressed in LPAD fairly directly. Nevertheless
LPAD has some significant differences with P-log, including the following:

• The goal of LPAD is to provide succinct representations for probability distributions. Our goals are broader,
viz, to combine probabilistic and logical reasoning. Consequently P-log is logically more expressive, for
example containing classical negation and the ability to represent defaults.

• The ranges of random selections in LPAD are taken directly from the heads of rules, and are therefore static.
The ranges of of selections in P-log are dynamic in the sense that they may be different in different possible
worlds. For example, consider the representation
random(open : {X : can open(X )}).
of the Monty Hall problem. It is not clear how the above can be succinctly expressed in LPAD.

7.3 Bayesian logic programming:

A Bayesian logic program (BLP) (Kersting and Raedt 2000) has two parts, a logical part and a set of conditional
probability tables. The logical part of the BLP consists of clauses (referred to as BLP clauses) of the form:

H | A1, . . . ,An

where H ,A1, . . . ,An are (Bayesian) atoms which can take a value from a given domain associated with the atom.
Following is an example of a BLP clause from (Kersting and Raedt 2000):

burglary(X ) | neighborhood(X ).

Its corresponding domain could be, for example, Dburglary = {yes,no}, and Dneighbourhood =
{bad , average, good}.

Each BLP clause has an associated conditional probability table (CPT). For example, the above clause may have
the following table:

neighborhood(X) burglary(X) burglary(X)
yes no

bad 0.6 0.4
average 0.4 0.6

good 0.3 0.7
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A ground BLP clause is similar to a ground logic programming rule. It is obtained by substituting variables with
ground terms from the Herbrand universe. If the ground version of a BLP program is acyclic, then a BLP can
be considered as representing a Bayes network with possibly infinite number of nodes. To deal with the situation
when the ground version of a BLP has multiple rules with the same atom in the head, the formalisms allows for
specification of combining rules that specify how a set of ground BLP rules (with the same ground atom in the
head) and their CPT can be combined to a single BLP rule and a single associated CPT.

The semantics of an acyclic BLP is thus given by the characterization of the corresponding Bayes net obtained as
described above.

7.3.1 Relating BLPs with P-log

The aim of BLPs is to enhance Bayes nets so as to overcome some of the limitations of Bayes nets such as
difficulties with representing relations. On the other hand like Bayes nets, BLPs are also concerned about statistical
relational learning. Hence the BLP research is less concerned with general knowledge representation than P-log is,
and this is the source of most of the differences in the two approaches. Among the resulting differences between
BLP and P-log are:

• In BLP every ground atoms represents a random variable. This is not the case in P-log.
• In BLP the values the atoms can take are fixed by their domain. This is not the case in P-log where through

the random declarations an attribute can have different domains under different conditions.
• Although the logical part of a BLP looks like a logic program (when one replaces | by the connective
←), its meaning is different from the meaning of the corresponding logic program. Each BLP clause is a
compact representation of multiple logical relationships with associated probabilities that are given using a
conditional probability table.

• In BLP one can specify a combining rule. We do not allow such specification.

The ALTERID language of (Breese 1990; Wellman et al. 1992) is similar to BLPs and has similar differences with
P-log.

7.3.2 Probabilistic knowledge bases

Bayesian logic programs mentioned in the previous subsections was inspired by the probabilistic knowledge bases
(PKBs) of (Ngo and Haddawy 1997). We now give a brief description of this formalism.

In this formalism each predicate represents a set of similar random variables. It is assumed that each predicate
has at least one attribute representing the value of random attributes made up of that predicate. For example, the
random variable Colour of a car C can be represented by a 2-ary predicate color(C ,Col), where the first position
takes the id of particular car, and the second indicates the color (say, blue, red, etc.) of the car C .

A probabilistic knowledge base consists of three parts:

• A set of probabilistic sentences of the form:
pr(A0 | A1, . . . ,An) = α, where Ais are atoms.

• A set of value integrity constraints of the form:
EXCLUSIVE (p, a1, . . . , an), where p is a predicate, and ais are values that can be taken by random vari-
ables made up of that predicate.

• A set of combining rules.
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The combining rules serve similar purpose as in Bayesian logic programs. Note that unlike Bayesian logic pro-
grams that have CPTs for each BLP clause, the probabilistic sentences in PKBs only have a single probability
associated with it. Thus the semantic characterization is much more complicated. Nevertheless the differences
between P-log and Bayesian logic programs also carry over to PKBs.

7.4 Stochastic logic programs

A Stochastic logic program (SLP) (Muggleton 1995) P is a collection of clauses of the form

p : A ← B1, . . . ,Bn

where p (referred to as the probability label) belongs to [0, 1], and A,B1, . . .Bn are atoms, with the requirements
that (a) A ← B1, . . . ,Bn is range restricted and (b) for each predicate symbol q in P , the probability labels for all
clauses with q in the head sum to 1.

The probability of an atom g with respect to an SLP P is obtained by summing the probability of the various
SLD-refutation of ← g with respect to P , where the probability of a refutation is computed by multiplying the
probability of various choices; and doing appropriate normalization. For example, if the first atom of a subgoal
← g ′ unifies with the head of stochastic clauses p1 : C1, . . ., pm : Cm , and the stochastic clause pi : Ci is
chosen for the refutation, then the probability of this choice is pi

p1+···+pm
.

7.4.1 Relating SLPs with P-log

SLPs, both as defined in the previous section and as in (Cussens 1999), are very different from P-log both in its
syntax and semantics.

• To start with, SLPs do not allow the ‘not’ operator, thus limiting the expressiveness of the logical part.
• In SLPs all ground atoms represent random variables. This is not the case in P-log.
• In SLPs probability computation is through computing probabilities of refutations, a top down approach. In

P-log it is based on the possible worlds, a bottom up approach.

The above differences also carry over to probabilistic constraint logic programs (Riezler 1998; Santos Costa et al.
2003) that generalize SLPs to Constraint logic programs (CLPs).

7.5 Probabilistic logic programming

The probabilistic logic programming formalisms in (Ng and Subrahmanian 1992; Ng and Subrahmanian 1994;
Dekhtyar and Dekhtyar 2004) and (Lukasiewicz 1998) take the representation of uncertainty to another level. In
these two approaches they are interested in classes of probability distributions and define inference methods for
checking if certain probability statements are true with respect to all the probability distributions under consider-
ation. To express classes of probability distributions, they use intervals where the intuitive meaning of p : [α, β]
is that the probability of p is in between α and β. We now discuss the two formalisms in (Ng and Subrahmanian
1992; Ng and Subrahmanian 1994; Dekhtyar and Dekhtyar 2004) and (Lukasiewicz 1998) in further detail. We
refer to the first one as NS-PLP (short for Ng-Subrahmanian probabilistic logic programming) and the second one
as L-PLP (short for Lukasiewicz probabilistic logic programming).
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7.5.1 NS-PLP

A simple NS-PLP program (Ng and Subrahmanian 1992; Ng and Subrahmanian 1994; Dekhtyar and Dekhtyar
2004) is a finite collection of p-clauses of the form

A0 : [α0, β0] ← A1 : [α1, β1], . . . ,An : [αn , βn ].

where A0,A1, . . . ,An are atoms, and [αi , βi ] ⊆ [0, 1]. Intuitively, the meaning of the above rule is that if the
probability of A1 is in the interval [α1, β1], ..., and the probability of An is in the interval [αn , βn ] then the
probability of A0 is in the interval [α0, β0].

The goal behind the semantic characterization of an NS-PLP program P is to obtain and express the set of (prob-
abilistic) p-interpretations (each of which maps possible worlds, which are subsets of the Herbrand Base, to a
number in [0,1]), Mod(P), that satisfy all the p-clauses in the program. Although initially it was thought that
Mod(P) could be computed through the iteration of a fixpoint operator, recently (Dekhtyar and Dekhtyar 2004)
shows that this is not the case and gives a more complicated way to compute Mod(P). In particular, (Dekhtyar and
Dekhtyar 2004) shows that for many NS-PLP programs, although its fixpoint, a mapping from the Herbrand base
to an interval in [0, 1], is defined, it does not represent the set of satisfying p-interpretations.

Ng and Subrahmanian (Ng and Subrahmanian 1994) consider more general NS-PLP programs where Ais are
‘basic formulas’ (which are conjunction or disjunction of atoms) and some of A1, . . . ,An are preceded by the
not operator. In presence of not they give a semantics inspired by the stable model semantics. But in this case an
NS-PLP program may have multiple stable formula functions, each of which map formulas to intervals in [0, 1].
While a single stable formula function can be considered as a representation of a set of p-interpretations, it is not
clear what a set of stable formula functions correspond to. Thus NS-PLP programs and their characterization is
very different from P-log and it is not clear if one is more expressive than the other.

7.5.2 L-PLP

An L-PLP program (Lukasiewicz 1998) is a finite set of L-PLP clauses of the form

(H | B)[c1, c2]

where H and B are conjunctive formulas and c1 ≤ c2.

Given a probability distribution Pr , an L-PLP clause of the above form is said to be in Pr if c1 ≤ Pr(H |B) ≤ c2.
Pr is said to be a model of an L-PLP program π if each clause in π is true in Pr . (H | B)[c1, c2] is said to
be a logical consequence of an L-PLP program π denoted by π |= (H | B)[c1, c2] if for all models Pr of π,
(H | B)[c1, c2] is in Pr . A notion of tight entailment, and correct answer to ground and non-ground queries of
the form ∃(H | B)[c1, c2] is then defined in (Lukasiewicz 1998). In recent papers Lukasiewicz and his colleagues
generalize L-PLPs in several ways and define many other notions of entailment.

In relation to NS-PLP programs, L-PLP programs have a single interval associated with an L-PLP clause and
an L-PLP clause can be thought of as a constraint on the corresponding conditional probability. Thus, although
‘logic’ is used in L-PLP programs and their characterization, it is not clear whether any of the ‘logical knowledge
representation’ benefits are present in L-PLP programs. For example, it does not seem that one can define the
values that a random variable can take, in a particular possible world, using an L-PLP program.

7.6 PRISM: Logic programs with distribution semantics

Sato in (Sato 1995) proposes the notion of “logic programs with distribution semantics,” which he refers to as
PRISM as a short form for “PRogramming In Statistical Modeling.” Sato starts with a possibly infinite collection
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of ground atoms, F , the set ΩF of all interpretations of F 8, and a completely additive probability measure PF

which quantifies the likelihood of interpretations. PF is defined on some fixed σ algebra of subsets of ΩF .

In Sato’s framework interpretations of F can be used in conjunction with a Horn logic program R, which contains
no rules whose heads unify with atoms from F . Sato’s logic program is a triple, Π = 〈F ,PF ,R〉. The semantics of
Π are given by a collection ΩΠ of possible worlds and the probability measure PΠ. A set M of ground atoms in the
language of Π belongs to ΩΠ iff M is a minimal Herbrand model of a logic program IF ∪R for some interpretation
IF of F . The completely additive probability measure of PΠ is defined as an extension of PF .

Given a specification of PF , the formalism provides a powerful tool for defining complex probability measures,
including those which can be described by Bayesian nets and Hidden Markov models. The emphasis of the original
work by Sato and other PRISM related research seems to be on the use of the formalism for design and investigation
of efficient algorithms for statistical learning. The goal is to use the pair DB = 〈F ,R〉 together with observations
of atoms from the language of DB to learn a suitable probability measure PF .

P-log and PRISM share a substantial number of common features. Both are declarative languages capable of
representing and reasoning with logical and probabilistic knowledge. In both cases logical part of the language is
rooted in logic programming. There are also substantial differences. PRISM seems to be primarily intended as “a
powerful tool for building complex statistical models” with emphasis of using these models for statistical learning.
As a result PRISM allows infinite possible worlds, and has the ability of learning statistical parameters embedded
in its inference mechanism. The goal of P-log designers was to develop a knowledge representation language
allowing natural, elaboration tolerant representation of commonsense knowledge involving logic and probabilities.
Infinite possible worlds and algorithms for statistical learning were not a priority. Instead the emphasis was on
greater logical power provided by Answer Set Prolog, on causal interpretation of probability, and on the ability to
perform and differentiate between various types of updates. In the near future we plan to use the PRISM ideas to
expand the semantics of P-log to allow infinite possible worlds. Our more distant plans include investigation of
possible adaptation of PRISM statistical learning algorithms to P-log.

7.7 Other approaches

So far we have discussed logic programming approaches to integrate logical and probabilistic reasoning. Besides
them, the paper (De Vos and Vermeir 2000) proposes a notion where the theory has two parts, a logic programming
part that can express preferences and a joint probability distribution. The probabilities are then used in determining
the priorities of the alternatives.

Besides the logic programming based approaches, there have been other approaches to combine logical and prob-
abilistic reasoning, such as probabilistic relational models (Koller 1999; Getoor et al. 2001), various probabilistic
first-order logics such as (Nilsson 1986; Bacchus 1990; Bacchus et al. 1996; Halpern 1990; Halpern 2003; Pasula
and Russell 2001; Poole 1993), approaches that assign a weight to first-order formulas (Paskin 2002; Richardson
and Domingos 2006) and first-order MDPs (Boutilier et al. 2001). In all these approaches the logic parts are not
quite rich from the ‘knowledge representation’ angle. To start with they use classical logic, which is monotonic
and hence has many drawbacks with respect to knowledge representation. A difference between first-order MDPs
and our approach is that actions, rewards and utilities are inherent part of the former; one may encode them in P-
log though. In the next subsection we summarize specific differences between these approaches (and all the other
approaches that we mentioned so far) and P-log.

8 By interpretation IF of F we mean an arbitrary subset of F . Atom A ∈ F is true in IF iff A ∈ IF .
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7.8 Summary

In summary, our focus in P-log has many broad differences with most of the earlier formalisms that have tried to
integrate logical and probabilistic knowledge. We now list some of the main issues.

• To the best of our knowledge P-log is the only probabilistic logic programming language which differentiates
between doing and observing, which is useful for reasoning about causal relations.

• P-log allows a relatively wide variety of updates compared with other approaches we surveyed.
• Only P-log allows logical reasoning to dynamically decide on the range of values that a random variable can

take.
• P-log is the only language surveyed which allows a programmer to write a program which represent the

logical aspects of a problem and its possible worlds, and add causal probabilistic information to this program
as it becomes relevant and available.

• Our formalism allows the explicit specification of background knowledge and thus eliminates the difference
between implicit and explicit background knowledge that is pointed out in (Wang 2004) while discussing
the limitation of Bayesianism.

• As our formalization of the Monty Hall example shows, P-log can deal with non-trivial conditioning and is
able to encode the notion of protocols mentioned in Chapter 6 of (Halpern 2003).

8 Conclusion and Future Work

In this paper we presented a non-monotonic probabilistic logic programming language, P-log, suitable for repre-
senting logical and probabilistic knowledge. P-log is based on logic programming under answer set semantics, and
on Causal Bayesian networks. We showed that it generalizes both languages.

P-log comes with a natural mechanism for belief updating — the ability of the agent to change degrees of belief
defined by his current knowledge base. We showed that conditioning of classical probability is a special case of this
mechanism. In addition, P-log programs can be updated by actions, defaults and other logic programming rules,
and by some forms of probabilistic information. The non-monotonicity of P-log allows us to model situations when
new information forces the reasoner to change its collection of possible worlds, i.e. to move to a new probabilistic
model of the domain. (This happens for instance when the agent’s knowledge is updated by observation of an event
deemed to be impossible under the current assumptions.)

The expressive power of P-log and its ability to combine various forms of reasoning was demonstrated on a number
of examples from the literature. The presentation of the examples is aimed to give a reader some feeling for the
methodology of representing knowledge in P-log. Finally the paper gives sufficiency conditions for coherency of
P-log programs and discusses the relationship of P-log with a number of other probabilistic logic programming
formalisms.

We plan to expand our work in several directions. First we need to improve the efficiency of the P-log inference
engine. The current, naive, implementation relies on computation of all answer sets of the logical part of P-log
program. Even though it can efficiently reason with a surprising variety of interesting examples and puzzles, a more
efficient approach is needed to attack some other kinds of problems. We also would like to investigate the impact of
replacing Answer Set Prolog — the current logical foundation of P-log — by a more powerful logic programming
language, CR-prolog. The new extension of P-log will be able to deal with updates which are currently viewed as
inconsistent. We plan to use P-log as a tool for the investigation of various forms of reasoning, including reasoning
with counterfactuals and probabilistic abductive reasoning capable of discovering most probable explanations of
unexpected observations. Finally, we plan to explore how statistical relational learning (SRL) can be done with
respect to P-log and how P-log can be used to accommodate different kinds of uncertainties tackled by existing
SRL approaches.
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9 Appendix I: Proofs of major theorems

Our first goal in this section is to prove Theorem 1 from Section 6. We’ll begin by proving a theorem which is
more general but whose hypothesis is more difficult to verify. In order to state and prove this general theorem, we
need some terminology and lemmas.

Definition 21

Let T be a tree in which every arc is labeled with a real number in [0,1]. We say T is unitary if the labels of the
arcs leaving each node add up to 1. 2

Figure 1 gives an example of a unitary tree.

Fig. 1. Unitary tree T

Definition 22

Let T be a tree with labeled nodes and n be a node of T . By pT (n) we denote the set of labels of nodes lying on
the path from the root of T to n , including the label of n and the label of the root. 2

Example 30

Consider the tree T from Figure 1. If n is the node labeled (13), then pT (n) = {1, 3, 8, 13}. 2
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Definition 23

[Path Value]
Let T be a tree in which every arc is labeled with a number in [0,1]. The path value of a node n of T , denoted by
pvT (n), is defined as the product of the labels of the arcs in the path to n from the root. (Note that the path value
of the root of T is 1.) 2

When the tree T is obvious from the context we will simply right pv(n).

Example 31

Consider the tree T from Figure 1. If n is the node labeled (8), then pv(n) = 0 · 3× 0 · 3 = 0 · 09. 2

Lemma 1

[Property of Unitary Trees]
Let T be a unitary tree and n be a node of T . Then the sum of the path values of all the leaf nodes descended from
n (including n if n is a leaf) is the path value of n . 2

Proof: We will prove that the conclusion holds for every unitary subtree of T containing n , by induction on the
number of nodes descended from n . Since T is a subtree of itself, the lemma will follow.

If n has only one node descended from it (including n itself if n is a leaf) then n is a leaf and then the conclusion
holds trivially.

Consider a subtree S in which n has k nodes descended from it for some k > 0, and suppose the conclusion is true
for all subtrees where n has less than k descendents. Let l be a leaf node descended from n and let p be its parent.
Let S ′ be the subtree of S consisting of all of S except the children of p. By induction hypothesis, the conclusion
is true of S ′. Let c1, . . . , cn be the children of p. The sum of the path values of leaves descended from n in S is
the same as that in S ′, except that pv(p) is replaced by pv(c1) + . . . + pv(cn). Hence, we will be done if we can
show these are equal.

Let l1, · · ·, ln be the labels of the arcs leading to nodes c1, ··, cn respectively. Then pv(c1) + . . . + pv(cn) =
l1 ∗ pv(p) + . . . + ln ∗ pv(p) by definition of path value. Factoring out pv(p) gives pv(p) ∗ (l1 + . . . + ln). But
Since S ′ is unitary, l1 + . . . + ln = 1 and so this is just pv(p). 2

Let Π be a P-log program with signature Σ. Recall that τ(Π) denotes the translation of its logical part into an
Answer Set Prolog program. Similarly for a literal l (in Σ) with respect to Π, τ(l) will represent the corresponding
literal in τ(Π). For example, τ(owner(d1) = mike) = owner(d1,mike). For a set of literals B (in Σ) with respect
to Π, τ(B) will represent the set {τ(l) | l ∈ B}.

Definition 24

A set S of literals of Π is Π-compatible with a literal l of Σ if there exists an answer set of τ(Π) containing
τ(S )∪{τ(l)}. Otherwise S is Π-incompatible with l . S is Π-compatible with a set B of literals of Π if there exists
an answer set of τ(Π) containing τ(S ) ∪ τ(B); otherwise S is Π-incompatible with B . 2

Definition 25

A set S of literals is said to Π-guarantee a literal l if S and l are Π-compatible and every answer set of τ(Π)
containing τ(S ) also contains τ(l); S Π-guarantees a set B of literals if S Π-guarantees every member of B . 2
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Definition 26

We say that B is a potential Π-cause of a(t) = y with respect to a rule r if Π contains rules of the form

[r ] random(a(t) : {X : p(X )}) ← K · (21)

and

prr (a(t) = y |c B) = v · (22)

2

Definition 27

[Ready to branch]
Let T be a tree whose nodes are labeled with literals and r be a rule of Π of the form

random(a(t) : {X : p(X )}) ← K ·
or

random(a(t)) ← K ·
where K can be empty. A node n of T is ready to branch on a(t) via r relative to Π if

1. pT (n) contains no literal of the form a(t) = y for any y ,

2. pT (n) Π-guarantees K ,

3. for every rule of the form prr (a(t) = y |c B) = v in Π, either pT (n) Π-guarantees B or is Π-incompatible
with B , and

4. if r is of the first form then for every y in the range of a(t), pT (n) either Π-guarantees p(y) or is Π-
incompatible with p(y) and moreover there is at least one y such that pT (n) Π-guarantees p(y).

If Π is obvious from context we may simply say that n is ready to branch on a(t) via r . 2

Proposition 5

Suppose n is ready to branch on a(t) via some rule r of Π, and a(t) = y is Π-compatible with pT (n); and let W1

and W2 be possible worlds of Π compatible with pT (n). Then P(W1, a(t) = y) = P(W2, a(t) = y). 2

Proof: Suppose n is ready to branch on a(t) via some rule r of Π, and a(t) = y is Π-compatible with pT (n); and
let W1 and W2 be possible worlds of Π compatible with pT (n).

Case 1: Suppose a(t) = y has an assigned probability in W1. Then there is a rule prr (a(t) = y | B) = v of
Π such that W1 satisfies B . Since W1 also satisfies pT (n), B is Π-compatible with pT (n). It follows from the
definition of ready-to-branch that pT (n) Π-guarantees B . Since W2 satisfies pT (n) it must also satisfy B and so
P(W2, a(t) = y) = v .

Case 2: Suppose a(t) = y does not have an assigned probability in W1. Case 1 shows that the assigned prob-
abilities for values of a(t) in W1 and W2 are precisely the same; so a(t) = y has a default probability in both
worlds. We need only show that the possible values of a(t) are the same in W1 and W2. Suppose then that for
some z , a(t) = z is possible in W1. Then W1 satisfies p(y). Hence since W1 satisfies pT (n), we have that pT (n)
is Π-compatible with p(y). By definition of ready-to-branch, it follows that pT (n) Π-guarantees p(y). Now since
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W2 satisfies pT (n) it must also satisfy p(y) and hence a(t) = y is possible in W2. The other direction is the same.
2

Suppose n is ready to branch on a(t) via some rule r of Π, and a(t) = y is Π-compatible with pT (n), and W
is a possible world of Π compatible pT (n). We may refer to the P(W , a(t) = y) as v(n, a(t), y). Though the
latter notation does not mention W , it is well defined by proposition 5.

Fig. 2. T2: The tree corresponding to the dice P-log program Π2

Example 32

[Ready to branch]
Consider the following version of the dice example. Lets refer to it as Π2

dice = {d1, d2}·
score = {1, 2, 3, 4, 5, 6}·
person = {mike, john}·
roll : dice → score·
owner : dice → person·
owner(d1) = mike·
owner(d2) = john·
even(D) ← roll(D) = Y ,Y mod 2 = 0·
¬even(D) ← not even(D)·
[ r(D) ] random(roll(D))·
pr(roll(D) = Y |c owner(D) = john) = 1/6·
pr(roll(D) = 6 |c owner(D) = mike) = 1/4.
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pr(roll(D) = Y |c Y 6= 6, owner(D) = mike) = 3/20.
where D ranges over {d1, d2}.

Now consider a tree T2 of Figure 2. Let us refer to the root of this tree as n1, the node roll(d1) = 1 as n2,
and the node roll(d2) = 2 connected to n2 as n3. Then pT2(n1) = {true}, pT2(n2) = {true, roll(d1) = 1},
and pT2(n3) = {true, roll(d1) = 1, roll(d2) = 2}. The set {true} of literals Π2-guarantees {owner(d1) =
mike, owner(d2) = john} and is Π2-incompatible with {owner(d1) = john, owner(d2) = mike}. Hence n1 and
the attribute roll(d1) satisfy condition 3 of definition 27. Similarly for roll(d2). Other conditions of the definition
hold vacuously and therefore n1 is ready to branch on roll(D) via r(D) relative to Π2 for D ∈ {d1, d2}. It is also
easy to see that n2 is ready to branch on roll(d2) via r(d2), and that n3 is not ready to branch on any attribute of
Π2. 2

Definition 28

[Expanding a node]
In case n is ready to branch on a(t) via some rule of Π, the Π-expansion of T at n by a(t) is a tree obtained
from T as follows: for each y such that pT (n) is Π-compatible with a(t) = y , add an arc leaving n , labeled with
v(n, a(t), y), and terminating in a node labeled with a(t) = y . We say that n branches on a(t). 2

Definition 29

[Expansions of a tree]
A zero-step Π-expansion of T is T . A one-step Π-expansion of T is an expansion of T at one of its leaves by
some attribute term a(t). For n > 1, an n-step Π-expansion of T is a one-step Π-expansion of an (n − 1)-step
Π-expansion of T . A Π-expansion of T is an n-step Π-expansion of T for some non-negative integer n . 2

For instance, the tree consisting of the top two layers of tree T2 from Figure 2 is a Π2-expansion of one node tree
n1 by roll(d1).

Definition 30

A seed is a tree with a single node labeled true. 2

Definition 31

[Tableau]
A tableau of Π is a Π-expansion of a seed which is maximal with respect to the subtree relation. 2

For instance, a tree T2 of Figure 2 is a tableau of Π2.

Definition 32

[Node Representing a Possible World]
Suppose T is a tableau of Π. A possible world W of Π is represented by a leaf node n of T if W is the set of
literals Π-guaranteed by pT (n). 2

For instance, a node n3 of T2 represents a possible world
{owner(d1,mike), owner(d2, john), roll(d1, 1), roll(d2, 2),¬even(d1), even(d2)}.
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Definition 33

[Tree Representing a Program]
If every possible world of Π is represented by exactly one leaf node of T , and every leaf node of T represents
exactly one possible world of Π, then we say T represents Π. 2

It is easy to check that the tree T2 represents Π2.

Definition 34

[Probabilistic Soundness]
Suppose Π is a P-log program and T is a tableau representing Π, such that R is a mapping from the possible worlds
of Π to the leaf nodes of T which represent them. If for every possible world W of Π we have

pvT (R(W )) = µ(W )

i.e. the path value in T of R(W ) is equal to the probability of W , then we say that the representation of Π by T
is probabilistically sound. 2

The following theorem gives conditions sufficient for the coherency of P-log programs (Recall that we only con-
sider programs satisfying Conditions 1, 2, and 3 of Section 3.2). It will later be shown that all unitary, ok programs
satisfy the hypothesis of this theorem, establishing Theorem 1.

Theorem 3

[Coherency Condition]
Suppose Π is a consistent P-log program such that PΠ is defined. Let Π′ be obtained from Π by removing all obser-
vations and actions. If there exists a unitary tableau T representing Π′, and this representation is probabilistically
sound, then for every pair of rules

[r ] random(a(t) : {Y : p(Y )}) ← K · (23)

and

prr (a(t) = y |c B) = v · (24)

of Π′ such that PΠ′(B ∪K ) > 0 we have

PΠ′∪obs(B)∪obs(K )(a(t) = y) = v

Hence Π is coherent. 2

Proof: For any set S of literals, let lgar(S ) (pronounced “L-gar” for “leaves guaranteeing”) be the set of leaves n
of T such that pT (n) Π′-guarantees S .

Let µ denote the measure on possible worlds induced by Π′. Let Ω be the set of possible worlds of Π′ ∪ obs(B) ∪
obs(K ). Since PΠ′(B ∪K ) > 0 we have

PΠ′∪obs(B)∪obs(K )(a(t) = y) =

∑
{W : W∈Ω ∧ a(t)=y ∈ W } µ(W )∑

{W : W∈Ω} µ(W )
(25)

Now, let
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α =
∑

n∈lgar(B∪K∪{a(t)=y)}
pv(n)

β =
∑

n∈lgar(B∪K )

pv(n)

Since T is a probabilistically sound representation of Π′, the right-hand side of (25) can be written as α/β. So we
will be done if we can show that α/β = v .

We first claim

Every n ∈ lgar(B ∪K ) has a unique ancestor ga(n) which branches on a(t) via r (23)· (26)

If existence failed for some leaf n then n would be ready to branch on a(t) which contradicts maximality of the
tree. Uniqueness follows from Condition 1 of Definition 27.

Next, we claim the following:

For every n ∈ lgar(B ∪K ), pT (ga(n)) Π-guarantees B ∪K · (27)

Let n ∈ lgar(B ∪ K ). Since ga(n) branches on a(t), ga(n) must be ready to Π-expand using a(t). So by (2)
and (3) of the definition of ready-to-branch, ga(n) either Π′-guarantees B or is Π′-incompatible with B . But
pT (ga(n)) ⊂ pT (n), and pT (n) Π′-guarantees B , so pT (ga(n)) cannot be Π′-incompatible with B . Hence
pT (ga(n)) Π′-guarantees B . It is also easy to see that pT (ga(n)) Π′-guarantees K .

From (27), it follows easily that

If n ∈ lgar(B ∪K ), every leaf descended from of ga(n) belongs to lgar(B ∪K )· (28)

Let

A = {ga(n) : n ∈ lgar(B ∪K )}
In light of (26) and (28), we have

lgar(B ∪K ) is precisely the set of leaves descended from nodes in A· (29)

Therefore,

β =
∑

n is a leaf descended from some a∈A

pv(n)

Moreover, by construction of T , no leaf may have more than one ancestor in A, and hence

β =
∑

a∈A

∑

n is a leaf descended from a

pv(n)

Now, by Lemma 1 on unitary trees, since T is unitary,

β =
∑

a∈A

pv(a)

This way of writing β will help us complete the proof. Now for α.

Recall the definition of α:

α =
∑

n∈lgar(B∪K∪{a(t)=y})
pv(n)
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Denote the index set of this sum by lgar(B ,K , y). Let

Ay = {n : parent(n) ∈ A, the label of n is a(t) = y}
Since lgar(B ,K , y) is a subset of lgar(B) ∪ K , (29) implies that lgar(B ,K , y) is precisely the set of nodes
descended from nodes in Ay . Hence

α =
∑

n′ is a leaf descended from some n∈Ay

pv(n ′)

Again, no leaf may descend from more than one node of Ay , and so by the lemma on unitary trees,

α =
∑

n∈Ay

∑

n′ is a leaf descended from n

pv(n ′) =
∑

n∈Ay

pv(n) (30)

Finally, we claim that every node n in A has a unique child in Ay , which we will label ychild(n). The existence
and uniqueness follow from (27), along with Condition 3 of Section 3.2, and the fact that every node in A branches
on a(t) via [r ]. Thus from (30) we obtain

α =
∑

n∈A

pv(ychild(n))

Note that if n ∈ A, the arc from n to ychild(n) is labeled with v . Now we have:

PΠ′∪obs(B)∪obs(K )(a(t) = y)

= α/β

=
∑

n∈A

pv(ychild(n))/
∑

n∈A

pv(n)

=
∑

n∈A

pv(n) ∗ v/
∑

n∈A

pv(n)

= v ·
2

Proposition 6

[Tableau for causally ordered programs]
Suppose Π is a causally ordered P-log program; then there exists a tableau T of Π which represents Π. 2

Proof:
Let | | be a causal order of Π, a1(t1), . . . , am(tm) be the ordering of its terms induced by | |, and Π1, . . . , Πm+1

be the | |-induced structure of Π.

Consider a sequence T0, . . . ,Tm of trees where T0 is a tree with one node, n0, labeled by true, and Ti is obtained
from Ti−1 by expanding every leaf of Ti−1 which is ready to branch on ai(ti) via any rule relative to Πi by this
term. Let T = Tm . We will show that Tm is a tableau of Π which represents Π.

Our proof will unfold as a sequence of lemmas:

Lemma 2

For every k ≥ 0 and every leaf node n of Tk program Πk+1 has a unique possible world W containing pTk
(n).

2
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Proof:
We use induction on k . The case where k = 0 follows from Condition (1) of Definition 13 of causally ordered
program. Assume that the lemma holds for i = k − 1 and consider a leaf node n of Tk . By construction of T ,
there exists a leaf node m of Tk−1 which is either the parent of n or equal to n . By inductive hypothesis there is a
unique possible world V of Πk containing pTk−1(m).

(i) First we will show that every possible world W of Πk+1 containing pTk−1(m) also contains V . By the splitting
set theorem (Lifschitz and Turner 1994), set V ′ = W |Lk

is a possible world of Πk . Obviously, pTk−1(m) ⊆ V ′.
By inductive hypothesis, V ′ = V , and hence V ⊆ W .

Now let us consider two cases.

(ii) ak (tk ) is not active in V with respect to Πk+1. In this case for every random selection rule of Πk+1 either
Condition (2) or Condition (4) of definition 27 is not satisfied and hence there is no rule r such that m is ready to
branch on ak (tk ) via r relative to Πk+1. From construction of Tk we have that m = n . By (3) of the definition of
causally ordered, the program V ∪ Πk+1 has exactly one possible world, W . Since Lk is a splitting set (Lifschitz
and Turner 1994) of Πk+1 we can use splitting set theorem to conclude that W is a possible world of Πk+1.
Obviously, W contains V and hence pTk−1(m). Since n = m this implies that W contains pTk

(n).

Uniqueness follows immediately from (i) and Condition (3) of Definition 13.

(iii) A term ak (tk ) is active in V . This means that there is some random selection rule r

[r ] random(ak (tk ) : {Y : p(Y )}) ← K ·

such that V satisfies K and there is y0 such that p(y0) ∈ V . (If r does not contain p the latter condition can be
simply omitted). Recall that in this case ak (tk ) = y0 is possible in V with respect to Πk+1.

We will show that m is ready to branch on ak (tk ) via rule r relative to Πk+1.

Condition (1) of the definition of“ready to branch” (Definition 27) follows immediately from construction of Tk−1.

To prove Condition (2) we need to show that pTk−1(m) Πk+1-guarantees K . To see that pTk−1(m) and K are
Πk+1-compatible notice that, from Condition (2) of Definition 13 and the fact that p(y0) ∈ V we have that
V ∪ Πk+1 has a possible world, say, W0. Obviously it satisfies both, K and pTk−1(m). Now consider a possible
world W of Πk+1 which contains pTk−1(m). By (i) we have that V ⊆ W . Since V satisfies K so does W .
Condition (2) of the definition of ready to branch is satisfied.

To prove condition (3) consider prr (ak (tk ) = y |c B) = v from Πk+1 such that B is Πk+1-compatible with
pTk−1(m). Πk -compatibility implies that there is a possible world W0 of Πk+1 which contains both, pTk−1(m)
and B . By (i) we have that V ⊆ W0 and hence V satisfies B . Since every possible world W of Πk+1 containing
pTk−1(m) also contains V we have that W satisfies B which proves condition (3) of the definition.

To prove Condition (4) we consider y0 such that p(y0) ∈ V (The existence of such y0 is proven at the beginning
of (iii)). We show that pTk−1(m) Πk+1-guarantees p(y0). Since ak (tk ) = y0 is possible in V with respect to
Πk+1 Condition (2) of Definition 13 guarantees that Πk+1 has possible world, say W , containing V . By con-
struction, p(y0) ∈ V and hence p(y0) and pTk−1(m) are Πk+1 compatible. From (i) we have that pTk−1(m)
Πk+1-guarantees p(y0). Similar argument shows that if pTk−1(m) is Πk+1-compatible with p(y) then p(y) is also
Πk+1-guaranteed by pTk−1(m).

We can now conclude that m is ready to branch on ak (tk ) via rule r relative to Πk+1. This implies that a leaf node
n of Tk is obtained from m by expanding it by an atom ak (tk ) = y .

By Condition (2) of Definition 13, program V ∪ Πk+1 ∪ obs(ak (tk ) = y) has exactly one possible world, W .
Since Lk is a splitting set of Πk+1 we have that W is a possible world of Πk+1. Clearly W contains pTk

(n).
Uniqueness follows immediately from (i) and Condition (2) of Definition 13.
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Lemma 3

For all k ≥ 0, every possible world of Πk+1 contains pTk
(n) for some unique leaf node n of Tk . 2

Proof:
We use induction on k . The case where k = 0 is immediate. Assume that the lemma holds for i = k − 1, and
consider a possible world W of Πk+1. By the splitting set theorem W is a possible world of V ∪ Πk+1 where V
is a possible world of Πk . By the inductive hypothesis there is a unique leaf node m of Tk−1 such that V contains
pTk−1(m). Consider two cases.

(a) The attribute term ak (tk ) is not active in V and hence m is not ready to branch on ak (tk ). This means that
m is a leaf of Tk and pTk−1(m) = pTk

(m). Let n = m . Since V ⊆ W we have that pTk
(n) ⊆ W . To show

uniqueness suppose n ′ is a leaf node of Tk such that pTk
(n ′) ⊆ W , and n ′ is not equal to n . By construction of

Tk there is some j and some y1 6= y2 such that aj (t j ) = y1 ∈ pTk
(n ′) and aj (t j ) = y2 ∈ pTk

(n). Since W is
consistent and aj is a function we can conclude n cannot differ from n ′.

(b) If ak (tk ) is active in V then there is a possible outcome y of ak (tk ) in V with respect Πk+1 via some random
selection rule r such that ak (tk ) = y ∈ W . By inductive hypothesis V contains pTk−1(m) for some leaf m of
Tk−1. Repeating the argument from part (iii) of the proof of Lemma 2 we can show that m is ready to branch
on ak (tk ) via r relative to Πk+1. Since ak (tk ) = y is possible in V there is a son n of m in Tk labeled by
ak (tk ) = y . It is easy to see that W contains pTk

(n). The proof of uniqueness is similar to that used in (a).

Lemma 4

For every leaf node n of Ti−1, every set B of extended literals of Li−1, and every i ≤ j ≤ m + 1 we have
pTi−1(n) is Πi -compatible with B iff pTi−1(n) is Πj -compatible with B . 2

Proof:
→
Suppose that pTi−1(n) is Πi -compatible with B . This means that there is a possible world V of Πi which satisfies
pTi−1(n) and B . To construct a possible world of Πj with the same property consider a leaf node m of Tj−1

belonging to a path containing node n of Ti−1. By Lemma 2 Πj has a unique possible world W containing
pTj−1(m). Li is a splitting set of Πj and hence, by the splitting set theorem, we have that W = V ′ ∪U where V ′

is a possible world of Πi and U∩Li = ∅. This implies that V ′ contains pTi−1(n), and hence, by Lemma 2 V ′ = V .
Since V satisfies B and U ∩ Li = ∅ we have that W also satisfies B and hence pTi−1(n) is Πj -compatible with
B .

←
Let W be a possible world of Πj satisfying pTi−1(n) and B . By the splitting set theorem we have that W = V ∪U
where V is a possible world of Πi and U ∩ Li = ∅. Since B and pTi−1(n) belong to the language of Li we have
that B and pTi−1(n) are satisfied by V and hence pTi−1(n) is Πi -compatible with B .

Lemma 5

For every leaf node n of Ti−1, every set B of extended literals of Li−1, and every i ≤ j ≤ m + 1 we have
pTi−1(n) Πi -guarantees B iff pTi−1(n) Πj -guarantees B . 2

→
Let us assume that pTi−1(n) Πi -guarantees B . This implies that pTi−1(n) is Πi -compatible with B , and hence,
by Lemma 4 pTi−1(n) is Πj -compatible with B . Now let W be a possible world of Πj satisfying pTi−1(n). By
the splitting set theorem W = V ∪ U where V is a possible world of Πi and U ∩ Li = ∅. This implies that V
satisfies pTi−1(n). Since pTi−1(n) Πi -guarantees B we also have that V satisfies B . Finally, since U ∩Li = ∅ we
can conclude that W satisfies B .
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←
Suppose now that pTi−1(n) Πj -guarantees B . This implies that pTi−1(n) is Πi -compatible with B . Now let V be
a possible world of Πi containing pTi−1(n). To show that V satisfies B let us consider a leaf node m of a path of
Tj−1 containing n . By Lemma 2 Πj has a unique possible world W containing pTj−1(m). By construction, W
also contains pTi−1(n) and hence satisfies B . By the splitting set theorem W = V ′ ∪ U where V ′ is a possible
world of Πi and U ∩ Li = ∅. Since B belongs to the language of Li it is satisfied by V ′. By Lemma 2 V ′ = V .
Thus V satisfies B and we conclude pTi−1(n) Πi -guarantees B .

Lemma 6

For every i ≤ j ≤ m + 1 and every leaf node n of Ti−1, n is ready to branch on term ai(t i) relative to Πi iff n is
ready to branch on ai(t i) relative to Πj . 2

Proof:
→
Condition (1) of Definition 27 follows immediately from construction of T ’s. To prove condition (2) consider a leaf
node n of Ti−1 which is ready to branch on ai(t i) relative to Πi . This means that Πi contains a random selection
rule r whose body is Πi -guaranteed by pTi−1(n). By definition of Li , the extended literals from K belong to the
language Li and hence, by Lemma 5, pTi−1(n) Πj -guarantees K .

Now consider a set B of extended literals from condition (3) of Definition 27 and assume that pTi−1(n) is Πj -
compatible with B . To show that pTi−1(n) Πj -guarantees B note that, by Lemma 4, pTi−1(n) is Πi -compatible
with B . Since n is ready to branch on ai(t i) relative to Πi we have that pTi−1(n) Πi -guarantees B . By Lemma
5 we have that pTi−1(n) Πj -guarantees B and hence Condition (3) of Definition 27 is satisfied. Condition (4) is
similar to check.

←
As before Condition (1) is immediate. To prove Condition (2) consider a leaf node n of Ti−1 which is ready to
branch on ai(t i) relative to Πj . This means that pTi−1(n) Πj -guarantees K for some rule r from Πj . Since Πj

is causally ordered we have that r belongs to Πi . By Lemma 5 pTi−1(n) Πi -guarantees K . Similar proof can be
used to establish Conditions (3) and (4).

Lemma 7

T = Tm is a tableau for Π = Πm+1. 2

Proof:
Follows immediately from the construction of the T ’s and Π’s, the definition of a tableau, and Lemmas 6 and 4. 2

Lemma 8

T = Tm represents Π = Πm+1. 2

Proof:
Let W be a possible world of Π. By Lemma 3 W contains pT (n) for some unique leaf node n of T . By Lemma 2,
W is the set of literals Π-guaranteed by pT (n), and hence W is represented by n . Suppose now that n ′ is a node
of T representing W . Then pT (n ′) Π-guarantees W which implies that W contains pTm (n ′). By Lemma 3 this
means that n = n ′, and hence we proved that every answer set of Π is represented by exactly one leaf node of T .

Now let n be a leaf node of T . By Lemma 2 Π has a unique possible world W containing pT (n). It is easy to see
that W is the set of literals represented by n . 2
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Lemma 9

Suppose T is a tableau representing Π. If n is a node of T which is ready to branch on a(t) via r , then all
possible worlds of Π compatible with pT (n) are probabilistically equivalent with respect to r . 2

Proof:
This is immediate from Conditions (3) and (4) of the definition of ready-to-branch.

Notation: If n is a node of T which is ready to branch on a(t) via r , the Lemma 9 guarantees that there is a unique
scenario for r containing all possible worlds compatible with pT (n). We will refer to this scenario as the scenario
determined by n .

We are now ready to prove the main theorem.

Theorem 1
Every causally ordered, unitary program is coherent.

Proof:

Suppose Π is causally ordered and unitary. Proposition 6 tells us that Π is represented by some tableau T . By
Theorem 3 we need only show that Π is unitary — i.e., that for every node n of Π, the sum of the labels of the arcs
leaving n is 1. Let n be a node and let s be the scenario determined by n . s satisfies (1) or (2) of the Definition 14. In
case (1) is satisfied, the definition of v(n, a(t), y), along with the construction of the labels of arcs of T , guarantee
that the sum of the labels of the arcs leaving n is 1. In case (2) is satisfied, the conclusion follows from the same
considerations, along with the definition of PD(W , a(t) = y).

We now restate and prove Theorem 2.

Theorem 2
Let x1, . . . , xn be a nonempty vector of random variables, under a classical probability P , taking finitely many
values each. Let Ri be the set of possible values of each xi , and assume Ri is nonempty for each i . Then there
exists a coherent P-log program Π with random attributes x1, . . . , xn such that for every vector r1, . . . , rn from
R1 × · · ×Rn , we have

P(x1 = r1, . . . , xn = rn) = PΠ(x1 = r1, . . . , xn = rn) (31)

2

Proof:

For each i let pars(xi) = {x1, . . . , xi−1}. Let Π be formed as follows: For each xi , Π contains

xi : Ri ·

random(xi)·
Also, for each xi , every possible value y of xi , and every vector of possible values yp of pars(xi), let Π contain

pr(xi = y |c pars(i) = yp) = v(i , y , yp)

where v(i , y , yp) = P(xi = y |pars(i) = yp).

Construct a tableau T for Π as follows: Beginning with the root which has depth 0, for every node n at depth i and
every possible value y of xi+1, add an arc leaving n , terminating in a node labeled xi+1 = y ; label the arc with
P(xi+1 = y |pT (n)).
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We first claim that T is unitary. This follows from the construction of T and basic probability theory, since the
labels of the arcs leaving any node n at depth i are the respective conditional probabilities, given pT (n), of all
possible values of xi+1.

We now claim that T represents Π. Each answer set of τ(Π), the translation of Π into Answer Set Prolog, satisfies
x1 = r1, . . . , xn = rn for exactly one vector r1, . . . , rn in R1 × . . . × Rn , and every such vector is satisfied in
exactly one answer set. For the answer set S satisfying x1 = r1, . . . , xn = rn , let M (S ) be the leaf node n of T
such that pT (n) = {x1 = r1, . . . , xn = rn}. M (S ) represents S by Definition 32, since Π has no non-random
attributes. Since M is a one-to-one correspondence, T represents Π. (31) holds because

P(x1 = r1, · · ·, xn = rn)

= P(x1 = r1)× P(x2 = r2|x1 = r1)× . . .× P(xn = rn |x1 = r1, · · ·, xn−1 = rn−1)

= v(1, r1, ( ))× . . .× v(n, rn , (r1, . . . , rn−1))

= PΠ(x1 = r1, . . . , xn = rn)

To complete the proof we will use Theorem 3 to show that Π is coherent. Π trivially satisfies the Unique selection
rule. The Unique probability assignment rule is satisfied because pars(xi) cannot take on two different values y1

p

and y2
p in the same answer set. Π is consistent because by assumption 1 ≤ n and R1 is nonempty. For the same

reason, PΠ is defined. Π contains no do or obs literals; so we can apply Theorem 3 directly to Π without removing
anything. We have shown that T is unitary and represents Π. The representation is probabilistically sound by the
construction of T . These are all the things that need to be checked to apply Theorem 3 to show that Π is coherent.
2

Finally we give proof of Proposition 7.

Proposition 7

Let T be a P-log program over signature Σ not containing pr -atoms, and B a collection of Σ-literals. If

1. all random selection rules of T are of the form random(a(t)),

2. T ∪ obs(B) is coherent, and

3. for every term a(t) appearing in literals from B program T contains a random selection rule random(a(t)),

then for every formula A

PT∪B (A) = PT∪obs(B)(A)

2

Proof:
We will need some terminology. Answer Set Prolog programs Π1 and Π2 are called equivalent (symbolically,
Π1 ≡ Π2) if they have the same answer sets; Π1 and Π2 are called strongly equivalent (symbolically Π1 ≡s Π2)
if for every program Π we have that Π1 ∪ Π ≡ Π2 ∪ Π. To simplify the presentation let us consider a program
T ′ = T ∪ B ∪ obs(B). Using the splitting set theorem it is easy to show that W is a possible world of T ∪ B iff
W ∪ obs(B) is a possible world of T ′. To show

(1) PT∪B (A) = PT∪obs(B)(A)·
we notice that, since T ′, T ∪ B and T ∪ obs(B) have the same probabilistic parts and the same collections of
do-atoms to prove (1) it suffices to show that

(2) W is a possible world of T ′ iff W is a possible world of T ∪ obs(B).
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Let PB = τ(T ′) and Pobs(B) = τ(T ∪ obs(B)). By definition of possible worlds (2) holds iff

(3) PB ≡ Pobs(B)

To prove (3) let us first notice that the set of literals S formed by relations do, obs , and intervene form a splitting
set of programs PB and Pobs(B). Both programs include the same collection of rules whose heads belong to this
splitting set. Let X be the answer set of this collection and let QB and Qobs(B) be partial evaluations of PB and
Pobs(B) with respect to X and S . From the splitting set theorem we have that (3) holds iff

(4) QB ≡ Qobs(B).

To prove (4) we will show that for every literal l ∈ B there are sets U1(l) and U2(l) such that for some Q

(5) Qobs(B) = Q ∪ {r : r ∈ U1(l) for some l ∈ B},

(6) QB = Q ∪ {r : r ∈ U2(l) for some l ∈ B},

(7) U1(l) ≡s U2(l)

which will imply (4).

Let literal l ∈ B be formed by an attribute a(t). Consider two cases:

Case 1: intervene(a(t)) 6∈ X .

Let U1(l) consist of the rules

(a) ¬a(t ,Y1) ← a(t ,Y2),Y1 6= Y2.

(b) a(t , y1) or . . . or a(t , yk ).

(c) ← not l .

Let U2(l) = U1(l) ∪ B .

It is easy to see that due to the restrictions on random selection rules of T from the proposition U1(l) belongs to
the partial evaluation of τ(T ) with respect to X and S . Hence U1(l) ⊂ Qobs(B). Similarly U2(l) ⊂ QB , and hence
U1(l) and U2(l) satisfy conditions (5) and (6) above. To show that they satisfy condition (7) we use the method de-
veloped in (Lifschitz et al. 2001). First we reinterpret the connectives of statements of U1(l) and U2(l). In the new
interpretation ¬ will be a strong negation of Nelson (Nelson 1949); not ,←, or will be interpreted as intuitionistic
negation, implication, and disjunction respectively; , will stand for ∧. A program P with connectives reinterpreted
in this way will be referred to as NL counterpart of P . Note that the NL counterpart of← not l is not not l . Next
we will show that, under this interpretation, U1(l) and U2(l) are equivalent in Nelson’s intuitionistic logic (NL).
Symbolically,

(8) U1(l) ≡NL U2(l).

(Roughly speaking this means that U1(l) can be derived from U2(l) and U2(l) from U1(l) without the use of the
law of exclusive middle.) As shown in (Lifschitz et al. 2001) two programs whose NL counterparts are equivalent
in NL are strongly equivalent, which implies (7).

To show (8) it suffices to show that

(9) U1(l) `NL l .

If l is of the form a(t , yi) then let us assume a(t , yj ) where j 6= i . This, together with the NL counterpart of rule
(a) derives ¬a(t , yi). Since in NL ¬A ` not A this derives not a(t , yi), which contradicts the NL counterpart
not not a(t , yi) of (c). The only disjunct left in (b) is a(t , yi).
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If l is of the form ¬a(t , yi) then (9) follows from (a) and (b).

Case 2: intervene(a(t)) ∈ X

This implies that there is some yi such that do(a(t) = yi) ∈ T .

If l is of the form a(t) = y then since T ∪ obs(B) is coherent, we have that y = yi , and thus QB and Qobs(B) are
identical.

If l is of the form a(t) 6= y then, since T ∪ obs(B) is coherent, we have that y 6= yi .

Let U1(l) consist of rules:

¬a(t , y) ← a(t , yi).

a(t , yi).

Let U2(l) = U1(l) ∪ ¬a(t , y).

Obviously U1(l) ⊂ Qobs(B), U2(l) ⊂ QB and U1(l) entails U2(l) in NL. Hence we have (7) and therefore (4).

This concludes the proof.

10 Appendix II: Causal Bayesian Networks

This section gives a definition of causal Bayesian networks, closely following the definition of Judea Pearl and
equivalent to the definition given in (Pearl 2000). Pearl’s definition reflects the intuition that causal influence can
be elucidated, and distinguished from mere correlation, by controlled experiments, in which one or more variables
are deliberately manipulated while other variables are left to their normal behavior. For example, there is a strong
correlation between smoking and lung cancer, but it could be hypothesized that this correlation is due to a genetic
condition which tends to cause both lung cancer and a susceptibility to cigarette addiction. Evidence of a causal
link could be obtained, for example, by a controlled experiment in which one randomly selected group of people
would be forced to smoke, another group selected in the same way would be forced not to, and cancer rates
measured among both groups (not that we recommend such an experiment). The definitions below characterize
causal links among a collection V of variables in terms of the numerical properties of probability measures on V
in the presence of interventions. Pearl gives the name “interventional distribution” to a function from interventions
to probability measures. Given an interventional distributipn P∗, the goal is to describe conditions under which a
set of causal links, represented by a DAG, agrees with the probabilistic and causal information contained in P∗. In
this case the DAG will be called a causal Bayesian network compatible with P∗.

We begin with some preliminary definitions. Let V be a finite set of variables, where each v in V takes values
from some finite set D(v). By an assignment on V , we mean a function which maps each v in V to some member
of D(v). We will let A(V ) denote the set of all assignments on V . Assignments on V may also be called possible
worlds of V .

A partial assignment on V is an assignment on a subset of V . We will say two partial assignments are consistent
if they do not assign different values to the same variable. Partial assignments can also be called interventions.
Let Interv(V ) be the set of all interventions on V , and let { } denote the empty intervention, that is, the unique
assignment on the empty set of variables.

By a probability measure on V we mean a function P which maps every set of possible worlds of V to a real
number in [0, 1] and satisfies the Kolmogorov Axioms.

When P is a probability measure on V , the arguments of P are sets of possible worlds of V . However, these
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sets are often written as constraints which determine their members. So, for example, we write P(v = x ) for the
probability of the set of all possible worlds of V which assign x to v .

The following definition captures when a DAG G is an “ordinary” (i.e., not-necessarily-causal) Bayesian network
compatible with a given probability measure. The idea is that the graph G captures certain conditional inde-
pendence information about the given variables. That is, given information about the observed values of certain
variables, the graph captures which variables are relevant to particular inferences about other variables. Generally
speaking, this may fail to reflect the directions of causality, because the laws of probability used to make these in-
ferences (e.g., Bayes Theorem and the definition of conditional probability) do not distinguish causes from effects.
For example if A has a causal influence on B , observations of A may be relevant to inferences about B in much
the same way that observations of B are relevant to inferences about A.

Definition 35

[Compatible]
Let P be a probability measure on V and let G be a DAG whose nodes are the variables in V . We say that P is
compatible with G if, under P , every v in V is independent of its non-descendants in G , given its parents in G . 2

We are now ready to define causal Bayesian networks. In the following definition, P∗ is thought of as a mapping
from each possible intervention r to the probability measures on V resulting from performing r . P∗ is intended
to capture a model of causal influence in a purely numerical way, and the definition relates this causal model to a
DAG G .

If G is a DAG and v vertex of G , let Parents(G , v) denote the parents of v in G .

Definition 36

[Causal Bayesian network]
Let P∗ map each intervention r in Interv(V ) to a probability measure Pr on V . Let G be a DAG whose vertices
are precisely the members of V . We say that G is a causal Bayesian network compatible with P∗ if for every
intervention r in Interv(V ),

1. Pr is compatible with G ,

2. Pr (v = x ) = 1 whenever r(v) = x , and

3. whenever r does not assign a value to v , and s is an assignment on Parents(G , v) consistent with r , we
have that for every x ∈ D(v)

Pr (v = x | u = s(u) for all u ∈ Parents(G , v))

= P{ }(v = x | u = s(u) for all u ∈ Parents(G , v)) 2

Condition 1 says that regardless of which intervention r is performed, G is a Bayesian net compatible with the
resulting probability measure P∗.9 Condition 2 says that when we perform an intervention on the variables of V ,
the manipulated variables “obey” the intervention. Condition 3 says that the unmanipulated variables behave under
the influence of their parents in the usual way, as if no manipulation had occurred.

For example, consider V = {a, d}, D(a) = D(d) = {true, false}, and P∗ given by the following table:

9 This part of the definition captures some intuition about causality. It entails that given complete information about the factors immediately
influencing a variable v (i.e., given the parents of v in G), the only variables relevant to inferences about v are its effects and indirect effects
(i.e., descendants of v in G) — and that this property holds regardless of the intervention performed.
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intervention | {a,d} {a,˜d} {˜a,d} {˜a,˜d}
----------- | ---------------------------------
{ } | 0.32 0.08 0.06 0.54
{a} | 0.8 0.2 0 0
{˜a} | 0 0 0.01 0.99
{d} | 0.4 0 0.6 0
{˜ d} | 0 0.4 0 0.6
{a, d} | 1 0 0 0
{a, ˜d} | 0 1 0 0
{˜ a, d} | 0 0 1 0
{˜ a, ˜d} | 0 0 0 1

The entries down the left margin give possible interventions, and each row defines the corresponding probability
measure by giving the probabilities of the four singleton sets of possible worlds. Intuitively, the table represents
P∗ derived from Example 18, where a represents that the rat eats arsenic, and d represents that it dies.

If G is the graph with a single directed arc from a to d , then one can verify that P∗ satisfies Conditions 1-3 of the
definition of Causal Bayesian Network. For example, if r = {a = true}, s = {d = true}, v = d , and x = true,
we can verify Condition 3 by computing its left and right hand sides using the first two rows of the table:

LHS = P{a}(d | a) = 0 · 8/(0 · 8 + 0 · 2) = 0 · 8

RHS = P{ }(d | a) = 0 · 32/(0 · 32 + 0 · 08) = 0 · 8

Now let G ′ be the graph with a single directed arc from d to a . We can verify that P∗ fails to satisfy Condition 3
for G ′ with r = {a = true}, v = d , x = true , and s the empty assignment, viz.,

LHS = P{a}(d) = 0 · 8 + 0 = 0 · 8

RHS = P{ }(d) = 0 · 32 + 0 · 6 = 0 · 38

This tells us that P∗ given by the table is not compatible with the hypothesis that the rat’s eating arsenic is caused
by its death.

Definition 36 leads to the following proposition that suggests a straightforward algorithm to compute probabilities
with respect to a causal Bayes network with nodes v1, . . . , vk , after an intervention r is done.

Proposition 8 ((Pearl 2000))

Let G be a causal Bayesian network, with nodes V = v1 = x1, . . . , vk = xk , compatible with an interventional
distribution P∗. Suppose also that r is an intervention in Interv(V ), and the possible world v1 = x1, . . . , vk = xk

is consistent with r . Then

Pr (v1 = x1, . . . , vk = xk ) =
∏

i:r(vi ) is not defined
P{ }(vi = xi |pai(r)(x1, . . . , xk ))

where pai(x1, . . . , xk )) is the unique assignment world on Parents(G , vi) compatible with v1 = x1, . . . , vk = xk .
2

Theorem 4

Let G be a DAG with vertices V = {v1, . . . , vk} and P∗ be as defined in Definition 36. For an intervention r , let
do(r) denote the set {do(vi = r(vi)) : r(vi) is defined }.
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Then there exists a P-log program π with random attributes v1, . . . , vk such that for any intervention r in
Interv(V ) and any assignment v1 = x1, . . . , vk = xk we have

Pr (v1 = x1, . . . , vk = xk ) = Pπ∪do(r)(v1 = x1, . . . , vk = xk ) (32)

2

Proof: We will first give a road map of the proof. Our proof consists of the following four steps.

(i) First, given the antecedent in the statement of the theorem, we will construct a P-log program π which, as we
will ultimately show, satisfies (32).

(ii) Next, we will construct a P-log program π(r) and show that:

Pπ∪do(r)(v1 = x1, . . . , vk = xk ) = Pπ(r)(v1 = x1, . . . , vk = xk ) (33)

(iii) Next, we will construct a finite Bayes net G(r) that defines a probability distribution P ′ and show that:

Pπ(r)(v1 = x1, . . . , vk = xk ) = P ′(v1 = x1, . . . , vk = xk ) (34)

(iv) Then we will use Proposition 1 to argue that:

P ′(v1 = x1, . . . , vk = xk ) = Pr (v1 = x1, . . . , vk = xk ) (35)

(32) then follows from (33), (34) and (35).

We now elaborate on the steps (i)-(iv).

Step (i) Given the antecedent in the statement of the theorem, we will construct a P-log program π as follows:

(a) For each variable vi in V , π contains:

random(vi).
vi : D(vi).

where D(vi) is the domain of vi .

(b) For any vi ∈ V , such that parents(G , vi) = {vi1 , . . . , vim}, any y ∈ D(vi), and any xi1 , . . . , xim in
D(vi1), . . . ,D(vim ) respectively, π contains the pr-atom:

pr(vi=y |c vi1=xi1 , . . . vim =xim ) = P{ }(vi=y |vi1=xi1 , . . . vim =xim )·

Step (ii) Given the antecedent in the statement of the theorem, and an intervention r in Interv(V ) we will now
construct a P-log program π(r) and show that (33) is true.

(a) For each variable vi in V , if r(vi) is not defined, then π(r) contains random(vi) and vi : D(vi), where D(vi)
is the domain of vi .
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(b) The pr-atoms in π(r) are as follows. For any node vi such that r(vi) is not defined let {vij1 , . . . , vijk } consists
of all elements of parents(G , vi) = {vi1 , . . . , vim} where r is not defined. Then the following pr-atom is in π(r).

p(vi = x | vij1 = yij1
, . . . , vijk = yijk

) = P{ }(vi = x | vi1 = yi1 , . . . , vim = yim )·, where for all vip ∈
parents(G , vi), if r(vip ) is defined then yip = r(vip ).

Now let us compare the P-log programs π ∪ do(r) and π(r). Their pr-atoms differ. In addition, for a variable vi ,
if r(vi) is defined then π ∪ do(r) has do(vi = r(vi)) and random(vi) while π(r) has neither. For variables,
vj , where r(vj ) is not defined both π ∪ do(r) and π(r) have random(vi). It is easy to see that there is a one-
to-one correspondence between possible worlds of π ∪ do(r) and π(r); for any possible world W of π ∪ do(r)
the corresponding possible world W ′ for π(r) can be obtained by projecting on the atoms about variables vj for
which r(vj ) is not defined. For a vi for which r(vi) is defined, W will contain intervene(vi), and will not have
an assigned probability. The default probability PD(W , vi = r(vi)) will be 1

|D(vi )| . Now it is easy to see that the
unnormalized probability measure associated with W will be

∏

vi : r(vi ) is defined

1
|D(vi)|

times the unnormalized probability measure associated with W ′ and hence their normalized probability measures
will be the same. Thus Pπ∪do(r)(v1 = x1, . . . , vk = xk ) = Pπ(r)(v1 = x1, . . . , vk = xk ).

Step (iii) Given G , P∗ and any intervention r in Interv(V ) we will construct a finite Bayes net G(r). Let P ′

denote the probability with respect to this Bayes net.

The nodes and edges of G(r) are as follows. All vertices vi in G such that r(vi) is not defined are the only vertices
in G(r). For any edge from vi to vj in G , only if r(vj ) is not defined the edge from vi to vj is also an edge in
G(r). No other edges are in G(r). The conditional probability associated with the Bayes net G(r) is as follows:
For any node vi of G(r), let parents(G(r), vi) = {vij1 , . . . , vijk } ⊆ parents(G , vi) = {vi1 , . . . , vim}. We define
the conditional probability p(vi = x | vij1 = yij1

, . . . , vijk = yijk
) = P{ }(vi = x | vi1 = yi1 , . . . , vim = yim ),

where for all vip ∈ parents(G , vi), if r(vip ) is defined (i.e., vip 6∈ parents(G(r), vi)) then yip = r(vip ).

From Theorem 2 which shows the equivalence between a Bayes net and a representation of it in P-log, which we
will denote by π(G(r)) , we know that P ′(v1 = x1, . . . , vk = xk ) = Pπ(G(r))(v1 = x1, . . . , vk = xk ). It is easy
to see that π(G(r)) is same as π(r). Hence (34) holds.

Step (iv) It is easy to see that P ′(v1 = x1, . . . , vk = xk ) is equal to the right hand side of Proposition 1. Hence
(35) holds.

11 Appendix III: Semantics of ASP

In this section we review the semantics of ASP. Recall that an ASP rule is a statement of the form

l0 or . . . or lk ← lk+1, . . . , lm ,not lm+1, . . . ,not ln (36)

where the li ’s are ground literals over some signature Σ. An ASP program, Π, is a collection of such rules over
some signature σ(Π), and a partial interpretation of σ(Π) is a consistent set of ground literals of the signature. A
program with variables is considered shorthand for the set of all ground instantiations of its rules. The answer set
semantics of a logic program Π assigns to Π a collection of answer sets — each of which is a partial interpretation
of σ(Π) corresponding to some possible set of beliefs which can be built by a rational reasoner on the basis of
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rules of Π. As mentioned in the introduction, in the construction of such a set, S , the reasoner should satisfy the
rules of Π and adhere to the rationality principle which says that one shall not believe anything one is not forced
to believe. A partial interpretation S satisfies Rule 36 if whenever lk+1, . . . , lm are in S and none of lm+1, . . . , ln
are in S , the set S contains at least one li where 0 ≤ i ≤ k . The definition of an answer set of a logic program is
given in two steps:

First we consider a program Π not containing default negation not .

Definition 37

(Answer set – part one)
A partial interpretation S of the signature σ(Π) of Π is an answer set for Π if S is minimal (in the sense of
set-theoretic inclusion) among the partial interpretations of σ(Π) satisfying the rules of Π. 2

The rationality principle is captured in this definition by the minimality requirement.

To extend the definition of answer sets to arbitrary programs, take any program Π, and let S be a partial interpre-
tation of σ(Π). The reduct ΠS of Π relative to S is obtained by

1. removing from Π all rules containing not l such that l ∈ S , and then
2. removing all literals of the form not l from the remaining rules.

Thus ΠS is a program without default negation.

Definition 38

(Answer set – part two)
A partial interpretation S of σ(Π) is an answer set for Π if S is an answer set for ΠS . 2

The relationship between this fix-point definition and the informal principles which form the basis for the notion
of answer set is given by the following proposition.

Proposition 9

Baral and Gelfond, (Baral, and Gelfond 1994)
Let S be an answer set of ASP program Π.
(a) S satisfies the rules of the ground instantiation of Π.
(b) If literal l ∈ S then there is a rule r from the ground instantiation of Π such that the body of r is satisfied by S
and l is the only literal in the head of r satisfied by S . 2

The rule r from (b) “forces” the reasoner to believe l .

It is easy to check that program p(a) or p(b) has two answer sets, {p(a)} and {p(b)}, and pro-
gram p(a) ← not p(b) has one answer set, {p(a)}. Program P1 from the introduction indeed has one
answer set {p(a),¬p(b), q(c)}, while program P2 has two answer sets, {p(a),¬p(b), p(c),¬q(c)} and
{p(a),¬p(b),¬p(c),¬q(c)}.

Note that the left-hand side (the head) of an ASP rule can be empty. In this case the rule is often referred to as a
constraint or denial. The denial ← B prohibits the agent associated with the program from having a set of beliefs
satisfying B . For instance, program p(a) or ¬p(a) has two answer sets, {p(a)} and {¬p(a)}. The addition of
a denial ← p(a) eliminates the former; {¬p(a)} is the only answer set of the remaining program. Every answer
set of a consistent program Π ∪ {l ·} contains l while a program Π ∪ {← not l ·} may be inconsistent. While the
former tells the reasoner to believe that l is true the latter requires him to find support of his belief in l from Π. If,
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say, Π is empty then the first program has the answer set {l} while the second has no answer sets. If Π consists of
the default ¬l ← not l then the first program has the answer set l while the second again has no answer sets.

Some additional insight into the difference between l and ← not l can also be obtained from the relationship
between ASP and intuitionistic or constructive logic (Ferraris, and Lifschitz 2005) which distinguishes between l
and ¬¬l . In the corresponding mapping the denial corresponds to the double negation of l .

To better understand the role of denials in ASP one can view a program Π as divided into two parts: Πr consisting
of rules with non-empty heads and Πd consisting of the denials of Π. One can show that S is an answer set of
Π iff it is an answer set of Πr which satisfies all the denials from Πd . This property is often exploited in answer
set programming where the initial knowledge about the domain is often defined by Πr and the corresponding
computational problem is posed as the task of finding answer sets of Πr satisfying the denials from Πd .
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