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ABSTRACT
Motivation: In this paper we propose to use recent develop-
ments in knowledge representation languages and reasoning
methodologies for representing and reasoning about signaling
networks. Our approach is different from most other qualitative
systems biology approaches in that it is based on reasoning
(or inferencing) rather than simulation. Some of the advan-
tages of our approach are: we can use recent advances in
reasoning with incomplete and partial information to deal with
gaps in signal network knowledge; and can perform various
kinds of reasoning such as planning, hypothetical reasoning
and explaining observations.
Results: Using our approach we have developed the system
BioSigNet-RR for representation and reasoning about signa-
ling networks. We use a NFκB related signaling pathway to
illustrate the kinds of reasoning and representation that our
system can currently do.
Availability: The system is available on the Web at
http://www.public.asu.edu/∼cbaral/biosignet.
Contact: baral@asu.edu

1 INTRODUCTION
Our goal in this paper is to make progress towards develo-
ping a system (and the necessary representation language and
reasoning algorithms) that can be used to represent signal net-
works and pathways associated with cells and reason with
them. We are interested in qualitative representation and rea-
soning, which can emulate the reasoning done by biologists
(or biochemists) when they analyze and navigate a signaling
pathway, but at a much larger scale and with respect to lar-
ger networks. This is in contrast to the approaches where
signalling and transformation between various compounds are
expressed using differential equations (O.Voit, 2000; Mishra,
2002; Antoniotti et al., 2003; de Jong, 2002).

In recent years several qualitative approaches have been pro-
posed in systems biology (Priami, 2003). Most of these
approaches are concerned with modelling and analysis of the

model is done via simulation (Peleg et al., 2002; Regev et
al., 2001) and perturbation. While certain questions about
cell behavior can be easily answered using such an approach
(such as the impact of a particular event), it is computationally
expensive to answer questions about explaining a particu-
lar observation, or planning to alter the cell behavior in a
particular way using simulation. In both these cases a simu-
lation based approach would entail doing a large number of
simulations to find the right explanation or the right plan.

Our approach in this paper is a knowledge based approach.
We consider the cellular signal network as a knowledge base
which can be asked many different kinds of queries. For the
various kinds of queries the knowledge base is augmented
with various reasoning mechanisms that allow the answering
of the queries. This approach is more general than answering
standard database queries with respect to a signal network
database (Karp et al., 2000; Ogata et al., 1999), as the later
is limited to answering queries that can be expressed using a
database query language. For example, no existing database
query language can express a query whose answer is a plan
or an explanation.

An important dimension of our approach is that it allows for
reasoning mechanisms that gracefully handle incomplete or
partial information. This is extremely important as existing
signal networks and pathways often have missing or suspec-
ted interaction links, or proven interactions whose outputs are
uncertain, for example the yeast 2-hybrid interactions mentio-
ned by Sambrano (2003). Besides being able to handle such
incomplete information, our approach also allows for easy
updating (referred to as ‘elaboration tolerance’) of the know-
ledge base when new knowledge becomes available. This
avoids significant overhauling of the old model or scrapping
of the old model and making a new model from scratch. Note
that simple frame based approaches (Karp et al., 2000), which
are a sub-class of classical logic, are monotonic and hence not
elaboration tolerant.
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The above mentioned issues of reasoning with incomplete
information, elaboration tolerant representation, being able
to predict, explain and plan are some of the main topics in the
sub-area of ‘Knowledge Representation’ (KR) in the area of
‘Artificial Intelligence’ (AI).

The rest of the paper is organized as follows. In Section 2, we
discuss several related works and point out their differences
from our approach. Then we briefly describe the representa-
tion and reasoning system we have developed. It is followed by
examples of reasoning with NFκB related signaling pathways.
Finally, we discuss the scope of this approach and future
works. Due to lack of space we do not describe our system
implementation in detail here. We present some of the details
in the companion paper (Tran & Baral, 2004).

2 RELATED WORKS
Petri nets: Originally developed for modelling concurrent
systems, Petri nets and their extensions have been recently
used in modelling biological processes (for example see
Reddy et al., 1996; Peleg et al., 2002). Petri nets are intui-
tively appealing as a graphical modelling approach and have
a solid mathematical foundation. As mentioned in (Peleg et al.,
2002), several properties of Petri nets are relevant to biologi-
cal systems. These include: liveness, boundedness, soundness
and reachability. Despite the basic Petri nets being extended
to allow time, hierarchies and stochasticness, due to its origin
Petri nets are more of a modelling formalism than a representa-
tion and reasoning formalism. This leads to shortcomings such
as: (i) It is not clear how to represent and reason with incom-
plete knowledge using Petri nets. (ii) It is not clear how to do
explanation and diagnosis of unexpected observations using
a Petri net model. (iii) Although reachability corresponds to
plan existence, and finding reachability may be used for fin-
ding simple plans, it is not clear how to construct more general
plans (for example, ones involving conditional statements and
sensing) using a Petri net model.

π-calculus: The π-calculus is a formal language for spe-
cifying concurrent computational systems. In the biological
π-calculus model (Regev et al., 2001), molecules and their
individual domains are viewed as computational processes,
whereas the residues of domains correspond to communi-
cation channels. Molecular interaction and modification are
modelled as communication and channel transmission. The
π-calculus modelling approach supports computer execution
and analysis and formal verification. Similar to Petri nets, this
approach is more suitable for modelling and simulation than
elaboration tolerant representation and reasoning. In particu-
lar, it is not clear how to deal with incompleteness, and how
to formulate explanation, diagnosis, and planning.

Pathway logic: Pathway logic (Eker et al., 2002; Talcott et
al., 2004) is an algebraic formalism for modelling and analysis
of signaling pathways at an abstract level higher than simula-
tion. Biological structures are represented through algebraic

expressions. A biological process corresponds to a set of
rewriting rules transforming algebraic expressions from one
to another. The possible analyses include reachability, pre-
diction, and explanation. It is not clear how this approach
deals with biological exceptions; how it can represent static
causal relationships between biological properties, and how
it supports planning or diagnosis.

Model checking: Model checking is used to compute tem-
poral logic queries about properties of a concurrent system.
Chabrier & Fages (2003) proposed a framework for querying
and validating formal models of systems biology, which is
based on: modelling biological processes as concurrent tran-
sition systems; using temporal logic such as CTL as a query
language; and applying model checking techniques to evaluate
CTL queries. This approach addresses both quantitative and
qualitative aspects of biological systems. Besides reachabi-
lity analysis, it supports queries about stable states, durations
and concentrations of proteins. However, it is not clear how
qualitative reasoning such as explanation, planning and dia-
gnosis is supported in this framework. Also, it is not clear if
this approach is able to deal with incomplete information.

3 OVERVIEW OF THE BIOSIGNET-RR
SYSTEM

We have an initial implementation of a system for representing
and reasoning about signal networks. We refer to our system
as BioSigNet-RR, where BioSigNet means ‘biological signal
networks’ and RR denotes ‘representation and reasoning’.

The input to our system is a knowledge base representing the
knowledge about a signal network. It includes information
such as what are the various properties (termedfluents) of a
network, the variousactions that can be performed or trig-
gered, the impact of these actions on the fluents, and when
an action is triggered. Using this knowledge our reasoning
system can perform various kinds of reasoning such as pre-
diction, explanation, and planning. The following paragraph
illustrates the above with respect to an example.

In cell, when a ligand binds to an appropriate receptor it activa-
tes the receptor. The activated receptor then triggers a series of
events. The binding of a ligand to the receptor can be thought
of as anaction. The conditions under which a ligand can
bind to a receptor is similar to theexecutability conditionsof
an action in a planning domain. In the context of a cell, by
representing the cell behavior using actions, determining the
effects and side effects of a drug (that manifests as a ligand)
would correspond toprediction. Similarly, figuring out what
interventions will change the cell behavior in a particular way
corresponds toplanning; and determining the causes behind
some unexpected observations about the cell corresponds to
explanationanddiagnosis.
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3.1 The fundamentals behind BioSigNet-RR
Before we continue on and describe our system, we give a
brief overview of the fundamentals behind our system and its
implementation.First, we need to precisely define what ‘pre-
diction’ means? When is a series of ‘intervention’ (or action)
a plan that achieves a desired goal? What is an explanation
of an observation? We do this in the next subsection.Next,
we need to implement the reasoning corresponding to predic-
tion, planning and explanation. We do it using a declarative
programming language called AnsProlog, which is not only
useful for reasoning about prediction, planning and explana-
tion, but is a good language for reasoning with incomplete
information.

(Note that AnsProlog is a declarative language different from
Prolog. Prolog is a programming language with roots in logic.
But it has many non-logical features, and it is not declarative.
This makes it unsuitable for knowledge representation.)

3.1.1 Short overview of reasoning about actionsReaso-
ning about actions (Gelfond & Lifschitz, 1993; Rieter, 2001)
is concerned with representing and reasoning about dynamic
worlds. Research issues in this field involve:

• developing languages that allow for (a) succinct represen-
tation of the world, (b) succinct representation of causal
relations between properties of the world, (c) succinct
representation of the impact of actions (and their exe-
cutability) on the world, (d) succinct representation of
the way the world behaves, or the way we want the world
to behave, and (e) representation of action-plans; and

• reasoning algorithms that can answer a query expres-
sed using (d) and (e) with respect to a knowledge base
expressed using (a), (b) and (c)

Different kinds of queries mentioned above lead to different
kinds of reasoning. For example, given a sequence of actions
a1, . . . , an and a propertyp, asking ifp will be true during (or
after) the execution ofa1, . . . , an is referred to asprediction.
Now if p is given, but the reasoning system has to find the
appropriatea1, . . . , an so thatp is achieved then we have
planning. Finally, if a set of observations is given and we
need to find particular action occurrences and/or facts about
intermediate states of the world that explain the observations,
then we doexplanation or diagnosis. All the above kinds of
reasoning may have to be done with partial or incomplete
information in the knowledge base.

We now briefly discuss our use of a declarative programming
language in implementing the above mentioned reasoning
mechanisms.

3.1.2 Declarative Programming using AnsPrologIn
declarative programming the intent of a program (‘what’) is
described in a particular declarative programming language
and the interpreter figures out the ‘how’ part. For example,

a declarative program for sorting a set of numbers just des-
cribes what sorting is (and does not say how to sort a set of
numbers), and the interpreter when given a set of numbers,
figures out the ‘how’ part and does the sorting. Although this
approach could be inefficient (in terms of run-time) for cer-
tain kind of programs, it has acceptable performance for query
answering and reasoning programs. Its strong point is that it is
much quicker and easier (and is often more robust) to write a
declarative program than a procedural one. For these reasons
declarative programming is used for database querying and
we will use it for the reasoning associated with our system.
(For example, SQL is a declarative language as in SQL we
specify what we want, and not how the system should look
and search the files to find the answer to our queries.)

Earlier we mentioned that the kinds of queries we would like
to ask are beyond the ability of database query languages.
Moreover, we would like our system to be able to handle
incomplete information, and be able to express normative
and default statements. Among the various declarative and/or
knowledge representation languages (most of which are decla-
rative) that have been proposed one language that has the
largest body of support structure (both theoretical results, effi-
cient interpreters and developed applications) is the language
of logic programming with the answer set semantics – simply
referred to as AnsProlog in (Baral, 2003). Let us consider an
example of AnsProlog encoding of signal networks.

holds(occ(A), T + 1) ← action(A), time(T ),

n_triggers(S,A), holds(S, T ), not holds(ab(A), T ).

According to this rule, ifA is an action that can be normally
triggered by propertyS, and if at time pointT , S is true
but ab(A) is false, then the actionA will happen in the time
T + 1. The fluentab(A) encodes that "there is an exception
to the rule". Hence, we can easily elaborate the biological
exceptions by manipulating fluents such asab(A). Note that
in the AnsProlog rule we use the operatornot, which is dif-
ferent from the classical negation operator¬. While not f in
the body of a rule intuitively means that f can not be proven to
be true,¬f means that f is known to be not true. The operator
not is very useful and powerful, and is one of the main featu-
res that make AnsProlog one of the most suitable knowledge
representation languages.

3.2 Overview of the biological domain
In this work we represent and reason about some aspects of
nuclear factor (NF)-κB signaling; namely its activation by the
degradation of inhibitoryκB (IκB), the tumor necrosis factor
(TNF) induced activation of NFκB, pro- and anti-apoptotic
signaling via TNF receptor 1 (TNF-R1), and the regulation of
apoptotic signaling by FLICE-inhibitory protein (FLIP).

Biological signals within the cell are dependent upon associa-
tion, interaction and binding of various proteins. For example,
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Fig. 1. NFκB-dependent signaling

NFκB is kept in the inactive state in the cytoplasm by associa-
tion with IκB. IκB can be phosphorylated (at serine residuals
Ser-32 and Ser-36), which leads to the ubiquitination and
degradation of IκB by the proteosome. Once IκB has degra-
ded, NFκB is free and becomes active. It then translocates
to the nucleus and activates transcription of important genes
(Sen & Baltimore, 1986; Verma et al., 1995; Baldwin, 1996).
(Figure 1-A).

Tumor necrosis factor-α (TNF-α) can trigger both cell death
and cell survival signals. By association with TNF-α ligand,
the TNF-R1 undergoes trimerization. The death domains on
TNF-R1 then recruit an adapter protein, TNF-R-associated
death domain (TRADD). TRADD serves as a platform to
recruit adaptor proteins, including the Fas-associated death
domain protein (FADD), TNF-receptor-associated factor 2
(TRAF2), and receptor-interacting protein (RIP) (Aggarwal,
2003; Gaur & Aggarwal, 2003; Legler et al., 2003). (Figure
1-B).

The adapter protein FADD contains an N-terminal death effec-
tor domain (DED) that can bind to the homologous DEDs of
procaspase-8. FADD recruits procaspase-8 to form a death
inducing signal complex (DISC). Procaspase-8 is then clea-
ved to yield active caspase-8, which in turn triggers apoptosis
(Nagata, 1999). (Figure 1-C).

IKK is an IκB kinase, which can induce NFκB activation
by phosphorylating IκB. TRAF2 is capable of interacting
with downstream signaling molecules such as NFκB-inducing
kinase (NIK). NIK phosphorylates IKK at serine 176 thus acti-
vating IKK, which results in NFκB activation. RIP has been
implicated to inhibit the NIK activity thus, inhibiting NFκB
activation (Woronicz et al., 1997; Ling et al., 1998; Lin et al.,
1998). (Figure 1-D).

4 DESCRIPTION OF BIOSIGNET-RR
Our system includes two components: (1) a script language by
which users can conveniently describe signal network know-
ledge and queries; (2) an AnsProlog program to encode the
knowledge and to compute answers for queries.

The system expects two input scripts from users: the first
script encodes a signaling knowledge base and the second
encodes a query. In the following we describe the script lan-
guage through the example of NFκB signaling. Note that the
keywords of the script language are in bold font.

4.1 The knowledge base script
The alphabet - the set of fluent and action symbols - of the
knowledge base is defined by the following constructs

fluent some_property.

action some_action.

The negation of a fluentsome_property is denoted by
−some_property. A conjunction of fluents is written as
a list of the fluents separated by ’;’ .
The effect of an action is described in the general form

a causesf if f1; . . . ; fk

where a is an action symbol, andf1, . . . , fk and f are
fluent symbols.
A causal relationship between fluents is written as

g1; . . . ; gl causesg

whereg1, . . . , gl and g are fluent symbols.
There are two types of triggers, which are written in the
following forms

h1; . . . ; hm n_triggers b

h′1; . . . ; h′n triggers b′.

Here,b andb′ are actions; andhi andh′j are fluent symbols,
where1 ≤ i ≤ m, 1 ≤ j ≤ n.
We usen_triggers to state that a particular action isnormally
triggered. When an action is being normally triggered, it will
not occur if it is also inhibited at the same time. On the other
hand, a (not normally) triggered action will occur even if it is
inhibited.
Finally, inhibitions of actions are described in the form

φ1; . . . ; φl inhibits c

whereφ1, . . . , φl are fluents andc is an action. Note that
the n_triggers construct allows one to be able to deal
with incomplete knowledge about inhibitions in an elabora-
tion tolerant manner. As more knowledge about additional
inhibitory interactions become known one just has to add the
new information.
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Let us consider examples taken from the knowledge base
script of NFκB signaling as follows.
A NFκB related signal starts with the binding of TNF-α ligand
to TNF-R1 receptor. Upon the binding, TNF-R1 is trimerized.
Hence, we define an action for the binding and a fluent for the
receptor being trimzerized:

action bind(tnf, rec).

fluent trimerized(rec).

bind(tnf, rec) causestrimerized(rec).

The trimerization of TNF-R1 triggers the binding (recruit-
ment) of TRADD to the receptor TNF-R1. Letbind(rec, tradd)
be the action that TRADD binds to TNF-R1, and let
bound(rec, tradd) be the fluent that TRADD is bound to
TNF-R1. Then we write

action bind(rec, tradd).

fluent bound(rec, tradd).

bind(rec, tradd) causesbound(rec, tradd).

To say that trimerization of TNF-R1 triggers TRADD and
TNF-R1 binding, we write

trimerized(rec);−bound(rec, tradd)

triggers bind(rec, tradd).

The recruitment of TRAF2 to the TNF-R1 signaling complex
normally triggers the interaction between TRAF2 and NIK,
which causes NIK to be activated. Similarly to the above, the
triggering is encoded in the script language as follows.

action bind(tradd, traf).

action interact(traf, nik).

fluent bound(tradd, traf).

fluent activated(nik, traf).

bind(tradd, traf) causesbound(tradd, traf).

interact(traf, nik) causesactivated(nik, traf).

bound(rec, tradd); bound(tradd, traf);

− activated(nik, traf) n_triggers interact(traf, nik).

In the examples of explanation and planning in the next
section, we will deal with some exceptions to this triggering.

4.2 The query script
A query script contains observations and queries. First, we
need to define the initial situation and the chronological order
of situations in which observations are made. For example,
we have the initial situation labelled byt0 , and some later

situation t1 .

initial t0.

t0 precedest1.

A situation can also be a number, which will be understood
as a time point. The initial situation corresponds to the time
point 0. Hence, we can use the number0 instead of t0 to
denote the initial situation.

There are observations about properties of the cellular envi-
ronment and about occurrences of actions. They take the
general forms:

f at t.

a occurs_at t′.

Here, f is a fluent symbol,a is an action symbol andt
and t′ are some situations. For example, to state that at the
beginning, NFκB is bound to IκB, we write

bound(nfκb, iκb) at t0.

We can write the observation about the initial binding of TNF-
α to TNF-R1 receptor as follows.

bind(tnf, rec) occurs_at t0.

Currently BioSigNet-RR supports three kinds of queries,
namelyprediction, explanationandplanning. In prediction,
we query whether some property willcertainly follow from
the knowledge base and given observations. We usually want
to know if some fluent (or its negation) is true at some situa-
tion, oralwaystrue from some situation, oreventuallywill be
true after some situation. An example of prediction query is

predict always − bound(fadd, procasp) from t0.

The query asks if the protein FADD is never bound to
procaspase-8.

In explanation, we want to find the unknown truth values of
fluents in the initial situation, given the knowledge base and
some observations. For example,

explain always bound(nfκb, iκb) from t0.

The above query asks about the value of fluents in the initial
situation that will explain the observation that starting from
the initial situation NFκB always remains bound to IκB.

In planning, we want to find a sequence of interventions to
achieve a goal property. For example, starting from a well-
defined initial situation, we would like to find a sequence of
actions to keep NFκB bound to IκB.

plan always bound(nfκb, iκb) from t0.

Let us discuss in detail some examples of the reasoning about
signaling pathways using the system.
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5 REASONING WITH BIOSIGNET-RR
5.1 Prediction
FLIP belongs to the family of viral protein vFLIP and a related
cellular protein cFLIP. FLIP contains death effector domains
(DEDs) that are similar to the DEDs on FADD and procaspase-
8. But the DEDs on FLIP cannot cleave themselves to yield
caspase-8 (Gupta, 2002). One would predict that FLIP sup-
presses TNF-α-induced apoptosis via blocking activation of
caspase-8. First, we describe biological facts about FLIP.

action bind(fadd, flip).

fluent bound(fadd, flip).

bind(fadd, flip) causesbound(fadd, flip).

bound(fadd, flip) inhibits bind(fadd, flip).

bound(fadd, flip) inhibits bind(fadd, procasp).

That is, FLIP can bind to FADD. Once FLIP is bound to
FADD, the binding of FLIP to FADD as well as the binding
of FADD to procaspase-8 is inhibited.

We describe the observation about the recruitment of FADD
to TNF-R1 signaling complex. In the initial situationt0 , it is
observed that NFκB is being boundIκB and TNF-α bindsto
TNF-R1.

initial t0.

bound(nfκb, iκb) at t0.

bind(tnf, rec) occurs_at t0.

Then, in some later situationt1 and t2, the occurrences of
two actions are observed. In situationt1, TRADD binds to the
receptor TNF-R1; in situationt2, FADD binds to TRADD.

t0 precedest1.

t1 precedest2.

bind(rec, tradd) occurs_at t1.

bind(tradd, fadd) occurs_at t2.

Finally, we query if the caspase-8 is always inactive after
FLIP binds to FADD.

predict always − active(caspase8) after

bind(fadd, flip) from t0.

The output of BioSigNet-RR is as follows.

$./signet.pl nfkb-rep.sn prediction.sn
Evaluating prediction ...
Computing positive models ...
Positive model found!
Computing negative models ...
Negative model not found!
Answer: the prediction is true.

5.2 Explanation
This is a hypothetical example adapted from (Heyninck &
Beyaert, 2001). Imagine that we observe the recruitment of
TRAF2 to TNF-R1 signaling complex. Then we expect that
NFκB would be activated (by NIK-induced IKK activation).
However, if no activity of NFκB is observed, we suspect a
deregulation of the TRAF2-NFκB pathway, such as mutated
form of TRAF2 proteins. The mutation of TRAF2 may have
altered the ability of TRAF2 either to bind to TNFR or to
recruit NIK, which is essential for NFκB activation. To test the
hypothesis, we define a new fluent for TRAF2 being mutated
and its causal relationship with the recruitment of NIK to
TRAF2.

unknown mutated(traf).

mutated(traf) inhibits interact(traf, nik).

The observation about the initial situation is the same as that
in the previous example.

initial t0.

bound(nfκb, iκb) at t0.

bind(tnf, rec) occurs_at t0.

The recruitment of TRAF2 to TNF-R1 signaling complex is
observed to happen as usual: first TRADD is recruited to
TNFR1, then TRAF2 is recruited to TRADD.

t0 precedest1.

t1 precedest2.

bind(rec, tradd) occurs_at t1.

bind(tradd, traf) occurs_at t2.

Given the above observations, we query for the explanation
why NFκB is always inactive; that is, why it is always bound
to IκB.

explain always bound(nfκb, iκb) from t0.

The BioSigNet-RR answers as follows.

$./signet.pl nfkb-rep.sn explanation.sn
Finding explanation ...
Observations can be explained if ...
TRUE: mutated(traf).

NFκB is essential for regulating various cellular processes,
namely proliferation, migration and survival. Dysregulation
of this pathway has been reported in various diseases such
as cancer. We have described one way NFκB pathway can
malfunction. The same reasoning can be applied to other
explanations such as mutation of IκB, IKK, or NIK.
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5.3 Planning
As previously discussed, blocking TRAF2’s function, such as
the presence of dominant-negative mutant TRAF2 or intro-
duction of small inhibitory peptides or chemical compounds
against TRAF2 proteins, results in NFκB inactivation. We
would define inhibition of TRAF2 as an intervention to regu-
late NFκB inactivation. Disruption of TRAF2 function by
these effects would result in the inability of TRAF2 to bind to
TRADD and to interact with NIK.
We define an actionintro(dnm_traf) for the introduction
of dominant-negative mutantTRAF2. The action causes the
mutant TRAF2 to be present, which is denoted by a fluent
present(dnm_traf). This is described in BioSigNet-RR
script language as follows.

fluent present(dnm_traf).

intervention intro(dnm_traf).

intro(dnm_traf) causespresent(dnm_traf).

The inhibitory effects of mutant TRAF2 are described by the
following inhibition rules.

present(dnm_traf) inhibits bind(tradd, traf).

present(dnm_traf) inhibits interact(traf, nik).

If the mutant TRAF2 is introduced too late, it would not have
the desired effect on NFκB activation. If we do not want to
interfere with the association of TRADD and TRAF2, then we
should not disrupt TRAF2’s function at the beginning. Hence,
we have to find a plan to intervene at the right time.
The planning query includesan initial conditionanda goal.
We can have an initial condition that NFκB is bound to IκB
and TNF-α comes to bind to TNF receptor. This is written in
BioSigNet-RR as:

bound(nfκb, iκb) at 0.

bind(tnf, rec) occurs_at 0.

We want to find ways to keep NFκB inactive, which is written
in BioSigNet-RR as

plan always bound(nfκb, iκb) from 0.

The BioSigNet-RR will find such a plan:

$./signet.pl nfkb-rep.sn planning.sn
Planning ...
Plan found ...
intro(dnm_traf) at 3

The plan corresponds to the scenario where TRADD binds to
TNF-R1 at time 1, TRAF2 is recruited to TRADD at time 2
and the disruption of TRAF2 function occurs at time 3. Note
that we are talking about logical time (ordering of events), not
biological time.

Planning for interventions may have an important application
in drug therapy design. For example, a series of interventions
aiming at regulation of a NFκB signaling pathway can be
considered as part of a cancer drug therapy.

6 CONCLUSION
We have proposed applying knowledge representation and
reasoning methodologies to the important problem of repre-
senting and reasoning about signaling networks. We have
developed a preliminary system called BioSigNet-RR for this
goal. Our system is grounded on recent research in reasoning
about actions and declarative programming.

We showed how BioSignet-RR can describe a portion of
NFκB signaling networks and answer interesting queries
on prediction, explanation and planning. We have provided
a glimpse into the AnsProlog implementation to illustrate
how this approach can deal with elaboration tolerance and
incomplete information.

As the next step, we plan to apply our method to represent
and reason about bigger networks such as Kohn’s map (Kohn,
1999). The biological facts in our examples have been manu-
ally extracted from biological and bioinformatic sources. This
manual extraction should become automated in the future. We
will also address an important issue with logical frameworks
in modelling biological systems, namely the ability to model
quantitative and resource sensitive information.

Our work is an initial step toward the ultimate goal of model-
ling signal network knowledge. We believe our approach is
feasible and fruitful, because it is based on a solid theoreti-
cal basis. Our knowledge representation and reasoning based
approach can support many features that are important not
only for modelling signaling networks but also for modelling
biological systems in general. Those features include elabora-
tion tolerance, and modelling and reasoning with incomplete
information.
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