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Abstract

Pearl’s probabilistic causal model has been used in many do-
mains to reason about causality. Pearl’s treatment of actions
is very different from the way actions are represented explic-
itly in action languages. In this paper we show how to encode
Pearl’s probabilistic causal model in the action language PAL
thus relating this two distinct approaches to reasoning about
actions.

Introduction and motivation
Normally an action when executed in a world changes the
state of the world. Reasoning about actions is important
in several ‘intelligent’ tasks such as planning, hypotheti-
cal reasoning, control generation and verification (for dy-
namical systems), and diagnosis. Often the effect of an ac-
tion on the world is not deterministic but rather has an
uncertainty associated with it. In recent years there have
been several approaches to represent and reason with such
actions. The first type of approaches include probabilistic
generalization of formalisms for reasoning about actions;
for example, planning (Kushmerick, Hanks, & Weld 1995;
Littman 1997), situation calculus (Bacchus, Halpern, &
Levesque 1999; Poole 1998; Reiter 2001; Mateus, Pacheco,
& Pinto 2002), and action languages (Baral, Tran, & Le
2002; Eiter & Lukasiewicz 2003). The second type of ap-
proaches are based on frameworks of reasoning under un-
certainty such as independence choice logic (Poole 1997;
1998) and probabilistic causal model (Pearl 1995; 1999;
2000).

In all these proposals, except in Pearl (1999; 2000), ac-
tions are explicitly defined (with names) and their effects on
the world are described by various means. In Pearl (1999;
2000) the dynamics of the world is described through re-
lationships between variables (which denote properties of
objects in the world) that are expressed through functional
relationships between them. Furthermore, probabilities are
associated with a subset of variables called background (or
exogenous) variables. Together they are referred to asproba-
bilistic causal models(PCMs). The effect of actions are then
formulated as “local surgery”on these models (Pearl 1995).
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In this paper our goal is to study the relationship between
reasoning about actions in PCMs and similar reasoning in
the action description language PAL (Baral, Tran, & Le
2002) as a representative of the approaches where actions
are named and have effects associated with it. The motiva-
tion behind studying this relationship is to objectively com-
pare the expressiveness of these two formalisms vis-a-vis
each other. We select PCM to study as it is the most suc-
cessful representative of causal reasoning formalisms (Pearl
2000). We pick PAL as a representative of the high level
action description languages (Gelfond & Lifschitz 1993;
McCain & Turner 1995; Gelfond & Lifschitz 1998), for this
is the most similar to PCM in the way it handles uncertainty
among the action languages that have actions named dis-
tinctly. Moreover, PAL is inspired by PCM1, so it is natural
to question how they relate to each other. In fact, the formal
analysis of this relation has provided us a better understand-
ing of the two frameworks in term of their advantages and
limitations.

The rest of this paper is organized as follows. First, we
briefly recall the language PAL and PCM. We present an
encoding of PCM in PAL together with a correctness result.
We also provide the intuition of the encoding as well as of
the result and its proof through a detailed example. Finally,
we conclude with discussion on related and future works.

The language PAL: a brief overview
The alphabet of the language PAL (Baral, Tran, & Le 2002)
consists of four non-empty disjoint setsF, UI , UN , A. The
sets respectively contain fluents,inertial unknown variables,
non-inertialunknown variables and actions. Intuitively, both
fluents and unknown variables encode properties of the
world. An action can have effects on the former but not
on the latter. Moreover, inertial variables are unchanged
through courses of actions. Unknown variables are assumed
to be independent of each other. Afluent literal is a fluent
or a fluent preceded by¬. An unknown variable literal is an
unknown variable or an unknown variable preceded by¬.
A literal is either a fluent literal or an unknown variable lit-
eral. A formula is a propositional formula constructed from

1Since the proposal of PAL in Baral, Tran, & Le (2002), other
action languages have also been extended to allow actions with
probabilistic effects; for example see Eiter & Lukasiewicz (2003).



literals.

A states is an interpretation of fluents and unknown vari-
ables that satisfy certain conditions (to be mentioned while
discussing semantics). For a states, the sub-interpretations
of s restricted to fluents, inertial unknown variables, and
non-inertial unknown variables are denoted bysF , sI , and
sN respectively.

In the following we briefly review the components of PAL.

The domain description language: A domain description
is a collection of propositions of the forms:

a causes ψ if ϕ (1)

θ causes ψ (2)

impossible a if ϕ (3)

wherea is an action,ψ is afluentformula,θ is a formula of
fluents andinertial unknown variables, andϕ is a formula
of fluents andunknownvariables. Propositions of the form
(1), calleddynamic causal laws, describe the direct effects
of actions. Propositions of the form (2), calledstatic causal
laws, describe causal relations between fluents and unknown
variables. Propositions of the form (3), calledexecutability
conditions, state when actions are not executable.

The semantics of domain descriptions is defined based on
transition functions. In the following, letD be a domain de-
scription in the language PAL.

An interpretationI of the fluents and unknown variables in
D is a maximal consistent set of literals ofD. A literal l is
said to be true (resp. false) inI iff l ∈ I (resp.¬l ∈ I).
The truth value of a formula inI is defined recursively over
the propositional connective in the usual way. For example,
f ∧ g is true inI iff f is true inI andg is true inI. The
formulaψ is said to hold inI (or I satisfiesψ), denoted by
I |= ψ, if ψ is true inI.

A set of formulas fromD is logically closedif it is closed un-
der propositional logic (w.r.t.D). Let V be a set of formulas
andK be a set of static causal laws of the formθ causesψ.
V is said to be closed underK if for every ruleθ causesψ
in K, if θ belongs toV then so doesψ. CnK(V ) denotes the
least logically closed set of formulas fromD that containsV
and is also closed underK. A states ofD is an interpretation
that is closed under the set of static causal laws ofD.

An action a is prohibited (not executable)in a states if
there exists inD an executability condition of the form
impossible a if ϕ such thatϕ holds in s. The effect of
an action ain a states is the set of formulas:

Ea(s) = {ψ | ∃r ∈ D : r = a causesψ if ϕ , s |= ϕ}.
Let S be the set of the states ofD. A transition functionΦ
is a function fromA × S to 2S . If a is prohibited ins, then
Φ(a, s) = ∅; otherwise we have that

Φ(a, s) = { s′ | s′F,I = CnR((sF,I ∩ s′F,I) ∪ Ea(s))}
whereR is the set of the static causal laws ofD.

An extended transition function̂Φ expresses the state transi-
tion due to a sequence of actions, which is defined as

Φ̂([a], s) = Φ(a, s);

Φ̂([a1, . . . , an], s) =
⋃

s′∈Φ̂(a1,s)

Φ̂([a2, . . . , an], s′).

Let s be a state in a domain descriptionD. Thens entails
ϕ after a1, . . . , an , written ass |= ϕ after a1, . . . , an , if ϕ

is true in all states in̂Φ([a1, . . . , an], s).
Probabilities of unknown variables:A probability descrip-
tion P of the unknown variables is a collection of proposi-
tions of the form

probability of u is p ;

whereu is an unknown variable, andp ∈ [0, 1]. Each propo-
sition above directly gives us the probability distribution of
the corresponding unknown variable as:P (u) = p.
For any states, su denotes the interpretation of the unknown
variables ofs, that is,su = sI ∪ sN . The unconditional prob-
ability of the various states is defined as:

P (s) =
P (su)

|{s′|s′u = su)}|
Example 1 Let us consider a domain of coin tossing, in
which the coin can be fair or fake with some probabilityp.
If it is a fair coin, then it will land head with probability
q1. If it is fake, it lands head with probabilityq2. The PAL
domain has an inertial unknown variableu describing the
coin’s fairness and two non-inertial variablesv1, v2 describ-
ing the landing head of different coin types:

probability of u is p

probability of v1 is q1

probability of v2 is q2

Besides, the domain has a fluenthead describing the out-
come of actiontoss. We have that:

toss causeshead if u, v1

toss causes¬head if u,¬v1

toss causeshead if ¬u, v2

toss causes¬head if ¬u,¬v2

The query language: Let ϕ be a formula of fluents and un-
known variables,ai’s be actions, andp ∈ [0, 1]. A query has
the following form:

probability of [ϕ after a1, . . . , an] is p .

The entailment of queries is defined in several steps. First,
we define the transitional probability between states:

P[a](s′|s) = Pa(s′|s) =

{
2|UN |
|Φ(a,s)|P (s′N ) if s′ ∈ Φ(a, s)
0, otherwise.

The (probabilistic) correctness of a single action plan given
an initial state states is defined as follows.

P (ϕ after a|s) =
∑

s′∈Φ(a,s)∧s′|=ϕ

Pa(s′|s)



Next, the transitional probability due to a sequence of ac-
tions, is recursively defined starting with the base case.

P[ ](s′|s) =
{

1 if s = s′
0, otherwise.

P[a1,...an](s′|s) =
∑

s′′
P[a1,...,an−1](s

′′|s)Pan
(s′|s′′)

Finally, we define the (probabilistic) correctness of a (multi-
action) plan given an initial states:

P (ϕ after α|s) =
∑

s′∈Φ̂([α],s)∧s′|=ϕ

P[α](s′|s) (4)

The observation language:An observation descriptionO
is a collection of proposition of the form

ψ obs after a1, . . . an ;

where ψ is a fluent formula, anda1, . . . , an are actions.
Whenn = 0, it is simply written asinitially ψ. The prob-
ability P (ϕ obs after α|s) is computed by the right hand
side of (4).

Using the Bayes’ rule, the conditional probability of a state
given some observations is given as follows.

P (si|O) =

{
P (O|si)P (si)P
sj

P (O|sj)P (sj)
if

∑
sj

P (O|sj)P (sj) 6= 0

0, otherwise.

The (probabilistic) correctness of a (multi-action) plan given
only some observations is defined by

P (ϕ after α|O) =
∑

s

P (s|O)× P (ϕ after α|s) (5)

An action theoryT in PAL consists of a domain description
D, a probability descriptionP of the unknown variables, and
an observation descriptionO: T = D ∪ P ∪ O .
Let Q be a query:

Q = probability of [ϕ after a1, . . . , an] is p .

Then T entails Q, written asT |=A Q, if and only if
P (ϕ after a1, . . . , an|O) = p. The entailment can be writ-
ten in the shorter form as

T |=A P (ϕ after a1, . . . , an|O) = p .

In the next section, we briefly review PCM (Pearl 2000).

Probabilistic causal models
Causal model:A causal modelis a tripleM = 〈U, V, F 〉
where

* U is a set ofbackgroundvariables, (also calledexoge-
nous), that are determined by factors outside the model;

* V is a set{V1, V2, . . . Vn} of variables, calledendoge-
nous, that are determined by variables in the model - that
is, variables inU ∪ V ; and

* F is a set of functions{f1, f2, . . . fn}, such that eachfi is
a mapping fromU∪(V \Vi) to Vi, and such that the entire
setF forms a mapping fromU to V . In other words, each
fi tells us the value ofVi given the values of all other vari-
ables inU ∪ V , and the entire setF has a unique solution
for V , given a realization ofU . Symbolically, the set of
equationsF can be represented by writing

Vi = fi(PAi, Ui) i = 1, . . . , n

wherePAi is a subset of variables inV \Vi andUi stands
for a subset of variables inU .

Example 2 We have a simple causal model consisting of a
background variableU , endogenous variablesA andB, and
the set of the following functions:

A = U ∧B;
B = U ∨A.

For each value ofU , there is a unique solutionA,B. That is,
if U = 1, thenA = B = 1; otherwiseA = B = 0. 2

Submodel:LetM be a causal model,X be a set of variables
in V , andx be a particular realization ofX. A submodelMx

of M is the causal modelMx = 〈U, V, Fx〉 whereFx =
{fi : Vi 6∈ X} ∪ {X = x}.
Submodels are useful for representing the effect of local ac-
tions and hypothetical changes.Mx represents the model
that results from a minimal change to makeX = x hold
true under any realization ofU .

Probabilistic causal model:A probabilistic causalmodel
(PCM) is a pair〈M,P 〉 whereM is a causal model andP
is a probability distribution over the domain ofU .

Note that because the set of functional equations forms a
mapping fromU to V , the probability distributionP also
induces a probability distribution over the endogenous vari-
ables. Hence, given any subsetsX and E of U ∪ V , the
conditional probabilityP (x|e) = P (X = x|E = e) is well-
defined in the model〈M, P 〉.
Probabilistic queries and their entailment in PCM

* Given a PCMM = 〈M, P 〉, the probability ofx given
an observatione is the conditional probabilityP (x|e). If
P (x|e) = p, we writeM |=C P (x|e) = p.

* Given a PCMM = 〈M,P 〉, the probability ofx given an
interventiondo(y), denoted byP (x|do(y)), is the proba-
bility of x computed w.r.t the submodelMy = 〈My, P 〉.
If P (x|do(y)) = p, we writeM |=C P (x|do(y)) = p.

* Given a PCM M = 〈M, P 〉, the probability of x
given observatione and interventiondo(y), denoted by
P (x|e, do(y)), is the probabilityP (x|do(y)) that is com-
puted w.r.t the modified causal modelM′ = 〈My, Pe〉.
Here,Pe is the conditional probabilityP ( |e) computed
w.r.t the modelM = 〈M,P 〉. If P (x|e, do(y)) = p we
writeM |=C P (x|e, do(y)) = p.

From the above definition it follows that〈M, P 〉 |=C

P (x|do(y)) = p if and only if 〈My, P 〉 |=C P (x) = p ; and
〈M, P 〉 |=C P (x|e, do(y)) = p if and only if 〈My, Pe〉 |=C

Pe(x) = p.



Example 3 The PCM of thefiring squad example(Pearl
1999; 2000) has two exogenous variablesU andW , and en-
dogenous variablesA,B, C, andD; which stand for

U = court orders the execution;

C = captain gives a signal;

A = rifle A shoots;

B = rifle B shoots;

D = the prisoner dies;

W = rifle A pulls the trigger out of nervousness.

The causal relationships between the variables are described
by the following functional equations:

C = U ; A = C ∨W ; B = C; D = A ∨B.

The goal is to compute the probabilityP (¬D|D, do(¬A)),
which expresses thecounterfactualprobability that the pris-
oner would be alive ifA had not shot, given that the prisoner
is in fact dead. It is shown that the PCM entails:

P (u,w|D) =
{

P (u,w)
1−(1−p)(1−q) if u = U or w = W

0 if u = ¬U andw = ¬W

P (¬D|D, do(¬A)) = q(1−p)
1−(1−p)(1−q)

wherep = P (U) andq = P (W ). 2

Encoding PCM in PAL
In this section we give an encoding of PCM in PAL, illustrate
the encoding with an example, and show the correspondence
between query entailment in PCM and query entailment of
the corresponding encoding in PAL.

General encoding of PCM in PAL: Given a PCMM =
〈M,P 〉 and assuming that the functionsfi(PAi, Ui) in M
are logical functions, we construct a PAL action theory
D(M) as follows:

• There are no non-inertial unknown variables.

• The inertial unknown variables are the exogenous vari-
ables inM with the same probability distributions:

probability of u is P (u).

• The endogenous variables inM are fluents inD(M).
Moreover, for every fluentVi, there is an additional flu-
entab(Vi) in D(M).

• For each functional equation of the formVi =
fi(PAi, Ui) in M , the following static causal rule is in
D(M):

¬ab(Vi) causes Vi ⇔ fi(PAi, Ui).

• For every fluentVi, D(M) has actions ‘make(Vi)’,
‘make(¬Vi)’ with the following effects:

make(Vi) causes {ab(Vi), Vi}
make(¬Vi) causes {ab(Vi),¬Vi}.

The main intuition is that functional equations of the
form Vi = fi(PAi, Ui) need to be encoded as
¬ab(Vi) causes Vi = fi(PAi, Ui) instead of the straight-
forward encodingtrue causesVi = fi(PAi, Ui). Then the
equationVi = fi(PAi, Ui) can be properly inactivated by
actionmake(Vi).
Let us construct the PAL encoding of the PCM in Example 3.
The action theory contains inertial unknown variablesU and
W , fluentsA,B, C,D, ab(A), ab(B), ab(C), and ab(D).
Translated into PAL, the functional equations become the
following static causal laws:

¬ab(C) causes C ⇔ U
¬ab(A) causes A ⇔ C ∨W
¬ab(B) causes B ⇔ C
¬ab(D) causes D ⇔ A ∨B

(6)

We now relate the probabilities entailed by the PCM in Ex-
ample 3 with those entailed by its PAL encoding. (In the fol-
lowing, χ denotes the indicator function, that is,χ(X) = 1
if X is true andχ(X) = 0 if X is false.)

Proposition 1 Let M = 〈M,P 〉 be the PCM of firing
squad in Example 3, and let us denote its encoding in PAL
by D(M).
Let us denote that

init¬ab = {initially ¬ab(A),¬ab(B),¬ab(C),¬ab(D)} .

Then for anyu andw literals ofU andW :

P (initially {u,w}|init¬ab, initially D)

=
{

P (u,w)
1−(1−p)(1−q) if u = U or w = W,

0 if u = ¬U andw = ¬W.
(7)

P (¬D after make(¬A)|init¬ab, initially D)

=
q(1− p)

1− (1− p)(1− q)
(8)

Proof (sketch).

First we use the Bayes’ rule to compute as follows.

P (initially {u,w}|init¬ab, initially D)

=
P (initially {u,w}, initially D|init¬ab)

P (initially D|init¬ab)
(9)

Because of the static causal laws (6), giveninit¬ab, the vari-
ablesU,W and the fluentsA, B,C, D in the initial state sat-
isfy that

C ⇔ U, A ⇔ C ∨W,
B ⇔ C, D ⇔ A ∨B.

(10)

It follows from (10) that¬D ⇔ ¬U ∧ ¬W (in the initial

state). Hence,

P (initially ¬D|init¬ab)
= P (initially ¬U, initially ¬W |init¬ab)
= P (U = 0,W = 0) = (1− p)(1− q).



Therefore, we have:

P (initially D|init¬ab)
= 1− P (initially ¬D|init¬ab)
= 1− (1− p)(1− q). (11)

Because¬D ⇔ ¬U ∧ ¬W in the initial state, we also
have that: initially D ⇔ initially U ∨ initially W. Con-
sequently, ifu = U or w = W then:

P (initially {u,w}, initially D|init¬ab)
= P (initially {u,w}|init¬ab) = P (u,w).

Otherwise, ifu = ¬U andw = ¬W then:

P (initially {u, w}, initially D|init¬ab) = 0.

Finally, we have that:

P (initially {u,w}, initially D|init¬ab)

=
{

P (u, w) if u = U or w = W
0 if u = ¬U andw = ¬W.

(12)

It is easy to see that (7) follows from (9), (11) and (12).
For proving (8), we use the formula:

P (¬D after make(¬A)|init¬ab, initially D) =∑
s

P (¬D after make(¬A)|s)P (s|init¬ab, initially D)

(13)

Observe thatP (s|init¬ab, initially D) = 0 if init¬ab does
not hold ins (that is,s 6|= init¬ab). Hence, the right hand
side depends only on the terms containings such thats |=
init¬ab. In the following we will consider onlys such that
s |= init¬ab. Let us assume thatu and w are the literals
of U and W that hold in the initial states. The variables
and fluents in the initial states satisfy the functions in (10).
Consequently, the variables and fluents ins are uniquely de-
termined by the values ofU andW , that is, byu andw. So
s is also uniquely determined byu andw. Thus we have:

P (s|init¬ab, initially D)
= P (initially {u,w}|init¬ab, initially D) (14)

Assume that we reach the states′ by executingmake(¬A)
in the initial states. The action causesab(A) and¬A to be
true. Then it follows from the static causal laws (6) that in
the states′: C ⇔ U , B ⇔ C andD ⇔ B. Therefore,
in the states′, we have thatD ⇔ U . BecauseU is an
inertial unknown variable, its values are the same ins ands′.
Consequently,

¬D after make(¬A) ⇔ ¬D ∈ s′

⇔ ¬U ∈ s′ ⇔ ¬U ∈ s ⇔ initially ¬U

Sinces uniquely depends onu,w:

P (initially ¬U |s) = P (initially ¬U |u,w)

Thus we have:

P (¬D after make(¬A)|s)
= P (initially ¬U |s) = χ(u = ¬U) (15)

From (13), (14) and (15), we have that:

P (¬D after make(¬A)|init¬ab, initially D)

=
∑
u,w

χ(u = ¬U)P (initially {u,w}|init¬ab, initially D)

Note that χ(u = ¬U) 6= 0 only if u =
¬U . Furthermore, because of (7), ifu = ¬U then
P (initially {u,w}|init¬ab, initially D) 6= 0 only if w =
W . So the only possible positive term in the above sum cor-
responds to the pairu = ¬U,w = W . Then:

P (¬D after make(¬A)|init¬ab, initially D)
= P (initially {¬U,W}|init¬ab, initially D)

=
P (¬U,W )

1− (1− p)(1− q)
=

q(1− p)
1− (1− p)(1− q)

.

Relating PCM and PAL: the main result
We generalize Proposition 1 to the following general result.

Theorem 1 Given a PCMM = 〈M, P 〉, let D(M) be its
respectively constructed PAL action theory. Letinit¬ab =
{initially ¬ab(v)|v ∈ V }. Letu be a subset of background
variable,v andw be subsets of endogenous variables. Then
we have the following relations between entailments in PCM
and PAL:

• M entailsP (u|w) = p if and only ifD(M) entails

P (initially u|init¬ab, initially w) = p

• M entailsP (w|do(v)) = p if and only ifD(M) entails

P (w after do(v)|init¬ab) = p

• M entailsP (¬w|w, do(¬v)) = p if and only ifD(M)
entails

P (¬w after make(¬v) |init¬ab, initially w) = p

Due to lack of space, we do not present the proof Theorem
1 in detail. This proof is based on a reasoning similar to that
of the proof of Proposition 1.

Related works and discussion
The works closely related to ours include Poole (1997),
Thielscher (1999), Finzi & Lukasiewicz (2003)2. These
works also provide formal translations between probabilistic
formalisms for reasoning about actions.
Poole (1997) introducesindependent choice logic(ICL) of
independent choices and logic programs that specify the
consequence of choices and actions. Poole (1997) has shown
that many formalisms can be translated into ICL, includ-
ing influence diagrams, Markov decision problems (MDPs),
strategic form of games and (dynamic) Bayesian networks.
The relation between ICL and PAL is still unknown.
Thielscher (1999) translates causal models (without proba-
bilities) into Fluent Calculus. Like the fluentsab(Vi), their
generic fluentDenied(x) is used to simulate how an action
inactivates respective functional equations. Nevertheless, the

2We thank anonymous reviewers for pointing this out.



semantics of counterfactuals by Thielscher (1999) is essen-
tially non-probabilistic. We also plan to relate this semantics
to PAL in the future extension of our work.

Finzi & Lukasiewicz (2003) provide translations between
PCM and ICL then extends the notions of structural causes
and explanations to ICL-theories. The translations are re-
stricted to a special class of PCMs whose causal graphs are
acyclic. This restriction is probably due to the fact that ICL is
defined with acyclic logic programs. Moreover, their and our
method of analysis are orthogonal. In Finzi & Lukasiewicz
(2003), the extended notions are first translated into PCM to-
gether with the ICL; then they are semantically interpreted in
the translated PCM model. In our case, probabilistic queries
can be interpreted separately in PCM and PAL semantics.
Our contribution was showing that the translation from PCM
to PAL is semantically correct. Finally, counterfactual rea-
soning was a major point in our work (see (iii) in Theo-
rem 1), which has not been studied in Finzi & Lukasiewicz
(2003).

Baral, Tran, & Le (2002) discuss differences between PAL
and PCM in detail. With regard to our work in this pa-
per, it is noticeable that we have used only inertial vari-
ables in the encoding of PCM. Another important aspect
of the PAL encoding is that as the world progresses if we
want to reactivate a previously inactivated functional equa-
tion Vi = fi(PAi, Ui) all we need to do is makeab(Vi)
false. (Reactivation need to be done with care though.) In
PCMs once a functional equation is inactivated it can no
longer be activated.

Finally, the proof of Proposition 1 (as well as that of The-
orem 1) has referred to an important assumption of causal
model. It is the assumption that the set of functional equa-
tions uniquely determines the values of the endogenous vari-
ables, given the values of the exogenous variables. More-
over, counterfactual probabilities are not well-defined in
PCM without the assumption. While it is not clear how to
do extend counterfactual reasoning in PCM without this as-
sumption, it is straightforward to do so in PAL framework.

Conclusion

In this paper we have presented a translation of probabilistic
causal models into the action description language PAL. The
translation shows that the language of PCMs is semantically
equivalent to a sub-language of PAL, which contains onlyin-
ertial unknown variables and a special set of actions acting
on fluents ’ab(Vi)’. Our result has several important implica-
tions: (i) PAL is more expressive than PCM; (ii) PCM does
not capture probabilistic effects of actions, which are en-
coded bynon-inertialunknown variables in PAL; (iii) PAL
is more suitable than PCM for reasoning about actions.
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