
Probabilistic reasoning with answer sets

Chitta Baral1, Michael Gelfond2, and Nelson Rushton2

1 Department of Computer Science and Engineering
Arizona State University
Tempe, Arizona 85287

chitta@asu.edu
2 Department of Computer Science

Texas Tech University
Lubbock, Texas 79409

mgelfond@cs.ttu.edu, nrushton@coe.ttu.edu ?

Abstract. We give a logic programming based account of probability and de-
scribe a declarative language P-log capable of reasoning which combines both
logical and probabilistic arguments. Several non-trivial examples illustrate the
use of P-log for knowledge representation.

1 Introduction

A man is sitting at a blackjack table, where cards are being dealt from a single
deck. What is the probability he is dealt a blackjack (two cards, one of which
is an ace, and the other of which is a 10 or a face card)? The standard answer
is 4 ∗ 16/C(52, 2). Now suppose that on the previous hand, cards removed
from the deck were a king, two 3’s, an 8 and a 5. This changes the resulting
calculation – but only for someone who saw the cards dealt, and takes them into
account. Considering more information could change the result even further. In
fact, the probability the player receives a blackjack will be either 1 or 0 if we
take into account the arrangement of the already-shuffled cards lying in the
shoe.

This simple example illustrates an important point: In order to be well posed, questions
about probabilities must be asked and answered with respect to a body of knowledge.
In this paper we introduce P-log, a language for representing such knowledge. P-log
allows the user to represent both logical knowledge and basic probabilistic information
about a domain; and its semantics provides a mechanism for systematically deriving
conditional and unconditional probabilities from the knowledge represented. P-log uses
A-Prolog3 or its dialects to express logical knowledge. Basic probabilistic information
is expressed by probability atoms, say pr(a|c B) = v, which is read intuitively as
saying a is caused by factors determined by B with probability v. As noted in [16],
? We want to thank the reviewers for useful comments. The last two authors were partially

supported by NASA under grants NCC9-157, NAG2-1560.
3 The language of logic programs with classical and default negation and disjunction under the

answer set semantics [4].

causal probabilities differ from ordinary conditional probabilities in two respects. First,
a causal probability statement implicitly represents a set of conditional independence
assumptions: given its cause C, an effect E is probabilistically independent of all factors
except the (direct or indirect) effects of E. Second, causal probabilities can be used to
determine the effects of actions which interrupt the normal mechanisms of a model,
while conditional probabilities cannot do this in general (see Example 4). Both of these
differences are captured in the semantics of P-log.

2 The P-log Language

2.1 Syntax of P-log

Let L be a dialect of A-Prolog (e.g. [13, 14, 3, 2]). A probabilistic logic program (P-
log program), Π , over L consists of sorted signature, declarations, regular rules of L,
probabilistic information, observations, and actions.

Signature: The sorted signature Σ of Π contains sets O, F, and R of object, function,
and relation names respectively. We assume F is the disjoint union of sets Fr and Fa.
Members of Fa will be called attributes. Terms are formed from O and Fr, and atoms
from R and the set of terms. In addition, we allow atoms of the form a(t) = t0, where
t0 is a term, t a vector of terms, and a is an attribute. Terms and literals are normally
denoted by (possibly indexed) letters t and l respectively; letters c’s, a’s, and r’s are
used as generic names for sorts, attributes and relations; other lower case letters denote
objects; capital letters stand for variables. As usual a rule with variables is viewed as a
shorthand for the collection of its ground instances (with variables replaced by properly
sorted ground terms).

The declaration of a P-log program is a collection of definitions of sorts, and typing
information for attributes and relations.

A sort c can be defined by explicitly listing its elements, c = {x1, . . . , xn}, or by a
logic program with a unique answer set A. In the latter case x ∈ c iff c(x) ∈ A. A
statement

rel r1 : c11 × . . .× c1n, . . . , rk : ck1 × . . .× ckm (1)

specifies sorts for parameters of relations r1, . . . , rk. The domain and range of an at-
tribute a are given by a statement

a : c1 × . . .× cn → c0 (2)

For relations and attributes without parameters we simply write rel r and a : c0 respec-
tively.

The following example will be used throughout this section.

Example 1. Consider a domain containing two dice. A P-log program Π0 modeling
the domain will have a signature Σ containing the names of the two dice, d1 and
d2, an attribute roll mapping each die into its value, an integer from 1 to 6, relations

owns(D, P), even(D), and even where P and D range over the sorts person and
dice respectively, and “imported” arithmetic functions + and mod. The corresponding
declarations, D1, will be as follows:

dice = {d1, d2}. score = {1, 2, 3, 4, 5, 6}. person = {mike, john}.
roll : dice→ score.
rel owns : dice× person, even : dice, even.

The regular part of a P-log program consists of a collection of rules of L. A rule can
contain atoms of the form a(t) = y which are viewed as shorthand for an L atom
a(t, y)). For instance, regular part D2 of program Π0 may contain rules of A-Prolog

even(D)← roll(D) = Y, Y mod 2 = 0.
¬even(D)← not even(D).
even← roll(d1) = Y1, roll(d2) = Y2, (Y1 + Y2) mod 2 = 0.
owns(d1, mike). owns(d2, john).

Probabilistic information consist of statements of the form:

random a(t) : B (3)

pr(a(t) = y |c B) = v (4)

where v ∈ [0, 1], B is a collections of Σ-literals, and pr is a special symbol not belong-
ing to Σ. By pr(a(t) = y |c B) we denote the probability of a(t) = y being caused by
factors determined by B. If B in (3) (or (4)) is empty we simply write random a(t)
(or pr(a(t) = y) = v). Statement (3) says that, given B, the value of a(t) is normally
selected at random; (4) gives a causal probability of a particular selection. For instance,
the dice domain may include probabilistic part, D3:

random roll(D).
pr(roll(D) = Y |c owns(D, john)) = 1/6.
pr(roll(D) = 6 |c owns(D, mike)) = 1/4.
pr(roll(D) = Y |c Y 6= 6, owns(D, mike)) = 3/20.

This says that the die owned by John is fair, while the die owned by Mike is biased to
roll 6 at a probability of .25. Statements of type (4) will be sometimes referred to as
probabilistic atoms.

We will have a special agreement for boolean attributes. First, pr(a(t) = true) and
pr(a(t) = false) will be written as pr(a(t)) and pr(¬a(t)). Second, for each proba-
bilistic atom pr(a(t)) = v from the program we will automatically generate the atom
pr(¬a(t)) = 1− v. This will allow the user to write fewer probabilistic atoms.

Observations and actions are statements of the respective forms

obs(l). do(a(t) = y)).

Observations are used to record the outcomes of random events, i.e., random attributes
and their consequences. The dice domain may, for instance, contain {obs(roll(d1) =
4)} recording the outcome of rolling dice d1. do(a(t) = y) indicates that a(t) = y is

made true as a result of a deliberate (non-random) action. For instance, {do(roll(d1) =
4)} may indicate that d1 was simply put on the table in the described position. The
meaning of do is briefly discussed in the definition of the semantics and in Examples 3
and 5. For more detailed discussion of the difference between actions and observations
in the context of probabilistic reasoning see [16]. The program Π0 obtained from Π by
removing observations and actions will be referred to as the base of Π . This program
normally contains the reasoner’s initial knowledge.

2.2 Semantics of P-log

The semantics of a probabilistic program Π (over dialect L of A-Prolog) is given by the
sets of beliefs of a rational agent associated with Π , together with their probabilities.
Sometimes we refer to these sets as possible worlds of Π . The precise definition is based
on the mapping of Π into its L counterpart, Π ′, describing Π’s intuitive meaning.

Construction of Π ′

Π ′ is a program of L consisting of sort declarations of Π (with c = {x1, . . . , xn} inter-
preted as c(x1), . . . , c(xn)), its regular part, actions and observations, and the collection
of rules:

1. Random Selection:

– For each non-boolean attribute a with range {y1, . . . , ym}:

a(X, y1) or . . . or a(X, ym)← random(a(X)) (5)

– For each boolean attribute a:

a(X) or ¬a(X)← random(a(X)) (6)

(Note that in both cases X will not be present for attributes of arity 0).
– For each attribute a:

¬a(X, Y1)← a(X, Y2), Y1 6= Y2, (7)

2. Randomness and Deliberate Actions:

– Random attributes normally have random values: For each declaration (3):

random(a(t))← B, not ¬random(a(t)) (8)

– Deliberate actions are successful:

a(X, Y)← do(a(X) = Y). (9)

– The value assigned to a(X) by a deliberate action is not random.

¬random(a(X))← do(a(X) = Y) (10)

This is a cancellation axiom for (8).

3. Causal Probabilities:
For each probability atom (4):

pr(a(t, y), v)← B, a(t, y), random(a(t)). (11)

This rule assigns probability v to a(t) = y in every possible world in which a(t) =
y is caused by B.

4. Eliminating Impossible Worlds
– Accounting for the observations:

For every attribute a,

← obs(a(X, Y)), not a(X, Y)). (12)

The rule selects possible worlds which match the observation. Worlds not con-
taining a(X, Y) are eliminated.

– Possible worlds must have non-zero probabilities:

← pr(a(X, Y), 0). (13)

This rule ensures that every possible world of the program is truly possible,
i.e., has a non-zero probability.

– The value of an attribute is either random or is assigned by a deliberate action
but not both.

← obs(a(X, Y)), do(a(X) = Y). (14)

This completes the construction of Π ′.

Now we are ready to define the probability measure, µ, induced by the P-log program
Π with signature Σ.

Definition 1. (Possible Worlds)
The set, W , of Σ-literals from an answer set of Π ′ is called a possible world (answer
set) of Π .

It is not difficult to show that there is one-to-one correspondens, α, between the set Ω
of possible worlds of Π and the collection of answer sets of Π ′.

Definition 2. (The probability measure)

1. The unnormalized probability, P̂Π(W), of a possible world W is

P̂Π(W) =
∏

pr(l,v)∈α(W)

v

2. The probability measure, µΠ(W), of a possible world W induced by Π is the un-
normalized probability of W divided by the sum of the unnormalized probabilities
of all possible worlds of Π , i.e.,

µΠ(W) = P̂Π(W)/
∑

Wi∈Ω

P̂Π(Wi)

Formulas of Σ are constructed from atoms of Σ and the symbol > using ∧, or , and ¬.
We follow [18] and expand the probability measure induced by Π to define probability,
PΠ of formulas of Σ. First we define the truth (W ` A) and falsity (W a A) of a
formula A with respect to a possible world W :

1. W ` >.
2. For any Σ-literal l, W ` l if l ∈W ; W a l if l ∈W 4

3. W ` A1 ∧A2 if W ` A1 and W ` A2;
W a A1 ∧A2 if W a A1 or W a A2.

4. W ` A1 or A2 if W ` A1 or W ` A2; W a A1 or A2 if W a A1 and W a A2.
5. W ` ¬A if W a A; W a ¬A if W ` A.

A formula A which is neither true nor false in W is undefined in W . Now we are ready
for the main definition:

Definition 3. (Probability)
The probability, PΠ(A), of a formula A, is the sum of the measures of the possible
worlds of Π in which A is true, i.e.

PΠ(A) =
∑

W`A

µ(W).

At this point it maybe useful to note the number of substantial differences between this
definition and a more traditional definition of (subjective) probability from [18]. We
share the view from [18] that

. . . probability is an agent’s measure of belief in some propositions based on
the agent’s knowledge.

Moreover, both approaches use the language of possible worlds and probability mea-
sures. But the possible worlds of the latter are two-valued interpretations describing
possible states of the world; the agent’s knowledge is ultimately given by a probabilistic
measure which can be directly defined or extracted from conditional probabilities and
independence assumptions. The former defines possible worlds as beliefs of the rational
agent whose background knowledge is represented by program Π; the corresponding
measure is induced by causal probabilistic information from the program.

Explicit representation of agent’s beliefs allow us to give a natural formalization of the
classical notion of conditional probability PPi(A|C), where A is a formula of Σ and C
consists of σ-literals and actions.

Definition 4. (Conditional Probability)
The conditional probability, PΠ(A|C) is the probability PR(A) where R = Π ∪ C∗

and C∗ = {obs(l) : l ∈ C} ∪ {do(l) : do(l) ∈ C}.

(The choice of this definition as opposed to a more traditional definition of conditional
probability will be discussed in the following sections.)

4 l = ¬p(t) if l = p(t); l = p(t) if l = ¬p(t).

Definition 5. A probabilistic program Π is said to be consistent if

1. Π ′ is consistent (i.e., has a consistent answer set).
2. Let Π0 be the base of Π . Then, for any probability atom pr(l|cB) = y from Π0,

the conditional probability PΠ0
(l|B) = y whenever the latter is defined.

3. Whenever pr(l|B1) = y1 and pr(l|B2) = y2 belong to Π , no possible world of Π
satisfies B1 and B2.

The first requirement ensures the consistency of the program rules. The second guar-
antees that PΠ satisfies the probabilistic statements from Π . The third requirement en-
forces the independence assumptions embodied in causal probabilities: given its cause
B, an effect l has a fixed probability, independent of all other factors (except for the
effects of l).

The following proposition says that PΠ satisfies axioms of probability.

Proposition 1. For consistent P-log program Π:

1. For every formula A, 0 ≤ PΠ(A) ≤ 1,
2. PΠ(>) = 1, and
3. PΠ(A or B) = PΠ(A) + PΠ(B), for any mutually exclusive formulas A and B.

(Note that, since A or ¬A may be undefined in a possible world W, PΠ(A or ¬A) is
not necessarily equal to 1. This explains our use of > in the clause (2) above.)

To illustrate these definitions let us further elaborate the “dice” example.

Example 2. Let T0 consist of first three sections D1, D2, D3, of the “dice” program
from Example 1. Then T ′

0 consists of rules of D2 and the rules:

dice(d1). dice(d2). person(mike). person(john).
score(1). score(2). score(3). score(4). score(5). score(6).
roll(D, 1) or roll(D, 2) or . . . or roll(D, 5) or roll(D, 6)← random(roll(D)).
¬roll(D, Y2)← roll(D, Y1), Y1 6= Y2.
random(roll(D))← not ¬random(roll(D)).
¬random(roll(D))← do(roll(D) = Y).
pr(roll(D, Y), 1/6)← owns(D, john), roll(D, Y), random(roll(D)).
pr(roll(D, 6), 1/4)← owns(D, mike), roll(D, 6), random(roll(D)).
pr(roll(D, Y), 3/20)← Y 6= 6, owns(D, mike), roll(D, Y), random(roll(D)).
← obs(a(X, Y)), not a(X, Y).
a(X, Y)← do(a(X, Y).
← pr(a(X, Y), 0).

It is easy to check that T ′
0 has 36 answer sets containing different pairs of atoms

roll(d1, i1) and roll(d2, i2). Each answer set of T ′
0 containing roll(d1, 6) will contain a

probability atom pr(roll(d1, 6), 1/4), as well as a probability atom pr(roll(d2, i), 1/6)
for some i, and hence have the probability 1/24. Any other answer set has probability
1/40. It is easy to check that the program is consistent.

Now let T1 = T0 ∪ {obs(roll(d1, 4))}. By definition,
PT0

(even|roll(d1, 4)) = PT1
(even) = 1/2. The same result can be obtained by using

classical definition of conditional probability,

P (A|B) = P (A ∧B)/P (B) (15)

The following proposition shows that this is not a coincidence.

Proposition 2. let Π be a consistent P-log program over the A-Prolog. Then for every
formula A and every collection, B, of Σ-literals such that PΠ(B) 6= 0, PΠ satisfies
condition (15) above.

Note that the asymmetry between A and B is not essential. It is caused by the syntactic
restriction of A-Prolog which prohibits arbitrary formulas in the heads of rules. The
restriction can be lifted if instead of A-Prolog we consider its dialect from [8] which
can be done with very minor changes in the proof.

Example 3. Consider a program, P0

random a : boolean.
pr(a) = 1.

Recall that P0 will be (automatically) expanded to include a new probability atom,
pr(¬a) = 0. It is easy to see that P ′

0 has one answer set, which contains a (the possible
answer set containing ¬a is eliminated by constraint (13)). Obviously, PP0

(a) = 1 and
hence the program is consistent. Now we compare P0 with the following program P1:

random a : boolean.
a.

The programs have the same possible worlds and the same probability measures. How-
ever, they express different information. To see that, consider programs P2 and P3 ob-
tained by adding the statement do(¬a) to P0 and P1 respectively. P2 remains consistent
— it has one possible world {¬a}— while P3 becomes inconsistent (see rule (9)). The
statement pr(a) = 1 is defeasible while the statement a is not. This does not mean
however that the former can be simply replaced by the corresponding default. To see
that consider Π4

random a : boolean.
a← not ¬a.

Π4 has two possible worlds, {a} and {¬a} (note the interplay between the default and
rule 6 of Π ′

4). In other words “randomness” undermines the default. Finally consider
programs P5:

random a : boolean.
a.
pr(a) = 1/2.

and P6:

random a : {0, 1, 2}.
pr(a = 0) = pr(a = 1) = pr(a = 2) = 1/2.

Both programs are inconsistent. P5 has one possible world W = {a}, but P̂P5
(W) =

1/2, and hence PP5
(a) = 1 instead of 1/2.

P6 has three possible worlds, {a(0),¬a(1),¬a(2)}, {¬a(0), a(1),¬a(2)},
and {¬a(0),¬a(1), a(2)} each with unnormalized probability 1/2. Hence PP6

(a(0)) =
1/3 instead of 1/2. (Let V (B, t) be a multiset of v such that pr(a(t = y) = v ∈ Π for
some y ∈ range(a). Then it can be shown that if Π is consistent then for every B and
t the sum of the values in V (B, t) is 1).

3 Representing knowledge in P-log

Now we give several examples of non-trivial probabilistic knowledge representation
and reasoning performed in P-log.

Example 4. (Monty Hall Problem)
We start with solving the Monty Hall Problem, which gets its name from the TV game
show hosted by Monty Hall (we follow the description from
http://www.io.com/∼kmellis/monty.html): A player is given the opportunity to select
one of three closed doors, behind one of which there is a prize. The other two rooms
are empty. Once the player has made a selection, Monty is obligated to open one of the
remaining closed doors, revealing that it does not contain the prize. He then asks the
player if he would like to switch his selection to the other unopened door, or stay with
his original choice. Here is the problem: Does it matter if he switches?

The answer is YES. In fact switching doubles the player’s chance to win. This problem
is quite interesting, because the answer is felt by most people — including mathe-
maticians — to be counter-intuitive. Most people almost immediately come up with a
(wrong) negative answer and not easily persuaded that they made a mistake. We be-
lieve that part of the reason for the difficulty is some disconnect between modeling
probabilistic and non-probabilistic knowledge about the problem. In P-log this discon-
nect disappears which leads to a natural correct solution. In other words, the standard
probability formalisms lack the ability to formally represent certain non-probabilistic
knowledge that is needed in solving this problem. In the absence of this knowledge,
wrong conclusions are made. We will show that the use of P-log avoids this, as P-log
allows us to specify this knowledge explicitly.

The domain contains the set of three doors and three 0-arity attributes, selected, open
and prize. This will be represented by the following P-log declarations:

1. doors = {1, 2, 3}.
2. open, selected, prize : doors.

The regular rule section states that Monty can only open a door to a room which is not
selected and which does not contain the prize.

3. ¬can open(D)← selected = D.
4. ¬can open(D)← prize = D.
5. can open(D)← not ¬can open(D).
6. ← open = D,¬can open(D).

This knowledge (which can be extracted from the specification of the problem) is often
not explicitly represented in probabilistic formalisms leading to reasoners (who usually
do not realize this) to insist that their wrong answer is actually correct.

The probabilistic information about the three attributes of doors can be now expressed
as follows:

7. random prize, selected, open.
8. pr(prize = D) = 1/3.
9. pr(selected = D) = 1/3.
10. pr(open = D |c can open(D), can open(D1), D 6= D1) = 1/2.

The last rule is where most reasoners make a mistake. They assume that the probability
that Monty opens one of the remaining doors is 1/2. That is not the case. Monty knows
which door has a prize. If the prize is behind one of the unopened doors, he is not going
to open that one. In that case the probability of opening the door which has the prize
is 0 and the probability for the other one is 1. On the other hand if both unselected
doors do not have the prize, then and only then can Monty open either of the door
with probability 1/2. The above information is elegantly expressible in P-log and most
standard probabilistic reasoning language can not express it, without falling back on a
natural language such as English.

To eliminate an orthogonal problem of modeling time we assume that the player has
already selected door 1, and Monty opened door 2.

obs(selected = 1). obs(open = 2). obs(¬prize = 2).

Let us refer to the above P-log program as M . Because of the observations M has
two possible worlds W1, and W2: one containing prize = 1 and another containing
prize = 3.

Both W1 and W2 contain the probabilistic atom pr(selected = 1) = 1/3). In addition,
W1 contains pr(prize = 3) = 1/3 and pr(open = 2) = 1 — with the prize being
behind door 3 Monty is forced to open door 2. P̂ (W1) = 1/9. Similarly, W2 contains
pr(prize = 1) = 1/3 and pr(open = 2) = 1/2. P̂ (W2) = 1/18. This time the
prize is behind door 1, i.e. Monty had a choice. Thus PM (prize = 3) = 2/3, and
PM (prize = 1) = 1/3. Changing the door doubles the player’s chance to win.

Now if the player assumes (either consciously or without consciously realizing it) that
Monty could have opened any one of the unopened doors (including one which contains
the prize) then his regular rule section will have a different constraint, i.e. (6) will be
replaced by:

← open = D, selected = D.

and the rule (10) in his probabilistic part will instead be:

pr(open = D |c ¬selected = D) = 1/2.

The resulting program N will also have two possible worlds containing prize = 1
and prize = 3 respectively, each with unnormalized probability of 1/18, and therefore

PN (prize = 1) = 1/2 and PN (prize = 3) = 1/2. Changing the door will not increase
the probability of getting the prize.

It may also be worth mentioning that we do not need to assume that Monty is equally
likely to select one of the two available doors. A simple computation shows that the
change increases the players chances to win as long as each of the doors can be open
with some positive probability. The problem can of course be generalized to an arbitrary
number of doors. This can be done for instance by replacing rule (10) by

pr(open = D |c can open(D)) = 1/|{X : can open(X)}|

An expression |{X : can open(X)}| stands for the cardinality of the set of doors
Monty can open. (This can be directly encoded in A-Prolog with aggregates.) 2

The next example illustrates the ability of P-log to represent and reason with Bayesian
networks and to properly distinguish between observations and actions.

Example 5. (Simpson’s Paradox)
Let us consider the following story from [16]: A patient is thinking about trying an
experimental drug and decides to consult a doctor. The doctor has tables of the recovery
rates that have been observed among males and females, taking and not taking the drug.

Males: recover -recover num_of_people recovery_rate
drug 18 12 30 60%

-drug 7 3 10 70%

Females: recover -recover num_of_people recovery_rate
drug 2 8 10 20%

-drug 9 21 30 30%

What should the doctor’s advice be? Assuming that the patient is a male, the doctor
may attempt to reduce the problem to checking the following inequality

P (recover|male, drug) > P (recover|male,¬drug) (16)

The corresponding probabilities, given by the tables, are 0.6 and 0.7. The inequality
fails, and hence the advice is not to take the drug. This, indeed, is the correct advice. A
similar argument shows that a female patient should not take the drug.

But what should the doctor do if he has forgotten to ask the patient’s sex? Following the
same reasoning, the doctor might check whether

P (recover|drug) > P (recover|¬drug) (17)

This will lead to an unexpected result. P (recovery|drug) = 0.5 while
P (recovery|¬drug) = 0.4. The drug seems to be beneficial to patients of unknown
sex — though similar reasoning has shown that the drug is harmful to the patients of
known sex, whether they are male or female!

This phenomenon is known as Simpson’s Paradox: conditioning on A may increase
the probability of B among the general population, while decreasing the probability
of B in every subpopulation (or vice-versa). In the current context, the important and
perhaps surprising lesson is that conditional probabilities do not faithfully formalize
what we really want to know: what will happen if we do X? In [16] Pearl suggests a
solution to this problem in which the effect of deliberate action A on condition C is
represented by P (C|do(A)) — a quantity defined in terms of graphs describing causal
relations between variables. Correct reasoning therefore should be based on evaluating
the inequality

P (recover|do(drug)) > P (recover|do(¬drug)) (18)

instead of (17) (similarly for (16)). In Pearl’s calculus the first value equals .4, the
second, .5. The drug is harmful for the general population as well.

Note that in our formalism PΠ(C|do(A)) is defined simply as PR(C) where R =
Π ∪{do(A)} and hence P-log allows us to directly represent this type of reasoning. We
follow [16] and assume that the tables, together with our intuition about the direction
of causality between the variables, provide us with the values of the following causal
probabilities:

pr(male) = 0.5, pr(recover|cmale, drug) = 0.6,
pr(recover|cmale,¬drug) = 0.7, pr(recover|c¬male, drug) = 0.2,
pr(recover|c¬male,¬drug) = 0.3, pr(drug|cmale) = 0.75,
pr(drug|c¬male) = .25.

These statements, together with declarations:

random male, recover, drug : boolean

constitute a probabilistic logic program, Π , formalizing the story. The program de-
scribes eight possible worlds containing various values of the attributes. Each world
is assigned a proper probability value, e.g. PΠ({male, recover, drug}) = .5 ∗ .6 ∗
.75 = 0.225. It is not difficult to check that the program is consistent. The values
of PΠ(recover|cdo(drug)) = .4 and PΠ(recover|cdo(¬drug)) = .5 can be com-
puted by finding PΠ1

(recover) and PΠ2
(recover), where Π1 = Π ∪ {do(drug)} and

Π2 = Π ∪ {do(¬drug)}. 2

Now we consider several reasoning problems associated with the behavior of a mal-
functioning robot. The original version, not containing probabilistic reasoning, first
appeared in [6] where the authors discuss the difficulties of solving the problem in
Situation Calculus.

Example 6. (A malfunctioning robot)

There are rooms, r0, r1, and r2, reachable from the current position of a robot. The
robot navigation is usually successful. However, a malfunction can cause the robot to
go off course and enter any one of the rooms. The doors to the rooms can be open or
closed. The robot cannot open the doors.

The authors of [6] wanted to be able to use the corresponding formalization for correctly
answering simple questions about the robot’s behavior including the following “typical”
scenario: The robot moved toward open room r1 but found itself in some other room.
What room can this be?

The initial story contains no probabilistic information so we start with formalizing this
knowledge in A-Prolog. First we need sorts for time-steps and rooms. (Initial and final
moments of time suffice for our purpose).

time = {0, 1}. rooms = {r0, r1, r2}.

In what follows we use variable T for time and R for rooms. There will be two actions:

enter(T, R) - the robot attempts to enter the room R at time step T .

break(T) - an exogenous breaking action which may alter the outcome of this attempt.

A state of the domain is modeled by two time-dependent relations open(R, T) (room
R is opened at moment T), broken(T) (robot is malfunctioning at T), and the attribute,
in(T) : time→ rooms, which gives the location of the robot at T .

The description of dynamic behavior of the system is given by A-Prolog rules:

Dynamic causal laws describe direct effects of the actions (note that the last law is
non-deterministic):

broken(T + 1)← break(T).

in(T + 1, R)← enter(T, R),¬broken(T + 1).

in(T + 1, r0) or in(T + 1, r1) or in(T + 1, r2)← broken(T), enter(T, R).

To specify that the robot cannot go through the closed doors we use a constraint:

← ¬in(T, R), in(T + 1, R),¬open(R, T).

Moreover, the robot will not even attempt to enter the room if its door is closed.

← enter(T, R),¬open(R, T).

To indicate that in is a function we use static causal law:

¬in(T, R2)← in(T, R1), R1 6= R2.

We also need the inertia axioms:

in(T + 1, R)← in(T, R), not ¬in(T + 1, R).
broken(T + 1)← broken(T), not ¬broken(T + 1).
¬broken(T + 1)← ¬broken(T), not broken(T + 1).
(Similarly for open).

Finally, we describe the initial situation:

open(R, 0)← not ¬open(R, 0).
in(0, r1).
¬in(0, R)← not in(0, R).
¬broken(T)← not broken(T).

The resulting program, Π0, completes the first stage of our formalization.

It is easy to check that Π0 ∪{enter(0, r0)} has one answer set, A, and that in(1, r0) ∈
A. Program Π0 ∪ {enter(0, r0), break(0)} has three answer sets containing in(1, r0),
in(1, r1), and in(1, r2) respectively. If, in addition, we are given ¬open(r2, 0) the third
possibility will disappear.

Now we show how this program can be extended by probabilistic information and how
this information can be used together with regular A-Prolog reasoning.

Consider Π1 obtained from Π0 by adding

random in(T + 1) : enter(T, R), broken(T + 1).
pr(in(T + 1) = R|c enter(T, R), broken(T + 1)) = 1/2.
pr(in(T + 1) = R1|c R1 6= R2, enter(T, R2), broken(T + 1)) = 1/4.

together with the corresponding declarations, e.g.

in : time→ rooms.

It is not difficult to check that probabilistic program T1 = Π1 ∪ {enter(0, r0)} has the
unique possible world which contains in(1) = r0. Hence, PT1

(in(1) = r0) = 1. It is
easy to show that Π1 is consistent. (Note that the conditional probabilities correspond-
ing to the probability atoms of Π1, e.g., PT1

(in(1) = r0)|broken(1)), are undefined
and hence (2) of the definition of consistency is satisfied.)

The program T2 = T1 ∪ {break(0)} has three possible worlds — W0 containing
in(1) = r0, and W1, W2 containing in(1) = r1 and in(1) = r2 respectively; PT2

(W0) =
1/2 while PT2

(W1) = PT2
(W2) = 1/4. It is easy to see that T2 is consistent. Note that

PT1
(in(1) = r0) = 1 while PT2

(in(1) = r0) = 1/2 and hence the additional informa-
tion changed the degree of reasoner’s belief. 2

So far our probabilistic programs were based on A-Prolog. The next example shows the
use of P-log programs over CR-Prolog [2] — an extension of A-Prolog which combines
regular answer set reasoning with abduction. In addition to regular rules of A-Prolog
the new language allows so called consistency-restoring rules, i.e., rules of the form

l
+
← B (19)

The rule says that, given B, the reasoner may believe l but only if l is needed to restore
consistency of the program. A rule

l← B (20)

will be called the strict counterpart of (19). Let Π = Π0 ∪Π1 where Π0 and Π1 are
sets of regular and consistency restoring rules respectively be a program of CR-Prolog.
By sc(Π1) we denote the set of strict counterparts of rules from Π1. An answer set of
Π is an answer set of Π0 ∪R where R is minimal (with respect to set inclusion) subset
of sc(Π1) such that Π0 ∪R is consistent (i.e. has an answer set). Consider for instance
a program, E1,

1. p(a)← not q(a).

2. q(a)
+
← . 3. r(a)

+
← .

It is easy to see that it has one answer set - {p(a}. in this case the last two rules are
not applicable. Suppose now E1 is expended by a new information, ¬p(a). The new
program, E2 = E1 ∪ {¬p(a)}, also has one answer set, {¬p(a), q(a)}. This time cr-
rule (2) was necessary to restore consistency of the agent’s beliefs.

The next example elaborates the initial formalization of the robot story in CR-Prolog.

Example 7. (Probabilistic programs over CR-Prolog)
Let us expand the program T1 from Example 6 by a CR-rule

break(T)
+
← (21)

Denote the new program by T3. The rule (21) says that even though the malfunctioning
is rare it may happen. According to the semantics of CR-Prolog this rare event can be
used by the agent to ensure consistency of its beliefs.

The semantics of CR-Prolog guarantees that for any collection I of atoms such that
T1 ∪ I is consistent, programs T1 ∪ I and T3 ∪ I have the same answer sets; i.e., the
conclusions we made so far about the domain will not change if we use T3 instead of
T1. The added power of T3 will be seen when the use of T1 leads to inconsistency.
Consider for instance the scenario I0 = {obs(¬in(1) = r0)}. The first formalization
could not deal with this situation — the corresponding program would be inconsistent.

The program T4 = T3 ∪ I0 will use the CR-rule (21) to conclude break(0), which
can be viewed as a diagnosis for an unexpected observation. T4 has two answer sets
containing in(1) = r1 and in(1) = r2 respectively. It is not difficult to check that
PT3

(in(1) = r0) = 1 while PT3
(in(1) = r0)|I0) = PT4

(in(1) = r0) = 0. Inter-
estingly, this phenomenon cannot be modeled using classical conditional probabilities,
since classically whenever P (A) = 1, the value of P (A|B) is either 1 or undefined.

Our last example will show how Π1 can be modified to introduce some additional prob-
abilistic information and used to obtain most likely diagnoses.

Example 8. (Doing the diagnostics)
Suppose we are given a list of mutually exclusive faults which could be caused by the
breaking action, together with the probabilities of these faults. This information can be
incorporated in our program, Π1, by adding

faults = {f0, f1}. fault : time→ faults.
random fault(T + 1) : break(T).
pr(fault(T) = f0|cbroken(T)) = .4 pr(fault(T) = f1|cbroken(T)) = .6

Let us also assume that chances of the malfunctioning robot to get to room R are deter-
mined by the type of the faults, e.g.

pr(in(1) = r0|cfault(1) = f0) = .2 pr(in(1) = r0|cfault(1) = f1) = .1
pr(in(1) = r1|cfault(1) = f0) = .6 pr(in(1) = r1|cfault(1) = f1) = .5,
pr(in(1) = r2|cfault(1) = f0) = .2 pr(in(1) = r2|cfault(1) = f1) = .4

Note that this information supersedes our previous knowledge about the probabilities of
in and hence should replace the probabilistic atoms of Π1. The resulting program, Π2,

used together with {enter(0, r0), obs(¬in(0) = r0)} has four answer sets weighted by
probabilities. Simple computation shows that at moment 1 the robot is most likely to be
in room r1.

4 Relationship to Existing Work

Our work was greatly influenced by J. Pearl’s view on causality and probability. It can
be shown that the Bayesian Networks and Probabilistic Causal Models of Pearl can be
mapped into P-log programs of similar size. (Proofs of the corresponding theorems will
be given in the full version of this paper.) The examples discussed above show that, in
addition, P-log allows natural combination of logical and probabilistic information. We
were influenced to a lesser degree, by various work incorporating probability in logic
programming [12, 10, 7, 11, 9]. In part this is due to our use of answer set semantics,
which introduces unique challenges (as well as benefits, in our opinion) for the integra-
tion of probabilities.
The closest to our approach is that of Poole [20, 19]. We note three major differences be-
tween our work and the work of Poole [20, 19]. First, A-Prolog provides a richer logical
framework than does choice logic, including default and classical negation and disjunc-
tion. Moreover, our approach works, without modification, with various extensions of
A-Prolog including the use of CR-rules. Second, in contrast to Poole’s system, the logi-
cal aspects of P-log do not ”ride on top” of the mechanism for generating probabilities:
we bring to bear the power of answer set programming, not only in describing the con-
sequences of random events, but also in the description of the underlying probabilistic
mechanisms. Third, our formalization allows the distinction between observations and
actions (i.e., doing) to be expressed in a natural way, which is not addressed in choice
logic.
There are three elements which, to our knowledge, are new to this work. First, rather
than using classical probability spaces in the semantics of P-log, we define probabil-
ities of formulas directly in terms of the answer set semantics. In this way, A P-log
program induces a classical probability measure on possible worlds by its construction,
rather than relying on the existence of a classical measure compatible with it. We see
several advantages to our re-definition of probabilities. Most notably, the definition of
conditional probability becomes more natural, as well as more general (see Example
7). Also, possible worlds and events correspond more intuitively to answer sets and for-
mulas than to the sample points and random events (i.e., sets of sample points) of the
classical theory.
Second, P-log allows us to elaborate on defaults by adding probabilities as in Exam-
ples 7-8. Preferences among explanations, in the form of defaults, are often more easily
available from domain experts than are numerical probabilities. In some cases, we may
want to move from the former to the latter as we acquire more information. P-log allows
us to represent defaults, and later integrate numerical probabilities by adding to our ex-
isting program rather than modifying it. Finally, the semantics of P-log over CR-Prolog
gives rise to a unique phenomenon: we can move from one classical probability mea-
sure to another merely by adding observations to our knowledge base, as in Example 7.
This implies that P-log probability measures are more general than classical ones, since

the measure associated with a single P-log program can, through conditioning, address
situations that would require multiple distinct probability spaces in the classical setup.

References

1. F. Bacchus. Representing and reasoning with uncertain knowledge. MIT Press, 1990
2. M. Balduccini and M. Gelfond. Logic Programs with Consistency-Restoring Rules. In AAAI

Spring 2003 Symposium, 2003.
3. T. Eiter, W. Faber, N. Leone, and G. Pfeifer. Declarative problem solving in dlv. In J. Minker,

editor, Logic Based Artificial Intelligence, pages 79–103. Kluwer Academic publisher, 2000.
4. M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases.

In New Generation Computing, Vol. 9, NOS. 3,4 365–387, 1991.
5. L. Getoor, N. Friedman, D. Koller, and A. Pfeffer. Learning probabilistic relational models.

In Relational data mining, pages 307–335. Springer, 2001.
6. G. Iwan and G. Lakemeyer. What observations really tell us. In CogRob’02, 2002.
7. Kristian Kersting and Luc De Raedt. Bayesian logic programs. In J. Cussens and A. Frisch,

editors, Proceedings of the Work-in-Progress Track at the 10th International Conference on
Inductive Logic Programming, pages 138–155, 2000.

8. V. Lifschitz, L. R. Tang, and H. Turner. Nested expressions in logic programs. in Annals of
Mathematics and Artificial Intelligence, Vol. 25, pp. 369-389, 1999.

9. T. Lukasiewicz. Probabilistic logic programming. In ECAI, pages 388–392, 1998.
10. S. Muggleton. Stochastic logic programs. In L. De Raedt, editor, Proceedings of the 5th

International Workshop on Inductive Logic Programming, page 29. Department of Computer
Science, Katholieke Universiteit Leuven, 1995.

11. Raymond T. Ng and V. S. Subrahmanian. Probabilistic logic programming. Information and
Computation, 101(2):150–201, 1992.

12. Liem Ngo and Peter Haddawy. Answering queries from context-sensitive probabilistic
knowledge bases. Theoretical Computer Science, 171(1–2):147–177, 1997.

13. I. Niemelä and P. Simons. Smodels – an implementation of the stable model and well-
founded semantics for normal logic programs. In J. Dix, U. Furbach, and A. Nerode, editors,
Proc. 4th international conference on Logic programming and non-monotonic reasoning,
pages 420–429. Springer, 1997.

14. P. Simons,I. Niemelä, and T. Soininen. Extending and implementing the stable model se-
mantics. Artificial Intelligence Journal,138:181–234, 2002/

15. J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann Publishers, 1988.

16. J. Pearl. Causality. Cambridge University Press, 2000.
17. D. Poole. The independent choice logic for modeling multiple agents under uncertainty. Ar-

tificial Intelligence, 94(1-2 (special issue on economic principles of multi-agent systems)):7–
56, 1997.

18. D. Poole,A. Mackworth, and R. Goebel Computational Intelligence Oxford University Press,
1998.

19. D. Poole. Abducing through negation as failure: Stable models within the independent choice
logic. Journal of Logic Programming, 44:5–35, 2000.

20. David Poole. Probabilistic horn abduction and Bayesian networks. Artificial Intelligence,
64(1):81–129, 1993.

