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Abstract— In this short paper, we show how to learn in-
teraction primitives and networks from long interactions by
taking advantage of language and speech markers. The speech
markers are obtained from free speech that accompanies the
demonstration. We perform experiments to show the value of
using speech markers for learning interaction primitives.

I. INTRODUCTION

The broader goal of our research is to facilitate imitation
learning using language and speech markers. In this short
paper, we show how to learn Interaction Primitives (IP) [1]
and networks from long interactions by taking advantage of
speech markers.

As collaborative robots become increasingly available,
methodologies and tools are needed that allow them to
expand their repertoire of interaction skills. Programming
such skills by hand is a challenging endeavor since it requires
anticipating and a-priori reasoning about the situations that
may occur. While imitation learning [2], [3], [4] can be
used to facilitate this process, there are many important
aspects of a collaborative task that cannot be communicated
through behavioral demonstrations only, e.g., the individual
segments of the task, the semantic type of behavior executed,
or the name of the target object. Indeed, human teachers and
coaches often use a combination of motion and language to
convey a variety of information to a student. Consequently,
novel imitation learning approaches are needed that leverage
both modalities.

In this paper, we investigate how verbal instructions ex-
tracted from human speech can be used to segment and
semantically annotate human demonstrations. Furthermore,
we show that this information can be used to learn both (a)
low-level interaction primitives, as well as (b) higher-level
interaction networks that encode the transition model among
primitives. As a result, few(er) demonstrations are necessary
to learn both the motion and structure underlying the imitated
task. In addition, the recorded human speech markers also
provide information about semantic aspects of the task, e.g.,
synonyms are mapped onto the same internal representation.

Although there has been work on using human language
to teach robots [5], [6], [7], [8], [9], [10], the majority
of these approaches focuses on language-only instruction
modes. Our work is similar in spirit to the work in Akgun
et al. [11]. However, we use free speech to outline one of
multiple objects as object of interest and learn from long
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Fig. 1. This figure shows the environment of the robot as well as its initial
setup for the experiments. It combines the results from the object tracker
(Simtrack) which highlights the tracked objects in green and the skeleton
tracker (OpenPose) which draws a skeleton on the limbs of every detected
human.

interactions, thus being able to learn multiple skills from a
single demonstration.

II. METHODOLOGY

We explain our methodology to learn interaction primitives
from a few long interactions with respect to the following
scenario shown in Figures 1 and 2. Figure 1 shows the
environment as perceived by the robot. Multiple objects as
well as the humans skeleton are tracked and thus, can be
recognized by the robot. The image sequence in Figure 2
shows the assembly of a wooden toolbox where each part
(except the handle) is out of reach from the human. The
task of the robot is to assist the human by handing over all
parts, such that the toolbox can be assembled successfully.

Our research goal is to observe only a few demonstrations
of this task and from that, learn the interaction primitives
(such as, moving, grasping, lifting and releasing) as well
as the interaction network (collaborative assembly) for the
task. To do this, we propose to enhance traditional imitation
learning by using speech markers.

For imitation learning, we use Simtrack [12] which allows
us to track the parts of the toolbox based on 3D models
that were provided to the system. Skeleton tracking is done
by using OpenPose [13] [14] [15], providing a reliable 2D
skeleton estimate of the user. As robotic platform, we use
the UR5 robot equipped with a Robotiq adaptive three finger
gripper.

The process of retrieving the speech markers for tem-
poral labeling is divided in two steps. First, free speech



Fig. 2. This image shows an overview over the performed experiment. The task consists of assembling a wooden toolbox where five out of six parts are
out of reach for the human. From left to right the image sequence shows the successful assembly of the box.

Goals: Categories and Synonyms
human long side one long side two short side one short side two bottom plate
me long side one long side two short side one short side two bottom plate
idle long piece one long piece two short piece one short piece two ground plate

long edge one lone edge two short edge one short edge two bottom part
long edge 1 long edge 2 short edge 1 short edge 2 base
long object one long object two short object one short object two
Part 1 Part 2 Part 3 Part 4 Part 5

TABLE I
THIS TABLE SHOWS AN OVERVIEW OVER THE PREDEFINED GOALS AND THEIR SYNONYMS. SYNONYMS WHERE INTRODUCED BY THE USERS WHERE

AS THE ITALICIZED WORDS ARE USED INTERNALLY TO IDENTIFY THE GOALS AFTER THEY WHERE IDENTIFIED BY THEIR SYNONYMS.

is translated into text by using the Google speech to text
API offered through Android. Second, the resulting text is
passed to a Google based NLP API [16] that is trainable for
various purposes. We trained it to extract the desired action
(Table II) and goals (or objects of interest) (Table I). These
actions and goals, together with their moment of occurrence
serve as speech markers. Thus, a marker m can be expressed
as a tuple (action, goal, time). To train the NLP API we
collected free speech samples from three users who were
asked to talk to the robot while a demonstration was given.
These samples were then used as examples for the NLP agent
and manually labeled for for the (action, goal) pairs. Also,
this process outlined the synonyms as seen in Table I and II.

Markers are used to outline the completion of a subtask.
Whenever a subtask is done, the collected data from the
joints of the robot, the gripper and the object of interest
are combined. The object of interest is outlined by the
goal of the tuple m. The data from all other objects are
discarded since they were not important for the subtask, thus
drastically reducing the dimensionality of the data from 61

to 19 dimensions. It is important to note that the human
is also considered as an ‘object of interest’, depending on
the received speech marker. The data can be represented as
tuple d : (r, g,o) where r ∈ R6 holds the joint angles of the
robot, g ∈ R is the control value of the gripper describing
how far it is closed and o ∈ R12 holds the values of the
object. The dimensionality of o is variable, since a simple
object (highlighted in green in Figure 1) is described by
its 3DOF position and 3DOF rotation where as the human
skeleton is described by the 2DOF positions of the wrist,
elbow and shoulder position of each arm. To compensate for
the different lengths, the object information is padded with
zeros to also be of length 12.

Based on these data, Interaction Primitives are used to
train the actions of the individual subtasks. The training is
done on all 19 dimensions of d. At run time, the necessary
movements of the robot r and gripper g are unknown and
will be generated by the IPs based on the current observation
of the object of interest o. This procedure results in one
specific IP for every action and goal combination. In theory,



Actions: Categories and Synonyms
lift grasp move release
lift grasp move release
hand over pick goto free
handover pick up get
give pickup collect
lift up move to
bring go to
hand moving

moved

TABLE II
THIS TABLE SHOWS AN OVERVIEW OVER THE PREDEFINED ACTIONS

AND THEIR SYNONYMS. SYNONYMS WHERE INTRODUCED BY THE

USERS WHERE AS THE ITALICIZED WORDS ARE USED INTERNALLY TO

IDENTIFY THE ACTIONS AFTER THEY WHERE IDENTIFIED BY THEIR

SYNONYMS.

every combination of action and goal has exactly one IP.
Depending on the training, some may be left empty (e.g. m
where action = ’grasp’ and object = ’human’). Subtasks that
occurred multiple times during one demonstration receive
multiple training examples from one full assembly.

When recording multiple demonstrations of a certain task,
the order in which the speech markers m appear can be used
to infer and abstract the task. The next section will have a
closer look on how to utilize the state order to create an
abstraction of the performed task, which is then allowing
the robot to decide on the object of interest at run time.

Figure 4 shows the final interaction network that is based
on 21 demonstrations shown in Figure 3. Due to a different
order in which objects are requested by the user, each
demonstration in Figure 3 can have a different order in which
the task was completed. Partial ordering can be inferred for
the different parts of the toolbox, separated by the handover
subtask. In figure 3, colored blocks are subject to eventual
partial ordering based on the given demonstrations. At run
time, the interaction network is transitioned independently
by the robot. When multiple choices are available, the robot
decides randomly which instance of action and goal m′

it takes. However, the random decision is limited by two
constraints which ensure that the task can be finished. First,
it does not repeat actions that are already finished and second,
it makes sure that there is a path to the end. When looking at
the right-most level of the interaction network, the last level
involves ’part 1’ and ’part 2’. The second condition ensures
that one of these parts is still in an unfinished state when
reaching the last level. This prevents the robot from getting
stuck during the interactions. To have more or all choices in
this last level, a demonstration that showed another part on
the last level would have been necessary. In this scenario,
the human demonstrator did not give this possibility to the
robot.

III. EXPERIMENTAL EVALUATION

We performed three experiments to show the benefit
of using speech markers during training in comparison to
traditional methods. Furthermore we show the ability of

Fig. 3. Overview over the order in which the states appeared. Every square
represents a certain combination of action and goal.

the interaction primitives to adapt and generalize towards
different environmental conditions, e.g. object locations and
orientations.

The first experiment uses an environment as shown in
figure 1, where the objects where placed in the same position
within a margin of ±4cm after each demonstration. In
total, five demonstrations of the whole assembly task were
provided. Based on this training, the task was executed ten
times with a success rate of 80%. Failures were due to
failed grasp attempts or collisions of the grasped object with
other objects in the environment. This error can be explained
by the different configurations of the five objects among
different demonstrations. Depending on the order in which
objects are collected, the pickup trajectory can be different
due to more or less space in the storage area. At run time,
the IPs generated an average over all demonstrated pickup
movements for a particular object without considering other
objects, occasionally resulting in an early side movement that
leads to collisions.

The second experiment evaluates the performance of the
system in the same setup as in the first experiment, but
without the use of speech to refer to an object. This means
that all 61 dimensions are considered by the interaction
primitives since no object of interest was outlined. Clustering
is done manually by pressing a button after each subtask
is finished. As in the first experiment, the system received
five demonstrations of the assembly task. However, ten
executions without our system resulted in a success rate of
0%. This is due to the high dimensionality of the input data
because of which the interaction primitives are not able to
condition on the important properties for the individual task.

The third experiment evaluates the ability to generalize
towards different object positions. For simplicity the ex-
periment was only conducted with one object which was
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Fig. 4. This figure shows a interaction network for the assembly task
including partial ordering. In every step, one box can be chosen.

randomly placed on the table as shown in Figure 5. Eight
demonstrations were provided to the system outlining the
outer boundaries of the table as well as some positions in
the middle. This model was then evaluated by attempting to
grasp the object from random positions within the trained
limits, which resulted in a successful grasp in 80% of the
trials. The two failed trials were due to the gripper not being
able to grasp the object. In general it was noticeable that the
accuracy of the grasp was worse than in the first experiments.
With regards to the center of the object, the robot grasped
the object with a spread of ±7cm from the center where as
the grasp in the first experiment only spread for about ±2cm.

IV. CONCLUSION AND FUTURE WORK

We developed a methodology to use speech during training
with long interactions and our experiments showed that this
can drastically improve the quality of the training since the
user can outline the object of interest. This allows the robot
to focus and train on the important aspects rather than getting
lost in observing irrelevant details. This theory is supported
by the first two experiments in which our system improved
the success rate of the assembly task. A similar conclusion
was also drawn in [11], but our system is able to leverage
speech to ease the training and outline one of multiple
objects as object of interest. Future work will focus on using
broader knowledge from speech and text to enable direct
feedback and contextual questions from the robot to allow
more natural interactions with the system. Additionally, the
removal of all objects except from one might be too harsh.
The first experiment suggests that a weighted influence from
all objects might be beneficial.
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