
Macros, Macro calls and Use of Ensembles in Modular
Answer Set Programming

Chitta Baral, Juraj Dzifcak and Hiro Takahashi
{chitta,juraj.dzifcak,hiro}@asu.edu

Department of Computer Science and Engineering
Arizona State University

Tempe, AZ 85287

Abstract. Currently, most knowledge representation using logic programming
with answer set semantics (AnsProlog) is ‘flat’. In this paper we elaborate on our
thoughts about a modular structure for knowledge representation and declarative
problem solving formalism using AnsProlog. We present language constructs that
allow defining of modules and calling of such modules from programs. This al-
lows one to write large knowledge bases or declarative problem solving programs
by reusing existing modules instead of writing everything from scratch. We report
on an implementation that allows such constructs. Our ultimate aim is to facilitate
the creation and use of a repository of modules that can be used by knowledge en-
gineers without having to re-implement basic knowledge representation concepts
from scratch.

1 Introduction
Currently, most knowledge representation languages are ‘flat’. In other words, for
the most part they are non-modular. (It is often mentioned that CYC’s language
[Guha 1990] allows the use of modules. But this is not well published outside
CYC.) Our focus in this paper is the knowledge representation language AnsProlog
[Gelfond & Lifschitz 1988,Baral 2003] (logic programming with answer set seman-
tics), where most programs are a collection of AnsProlog rules. Although sets of
AnsProlog rules in these programs are often grouped together with comments that de-
scribe the purpose of those rules, the existing syntax does not allow one to construct
libraries of modules that can be used in different programs. Such libraries are common-
place in many of the programming languages such as C++ and Java and recently in
domains such as natural language [Milleret al.1990]. The presence of such libraries
makes it easier to write large programs without always starting from scratch, by refer-
ring and using already written pieces of code (modules, methods, subroutines etc.).

There are many other advantages of using libraries of modules. For example, having
higher level modules available enforces code standardization. A module repository also
has the benefit of being proven over the years and hence deemed reliable. In addition,
modules may be built using multiple languages which lends to an overall application
architecture where strengths of a language are fully exploited without having to find a
work-around.

There are several ways to introduce modularity into answer set programming. Some of
the ways to do that include:

(1) Macros: Modules are defined as macros or templates. A macro-call would be re-
placed by a collection of AnsProlog rules as specified by a semantics of the macro call.
Such an approach with focus on aggregates is used in [Calimeriet al.2004].

(2) Procedure/method calls: A module is an AnsProlog program with well defined in-
put and output predicates. Other programs can include calls to such a module with a
specification of the input and a specification of the output. Such an approach is used in
[Tari, Baral, & Anwar 2005].

(3) Procedure/method calls with a specified engine: Here a module is also an AnsProlog
program with not only well-defined input and output predicates, but also with an associ-
ated inference engine. For example, the associated engine could be a top-down engine
such as Prolog or Constraint logic programming, or an answer set enumerator such
as Smodels or DLV. Such an approach with respect to constraint logic programming
can be built on the recent work [Baselice, Bonatti, & Gelfond 2005] where answer set
programming is combined with constraint logic programming.

In this paper, we will focus on the first way to represent knowledge in a modular way.
In our approach there is an initial macro-expansion phase during which macro calls are
appropriately replaced by AnsProlog code. The result of the macro-expansion phase is
an AnsProlog program which can then be used by an appropriate interpreter. In this
paper we will use the Smodels [Niemelä & Simons 1997] interpreter for illustration
purposes. The organization of the rest of the paper is as follows. We will first present a
simple example of our approach, then we will present the syntax and semantics for our
language constructs and then introduce a detailed illustration with respect to planning
and reasoning about actions. Finally, we will conclude and discuss related work.

2 A simple example: transitive closure
Let us consider the simple example of transitive closure. We will illustrate how a simple
transitive closure module can be defined once and can then be used in many different
ways. A transitive closure module of a binary predicatep is computed by the binary
predicateq, and is given as follows.

Module_name: Transitive_closure.
Parameters(Input: p(X,Y); Output: q(X,Y);). Types: Z = type X.
Body: q(X,Y) :- p(X,Y).

q(X,Y) :- p(X,Z), q(Z,Y).

Now, if in a program we want to say thatanc 1 is the transitive closure ofpar 2 then we
can have the following macro call in that program:

CallMacro Transitiveclosure(Replace: p by par, q by anc, X by U, Y by V;).
Our semantics of the macro call will be defined in such a way that during the macro-
expansion phase the above call will be replaced by the following rules, together with
type information about the variableZ.

1 anc(a, b) means thatb is an ancestor ofa.
2 par(a, b) meansb is a parent ofa.

anc(U,V) :- par(U,V).
anc(U,V) :- par(U,Z), anc(Z,V).

Now suppose in another program we would like to define descendants ofa, where
descendant(a, b) means thata is a descendant ofb, then one can include one of the
following macro calls:

CallMacro Transitiveclosure(Replace: pby par, qby descendant, Y by a; Unchanged:
X;).
CallMacro Transitiveclosure(Replace: p by par, q by descendant; Specialize: Y = a;
Unchanged: X;).

Our semantics of the macro call will be defined in such a way that during the macro-
expansion phase the above calls will be replaced by the following rules and type infor-
mation aboutZ.

descendant(X,a) :- par(X,a).
descendant(X,a) :- par(X,Z), descendant(Z,a).

descendant(X,Y) :- par(X,Y), Y = a.
descendant(X,Y) :- par(X,Z), descendant(Z,Y), Y = a.

A similar example is given in [McCarthy 1993]. There McCarthy gave a context in
which above(x,y) is the transitive closure of on(x,y) and wrote lifting rules to connect
this theory to a blocks world theory with on(x,y,s) and above(x,y,s).

3 Syntax and Semantics of modules and macro calls

We now present the syntax and semantics of modules and macro calls. We start with the
alphabet. Our alphabet has module names, predicate names, variable names, function
names and the following set of keywords ‘Module name’, ‘ Parameters’, ‘ #domain’,
‘ Input ’, ‘ Output ’, ‘ Types’, ‘ type’, ‘ Body’, ‘ Callmacro’, ‘ specializes’, ‘ generalizes’,
‘variant of’, ‘ Specialize’, ‘ Generalize’, ‘ Unchanged’, ‘ Replace’, ‘ by’, ‘ Add’, ‘ to’,
‘Remove’ and ‘from ’. We use the terminology of atoms, literals, naf-literals etc. from
[Baral 2003]. Recall that naf-literal is either an atom or an atom preceded by the symbol
‘not’. Besides that, ifp is a predicate of arityk, andV1, . . . , Vk are terms, then we
refer top(V1, . . . , Vk) as a predicate schema. Furthermore, we define a variable domain
statement to be of the form#domain p(V), which says that the variableV is of type
p. For example#domain fluent(F) means that the variableF is of the typefluent.

3.1 Syntax

We start with the syntax of a call-macro statement and then define a module.

Definition 1. A call-macro statement is of the following form:

Callmacro Mname(Replace: p1 by p′1, . . . , pk by p′k, v1 by v′1, . . . , vl by v′l; Add:
u1 to q1, . . . , ur to qr; Remove: w1 from q′1, . . . , ws from q′s; Specialize: S1, . . . , Sm;
Generalize: G1, . . . , Gn; Unchanged: x1, . . . , xt;)

whereMname is a module name,p1, . . . , pk, p′1, . . . , p
′
k, q1, . . . , qr and q′1, . . . , q

′
r

are predicate names;v1, . . . , vl, v′1, . . . , v
′
l are terms;u1, . . . , ur are sets of terms;

w1, . . . , ws are sets of variables;x1 to xt are variables or predicates;Sis andGjs are
naf-literals;{S1, . . . , Sm} ∩ {G1, . . . , Gn} = ∅. Any of k, l, r, s, m, n or t could be 0.
Also, the order in which we specify the keywords does not matter. 2

Definition 2. A module is of the form:

Module Name:Mname sg Mname′.
Parameters(P1 . . .Pt; Input: I1, . . . , Ik; Output:O1, . . . , Ol;).
Types:D0, . . . Dj , L1 = type V1, . . . Lo = type Vo.
Body: r1 . . . rm.

c1 . . . cn.

where,Mname, andMname′ are module names;sg is either the keyword ‘special-
izes’, the keyword ‘generalizes’ or the keyword ‘variantof’; Pis,Iis andOis are pred-
icate schemas;ris are AnsProlog rules (we also allow for Smodels constructs such as
’#const’ etc.);cjs are call-macro statements;L1, . . . , Lo andV1, . . . , Vo are variables;
andD0, . . . , Dj are variable domain statements.Mname′ is optional and in its absence
we do not have thesg part.

But if Mname′ is there andsg is equal to ‘specialize’ or ’generalize’, thenm = 0,
n = 1 and onlysg appears inc1. In other words, ifsg is equal to specialize, then there is
exactly one call to the moduleMname′ using specialize and not generalize (similarly
for generalize), and there are no other rules or macro calls. The idea of specifying
specialize, generalize and variant between modules is to show the connection between
the modules and if one is familiar with a module then it becomes easier for him/her to
grasp the meaning of a specialization, generalization or variant of that module.

Additionally, we specify the parameters of the module, e.g. predicates and variables
that are passed in and out from the module. We may define those in general, or further
specify them to be input or output predicates or variables. The input and output labeling
is optional, but are useful to express more information about the module. As shown in
the upcoming examples, specifying inputs and outputs helps with understanding and
usage of the particular module. In cases wherek = 0 (l = 0) we may omit theInput
(Output) keyword. However, if input or output is present, we require the following
conditions to hold:

(i) If p is an input predicate, then there must be a ruleri whose body hasp, or there
must be a call-macro statementcj with p in it.

(ii) If p is an output predicate, then there must be a ruleri whose head hasp, or there
must be a call-macro statementcj with p in it.

2

The above conditions ensure that the input and output predicates play their intended
role in a module. Intuitively, a module takes in facts of a set of input predicates and
reasons with them to produce a set of facts about output predicates. This is similar to
the interpretation of logic programs as lp-functions in [Gelfond & Gabaldon 1997]. The
first condition above requires that each of the specified inputs is actually used within

the module, while the second one ensures that the module really computes each of the
specified outputs.

Let us now take a closer look at the variables in a module and their domains. First, we
say a variable islocal, if it does not appear in any parameter statement of the module.
Otherwise, we say the variable isglobal. Our syntax allows for defining the domain
of a variable either using ’#domain’ statement, or by type constraints of the form
V = type V ′ meaning that the type of variableV is the same as the type ofV ′. We
require that domains be only defined for local variables, as global variables get their
domain from the macro calls. For example in the transitive closure module, defined in
previous section, we do not want to specify the types ofX andY , asX andY can
be person, number, etc. The local variables must have a well-defined type, which is
formally defined as follows:

A local variableV has a well-defined type if one of the following holds:

1. The definition of the moduleMname contains a statement#domain p(V).
2. The definition of the moduleMname contains a statementV = type V ′ whereV ′

is a global variable.
3. The definition of the moduleMname contains a statementV = type V ′ whereV ′

has a well-defined type.

In addition, we require the following condition to hold for any macro call:

(iii) If X is a predicate or variable in any parameter schema ofMname, then any
macro call to the moduleMname must contain either a replace, remove, generalize
or unchanged statement involvingX. Furthermore, a macro call to a module can not
refer to any local variable of that module. Finally, although we do not require it, it is
advisable to make sure that any variable that is introduced (by theui notation of the
Add statements) by a macro call to a module is either different from existing variable
in that module or if same, has a reason behind it. (In our implementation we will flag
such variables.)

3.2 Macro expansion semantics
To characterize the expansion of modules we need to consider not just a single module
but a collection of modules, as a module may include call-macro statements that call
other modules. Given a set of modulesS we define the dependency graphGS of the
set as follows: There is an edge fromM1 to M2 if the body ofM1 has a call-macro
statement that callsM2. In the following we only consider the sets of modules whose
dependency graph does not have cycles.

Now given a set of modules its macro expansion semantics is a mappingλ from module
names to AnsProlog programs. We define this mapping inductively as follows:

1. If M is a module with no macro calls thenλ(M) = {r1, . . . , rm}.
2. If c is a call-macro statement in moduleMname of the form

Callmacro Mname(Replace: p1 by p′1, . . . , pk by p′k, v1 by v′1, . . . , vl by v′l;
Add: u1 to q1, . . . , ur to qr; Remove: w1 from q′1, . . . , ws from q′s; Specialize:
S1, . . . , Sm; Generalize: G1, . . . , Gn; Unchanged: x1, . . . , xt;)
such thatλ(M) is defined, thenλ(c) is defined as follows:

(a) Each ruler in λ(M) is replaced by a ruler′ constructed fromr by applying all
of the following(if applicable) changes tor:

i. (Replace) Letpi ∈ r, i = 1, ..., k. Thenpi is replaced by it’s respective
predicatep′i in r′. Similarly, any of the termsv1 to vl in any predicatep ∈ r
is replaced by it’s respective termv′1 to v′l.

ii. (Add) Let p(t1, ..., ti) be a predicate ofr with it’s respective terms. If
for any j, p = qj anduj = {t′1, ..., t′i′}, thenp(t1, ..., ti) is replaced by
p(t1, ..., ti, t′1, ..., t

′
i′) in r′.

Example 1.Let p be the atomq(Z, Y) of a ruler. Let the call contain the
following: Replace: q by occurs; Add: {A,neq(B)} to q; Following the
above cases,q(Z, Y) will be replaced byoccurs(Z, Y, A, neg(B)) in r′.
2

iii. (Remove) Letw be any variable in termti from the setwj for somej.
Let q′j be any predicate of the formq′j(t1, ..., ti, ...ta) in r (notice thatti
may be equal tow). Thenq′j is replaced byq′j(t1, ..., ti−1, ti+1...ta) in r′

assumingt− 1 ≥ 1 andt + q ≤ a Otherwise the respectiveti−1 or ti+1 is
not present inp.

iv. (Unchanged) For any predicate or variablexi, no change or substitution is
performed.

v. If there existsi, j such thatpi = pj andp′i 6= p′j , or vi = vj andv′i 6= v′j
then we say that the set of substitutions is conflicting. If that is the case,
we say that the semantics of the callc, λ(c) is undefined.

(b) (Specialize, Generalize)S1, ..., Sm is added to andG1, . . . , Gn, if present, are
removed from the body of each of the rules of the module.

(c) (Local variables types) For each local variableL of Mname, it’s type is as-
signed as follows. The type ofL is assigned according to the#domain p(L)
statement (if present inMname) or type constraintL = type V for some vari-
ableV with already defined type (i.e. a global or well-defined local variable).
Notice that our syntax requires each local variable to be well-defined. Then, in
the first case, the type ofL is p, while in the latter case type ofL is the same as
type ofV , whereV is a global variable or a well-defined local variable.

(d) If S1, ..., Sm include evaluable predicates or equality predicates then appropri-
ate simplification is done.

3. For a moduleM , such thatλ(c1), . . . , λ(cn) are already definedλ(M) is defined
as follows:

λ(M) = {r1, . . . , rm} ∪ λ(c1) ∪ . . . ∪ λ(cn)

Definition 3. Let S be a set of modules. Two modulesM andM ′ are said to be rule-set
equivalent (inS)3 if λ(M) andλ(M ′) have the same set of rules modulo changes in the
ordering of naf-literals in the body of a rule. 2.

3 When the context is clear we do not mentionS explicitly.

4 Examples of simple specialization and generalization
In this section we illustrate some simple examples of specialization and generalization.
We start with a simple module of inertial reasoning which says ifF is true in the index
T then it must be true in the indexT ′.

Module_Name: Inertia.
Parameters(Input: holds(F,T); Output: holds(F,T’);).
Body: holds(F,T’) :- holds(F,T).

Consider the following call-macro statement.

CallMacro Inertia(Replace: F by G, T’ by res(A, T); Unchanged: holds, T;).
When the above call-macro statement is expanded we obtain the following:

holds(G,res(A,T)) :- holds(G,T).

Consider a different call-macro statement.

CallMacro Inertia(Replace: F by G, T’ by (T+1); Unchanged: holds, T;).
When the above call-macro statement is expanded we obtain the following:

holds(G,T+1) :- holds(G,T).

Now let us define some modules that specialize the module ‘Inertia’.

(i) Inertia1

Module_Name: Inertia1 specializes Inertia.
Parameters(Input: holds(F,T); Output: holds(F,T’);).
Body: Callmacro Inertia(Unchanged: holds, F, T, T’;

Specialize: not ˜holds(F,T’), not ab(F,T,T’);).

Proposition 1. The module Inertia1 is rule-set equivalent to Inertia1’ below. 2.

Module_Name: Inertia1’.
Parameters(Input: holds(F,T), ab(F,T,T’);Output: holds(F,T’);).
Body: holds(F,T’) :- holds(F,T), not ˜holds(F,T’),

not ab(F,T,T’).

(ii) Inertia2

Module_Name: Inertia2 variant_of Inertia.
Parameters(Input: holds(F,T); Output: holds(F,T’);).
Body: Callmacro Inertia(Unchanged: holds, F, T, T’;

Specialize: not ˜holds(F,T’);).
Callmacro Inertia(Replace: holds by ˜holds;

Unchanged: F, T, T’; Specialize: not holds(F,T’);).

Note that in the above module we say ‘variantof’ instead of ‘specialize’. That is be-
cause the body of the above module has two macro calls and when using ‘specialize’
we only allow for one macro call.

Proposition 2. The module Inertia2 is rule-set equivalent to Inertia2’ below. 2.

Module_Name: Inertia2’.
Parameters(Input: holds(F,T); Output: holds(F,T’);).
Body: holds(F,T’) :- holds(F,T), not ˜holds(F,T’).

˜holds(F,T’) :- ˜holds(F,T), not holds(F,T’).

(iii) Inertia3

Module_Name: Inertia3 specializes Inertia.
Parameters(Input: holds(F,T); Output: holds(F,T’);).
Body: Callmacro Inertia(Unchanged: holds, F, T, T’;

Specialize: not ab(F,T,T’);).

Proposition 3. The module Inertia3 is rule-set equivalent to Inertia3’ below. 2.

Module_Name: Inertia3’.
Parameters(Input: holds(F,T), ab(F,T,T’);Output: holds(F,T’);).
Body: holds(F,T’) :- holds(F,T), not ab(F,T,T’).

(iv) Inertia4

Module_Name: Inertia4 generalizes Inertia3.
Parameters(Input: holds(F,T); Output: holds(F,T’);).
Body: Callmacro Inertia3(Unchanged: holds, F, T, T’;

Generalize: not ab(F,T,T’);).

Proposition 4. The module Inertia4 is rule-set equivalent to the module Inertia.2.

The above modules show how one can define new modules using previously defined
modules by generalizing or specializing them. This is similar to class-subclass defini-
tions used in object oriented programming languages. A specialization is analogous to a
subclass while a generalization is analogous to a superclass. Now let us consider several
call-macro statements involving the above modules.

(a) The statement “CallMacro Inertia2(Replace: F by G, T by X, T’ by X+1;
Unchanged: holds;)”, when expanded4, gives us the following rules:

holds(G,X+1) :- holds(G,X), not ˜holds(G,X+1).
˜holds(G,X+1) :- ˜holds(G,X), not holds(G,X+1).

(b) Similarly, the statement “CallMacro Inertia2(Replace: F by G, T by X, T’ by
res(A,X); Unchanged: holds;)” when expanded will result in the following rules:

holds(G,res(A,X)) :- holds(G,X), not ˜holds(G,res(A,X)).
˜holds(G,res(A,X)) :- ˜holds(G,X), not holds(G,res(A,X)).

The above illustrates how the same module Inertia2 can be used by different knowledge
bases.The first call-macro statement is appropriate to reason about inertia in a narra-
tive while the second is appropriate to reason about inertia with respect to hypothetical
situations.

4 All such statements in the rest of this paper can be thought of as formal results. But since their
proofs are straight forward we refrain from adding a whole bunch of propositions.

5 Modules for planning and reasoning about actions
In this section we present several modules that we will later use in planning and rea-
soning about actions. In the process, we will show how certain modules can be used
through appropriate macro calls in different ways.

5.1 Forall
We start with a module called ‘Forall’ defined as follows:

Module_Name: Forall.
Parameters(Input: in(X,S), p(X,T); Output: all(S,T);).
Body: ˜all(S,T) :- in(X,S), not p(X,T).

˜all(S,T) :- in(neg(X),S), not ˜p(X,T).
all(S,T) :- not ˜all(S,T).

Intuitively, the above module defines when all elements ofS (positive or negative flu-
ents) satisfy the propertyp at time pointT . Now let us consider call-macro statements
that call the above module.

• The statement “CallMacro Forall(Replace: X by F, p by holds, all by holdsset;
Unchanged: S, T, in;)” when expanded will result in the following rules:

˜holds_set(S,T) :- in(F,S), not holds(F,T).
˜holds_set(S,T) :- in(neg(F),S), not ˜holds(F,T).
holds_set(S,T) :- not ˜holds_set(S,T).

• The statement “CallMacro Forall(Replace: X by F, in by finally, p by holds;Remove:
{S} from all, {S} from in, {S} from p; Unchanged: all, T;)” when expanded will result
in the following rule:

˜all(T) :- finally(F), not holds(F,T).
˜all(T) :- finally(neg(F)), not ˜holds(F,T).
all(T) :- not ˜all(T).

The above rules define when all goal fluents (given by the predicate ‘finally’) are true
at a time pointT . Although the module specification of ‘Forall’ has an extra variableS,
when the above macro call is expanded,S is removed.

5.2 Dynamic causal laws
Now let us consider a module that reasons about the effect of an action. The effect of
an action is encoded usingcauses(a, f, s), wherea is an action,f is a fluent literal and
s is a set of fluent literals. Intuitively,causes(a, f, s) means thata will make f true in
the ‘next’ situation if all literals ins hold in the situation wherea is executed ora is to
be executed.

Module_name: Dynamic1.
Parameters(Input: causes(A,F,S), holds_set(S,T);

Output: holds(F,T’);).
Body: holds(F,T’) :- causes(A,F,S), holds_set(S,T).

˜holds(F,T’) :- causes(A,neg(F),S), holds_set(S,T).

Now let us consider call-macro statements that call the above module.

• The statement “CallMacro Dynamic1(Replace: F by G, T by X, T’ by X+1;
Specialize: occurs(A,X); Unchanged: A, S, holds, causes, holdsset;)” when expanded

will result in the following rules:

holds(G,X+1) :- occurs(A,X), causes(A,G,S), holds_set(S,X).
˜holds(G,X+1) :- occurs(A,X), causes(A,neg(G),S),

holds_set(S,X).

• The statement “CallMacro Dynamic1(Replace: F by G, T by X, T’ by res(A,X);
Unchanged: A, S, holds, causes, holdsset;)” when expanded will result in the follow-

ing rules:

holds(G,res(A,X)) :- causes(A,G,S), holds_set(S,X).
˜holds(G,res(A,X)) :- causes(A,neg(G),S),holds_set(S,X).

• The statement “CallMacro Dynamic1(Replace: F by G, T by X, T’ by X+D;
Specialize: occurs(A,X), duration(A,D); Unchanged: A, S, holds, causes, holdsset;)”

when expanded will result in the following rules:

holds(G,X+D) :- causes(A,G,S), holds_set(S,X),
occurs(A,X), duration(A,D).

˜holds(G,X+D) :- causes(A,neg(G),S), holds_set(S,X),
occurs(A,X), duration(A,D).

The above illustrates how the module Dynamic1 can be used in three different ways:
when reasoning about narratives where each action has a unit duration, when reasoning
about hypothetical execution of actions, and when reasoning about narratives where
each action has a duration that is given.

5.3 Enumeration

Module_Name: Enumerate1.
Parameters(Input: r(X), s(Y);Output: q(X,Y);). Types:Z=type X.
Body: ˜q(X,Y) :- q(Z,Y), X!=Z, s(Y).

q(X,Y) :- r(X), s(Y), not ˜q(X,Y).

The statement “CallMacro Enumerate1(Replace: r by action, sby time, q by occurs, X
by A, Y by T;)” when expanded will result in the following rules:

˜occurs(A,T) :- occurs(Z,T), A!=Z, time(T).
occurs(A,T) :- action(A), time(T), not ˜occurs(A,T).

5.4 Initialize
Module_Name: Initialize.
Parameters(Input: initially(F); Output: holds(F,0);).
Body: holds(F,0) :- initially(F).

˜holds(F,0) :- initially(neg(F)).

6 Planning
In this section we show how we can specify a planning program (and also a planning
module) using call-macro statements to modules defined in the previous section.

6.1 An AnsProlog planning program in Smodels syntax

We start with a program that does planning. In the following program we have two
actionsa andb, and two fluentsf andp. The actiona makesf true if p is true when it
is executed, while the actionb makesp false if f is true when it is executed. Initiallyp
is true andf is false and the goal is to makef true andp false.

initially(neg(f)). initially(p). causes(a,f,s).
in(p,s). set(s). causes(b, neg(p), ss).
in(f,ss). set(ss). action(a).
action(b). fluent(p). fluent(f).
finally(f). finally(neg(p)). #const length = 1.
time(0..length). #domain fluent(F).#domain set(S).
#domain action(A). #domain time(T). #show holds(X,Y).
#show occurs(X,Y).

holds(F,0) :- initially(F).
˜holds(F,0) :- initially(neg(F)).
holds(F, T+1) :- holds(F,T), not ˜holds(F,T+1).
˜holds(F, T+1) :- ˜holds(F,T), not holds(F,T+1).
holds(F,T+1) :- occurs(A,T), causes(A,F,S), holds_set(S,T).
˜holds(F,T+1) :- occurs(A,T),causes(A,neg(F),S),holds_set(S,T).
˜holds_set(S,T) :- in(F,S), not holds(F,T).
˜holds_set(S,T) :- in(neg(F),S), not ˜holds(F,T).
holds_set(S,T) :- not ˜holds_set(S,T).
o_occurs(A,T) :- occurs(Z,T), A!=Z, time(T).
occurs(A,T) :- action(A), time(T), not o_occurs(A,T).
˜allgoal :- finally(F), not holds(F,length+1).
˜allgoal :- finally(neg(F)), not ˜holds(F,length+1).
allgoal :- not ˜allgoal.

:- not allgoal.

6.2 A planning module that calls several macros

We now define a planning module that has many call-macro statements calling macros
defined in the previous section.

Module_name: Simple_Planning.
Parameters(Input: initially(F), causes(A,F,S), finally(F),

in(F,S), action(A), length, holds(F, T), holds_set(S, T),
time(T); Output: occurs(A,T), allgoal;).

Body: Callmacro Initialize(Unchanged: initially, holds, F;).
Callmacro Inertia2(Replace: T’ by T+1;

Unchanged: holds, F, T;).
Callmacro Dynamic1(Replace: T’ by T+1;

Specialize: occurs(A,X);

Unchanged: causes, holds_set, holds, A, F, S, T;).
Callmacro Forall(Replace: X by F, p by holds, all by holds_set;

Unchanged: in, S, T).
Callmacro Enumerate1(Replace: X by A, Y by T, r by action,

s by time, q by occurs;).
Callmacro Forall(Replace: X by F, in by finally, p by holds,

all by allgoal; Remove: {S, T} from all,
{S} from in, {T} from p; Add: {length+1} to p;).

:- not allgoal.

6.3 A planning program that calls the planning module

A planning program that calls the planning module in Section 6.2 and which when
expanded results in the planning program in will consist of the declaration (first 9 lines)
of the module in Section 6.1 and the following call:

Callmacro Simple_Planning(Unchanged: F, S, initially, causes,
finally, in, action, length, holds, holds_set, time, occurs,
allgoal;).

7 Ensembles and associated modules
So far in this paper we have focused on macros and macro expansions. To take the
reuse and independent development of modules in an object-oriented manner further
we propose that modules be grouped together under a “heading”. This is analogous to
object-oriented languages such as Java where methods that operate on the objects of
a class are grouped under that class. In other words the “headings” in Java are class
names under which methods are grouped.

Before we elaborate on what we propose as “headings” for our purpose here, we
first consider some examples from Java. A typical class in Java (from Chapter 3
of [Horstman 2005]) isBankAccount. Associated with this class are the methods
deposit, withdraw andgetBalance. A subclass ofBankAccount (from Chapter 13
of [Horstman 2005]) is the classSavingsAccount. In Java, in theSavingsAccount
class definition one only specifies new methods as it automatically inherits all meth-
ods from theBankAccount class. An example of a new method for the class
SavingsAccount is addInterest.

The questions we would now like to address are: How are modules, as defined in this pa-
per, organized? If they are grouped, how are they grouped and under what “headings”?
If they are grouped, how do inheritance and polymorphism manifest themselves?

We propose that the modules be grouped under “headings”. That allows one to locate
a module more easily, compare modules that are similar, notice duplicate modules, etc.
In regards to what “headings” we should use for grouping the modules, we notice that a
module has predicates specified in its parameters and each positions of these predicates
have an associate class. Thus we define a notion of anensembleas a pair consisting
of a set of classesS and a set of relation schemasR and propose to use ensembles as
“headings” under which modules are grouped.

An example of an ensemble is a setS = {action, fluent, time} and
R = {initially(fluent-literals), causes(action, fluent-literals, set of fluent
literals), finally(fluent-literals) }. Associated with each ensemble are a set of mod-
ules about those classes and relation schemas.

Similar to the notion of classes and sub-classes in Java we define the notion of sub-
ensembles as follows. LetE = (S, R) be an ensemble andE′ = (S′, R′) be another
ensemble. We sayE′ is a sub-ensemble ofE if there is a total one-to-one functionf
from S to S′ such that for all classc ∈ S, f(c) is a sub-class ofc andR ⊆ R′.

By F (S) we denote the subset ofS given by{f(c) | c ∈ S}. Let us assumeS andS′ are
of the same cardinality andR = R′. In that caseE′ basically has specialized subclasses
for the various classes inE. ThusE′ inherits the original modules (in the absence of
overriding) that are inE and it may have special modules. For exampleS′ may have
the classmove actions which are a sub-class ofactions [Lifschitz & Ren 2006] and
thusE′ may have additional modules about such a sub-class of actions.

The above definition allows more relation schemas inE′ thanE. On the surface of it
this may be counter-intuitive, but the intuition becomes clear when we assumeS = S′.
In that caseE′ has more relation schemas, so it can have more modules than inE. Thus
E′ can inherit all modules that correspond toE and can have more modules. In addition
E′ may have some module of the same name asE. In that case when one is inE′ the
module definition there overrides the module of the same name inE. E′ can also have
more classes thanE and the intuition behind it is similar to the above and becomes
clear when one assumesS ⊆ S′.

Macro calls can be used inside modules. When calling modules one then needs to
specify the ensemble name from where the module comes from. This is analogous to
class.methods calls in Java.

When developing a large knowledge base we will have an ensemble which will consist
of a set of class names and a set of relation schemas. It will have its own modules. This
ensemble will automatically inherit (when not overridden by its own modules) from
various of its super-ensembles. One needs to deal with the case when an ensemble has
say two super-ensembles each of which have a module of the same name.

For a knowledge base, exactly one of its module will be the “main” module. This is
analogous to the “main” method in Java. This module may contain rules as well as
macro calls to other modules that are defined or inherited. The set of rules of this mod-
ule, after macro expansion will be the program that will be run to obtain answer sets or
used to answer queries.

8 Conclusion, related work and software availability
In this paper we have introduced language constructs – syntax and semantics, that al-
lows one to specify reusable modules for answer set programming. We illustrate our
approach with respect to the planning example, and present several modules that can be
called from a planning program. We also hint at how some of those modules, such as
inertia, can be used by a program that does hypothetical reasoning about actions. In par-
ticular, while the statement “CallMacro Inertia2(Replace: F by G, T by X, T’ by X+1;

Unchanged: holds;)” can be used in a planning program or a program that reasons with
narratives the statement “CallMacro Inertia2(Replace: F by G, T by X, T’ by res(A,X);
Unchanged: holds;)” can be used for hypothetical reasoning about actions. Note that
both of them call the same module Inertia2. This is what we earlier referred to as reuse
of code.

Among other works, our work is close to [Calimeriet al.2004], [Gelfond 2006],
[Lifschitz & Ren 2006]. In [Calimeriet al.2004] ‘templates’ are used to quickly in-
troduce new predefined constructs and to deal with compound data structures. The
approach in [Gelfond 2006] is similar to us, and in [Lifschitz & Ren 2006] mod-
ular action theories are considered. Our use of “Replace” and the resulting sim-
pler parameter matching – than in our earlier version of the paper in AAAI’06
spring symposium, is inspired by [Lifschitz & Ren 2006], which was also presented
in the same symposium. Earlier, Chen et al. [Chen, Kifer, & Warren 1993] pro-
posed the language of Hi-log that allows specification similar to our transitive clo-
sure modules. Other works in logic programming that discuss modularity include
[Bugliesiet al.1994,Eiteret al.1997,Etalle & Gabbrielli 1996] and [Maher 1993].

Besides the above and CYC [Guha 1990] most recent efforts on resources for
large scale knowledge base development and integration have focused on issues
such as ontologies [Niles & Pease 2001], ontology languages [Deanet al.2002],
[Horrockset al.2003], [rul 2005], [Boleyet al.2004], [Grosofet al.2003], and inter-
change formats [Genesereth & Fikes 1992,com]. Those issues are complementary to
the issue we touch upon on this paper.

An initial implementation of an interface and interpreter of modules and macro calls
is available at http://www.baral.us/modules/. As this is being written, we are still fine
tuning the implementation.

9 Acknowledgements
We thank Michael Gelfond, Joohyung Lee, John McCarthy, Steve Maiorano, other par-
ticipants of the 2006 AAAI spring symposium and anonymous reviewers for their sug-
gestions. This work was supported by a DOT/ARDA contract and NSF grant 0412000.

References

[Baral 2003] Baral, C. 2003. Knowledge representation, reasoning and declarative problem
solving. Cambridge University Press.

[Baselice, Bonatti, & Gelfond 2005]Baselice, S.; Bonatti, P.; and Gelfond, M. 2005. Towards
an integration of answer set and constraint solving. InProc. of ICLP’05.

[Boley et al.2004] Boley, H.; Grosof, B.; Kifer, M.; Sintek, M.; Tabet, S.; and Wagner, G. 2004.
Object-Oriented RuleML. http://www.ruleml.org/indoo/indoo.html.

[Bugliesiet al.1994] Bugliesi, M.; Lamma, E.; Mello, P. 1994. Modularity in logic program-
ming. InJournal of logic programming, Vol. 19-20, 443–502.

[Calimeri et al.2004] Calimeri, F.; Ianni, G.; Ielpa, G.; Pietramala, A.; and Santoro, M. 2004.
A system with template answer set programs. InJELIA, 693–697.

[Chen, Kifer, & Warren 1993]Chen, W.; Kifer, M.; and Warren, D. 1993. A foundation for
higher-order logic programming.Journal of Logic Programming15(3):187–230.

[com] Common Logic Standard. http://philebus.tamu.edu/cl/.

[Deanet al.2002] Dean, M.; Connolly, D.; van Harmelen, F.; Hendler, J.; Horrocks, I.; McGuin-
ness, D.; Patel-Schneider, P.; and Stein, L. 2002. OWL web ontology language 1.0
reference. http://www.w3.org/TR/owl-ref/.

[Eiter et al.1997] Eiter, T.; Gottlob, G.; Veith, H. 1997. Modular logic programming and gener-
alized quantifiers. InProc. 4th international conference on Logic programming and
non-monotonic reasoning, 290–309. Springer

[Etalle & Gabbrielli 1996] Etalle, S.; Gabbrielli M. 1996. Transformations of CLP modules. In
Theoretical computer science, Vol. 166, 101–146.

[Gelfond & Gabaldon 1997]Gelfond, M., and Gabaldon, A. 1997. From functional specifica-
tions to logic programs. In Maluszynski, J., ed.,Proc. of International symposium
on logic programming, 355–370.

[Gelfond & Lifschitz 1988] Gelfond, M., and Lifschitz, V. 1988. The stable model semantics
for logic programming. In Kowalski, R., and Bowen, K., eds.,Logic Programming:
Proc. of the Fifth Int’l Conf. and Symp., 1070–1080. MIT Press.

[Gelfond 2006] Gelfond, M. 2006. Going places - notes on a modular development of knowl-
edge about travel. InProceedings of AAAI 06 Spring Symposium: Formalizing and
Compiling Background Knowledge and Its Applications to Knowledge Representa-
tion and Question Answering.

[Genesereth & Fikes 1992]Genesereth, M., and Fikes, R. 1992. Knowledge interchange format.
Technical Report Technical Report Logic-92-1, Stanford University.

[Grosofet al.2003] Grosof, B.; Horrocks, I.; Volz, R.; and Decker, S. 2003. Description Logic
Programs: Combining Logic Programs with Description Logic. InProceedings of
12th International Conference on the World Wide Web (WWW-2003).

[Guha 1990] Guha, R. 1990. Micro-theories and Contexts in Cyc Part I: Basic Issues. Technical
Report MCC Technical Report Number ACT-CYC-129-90.

[Horrockset al.2003] Horrocks, I.; Patel-Schneider, P.; Boley, H.; Tabet, S.; Grosof, B.; and
Dean, M. 2003. SWRL: A Semantic Web Rule Language Combining OWL and
RuleML. http://www.daml.org/2003/11/swrl/.

[Horstman 2005]Horstman, C. 2005.Big java. John Wiley.
[Lifschitz & Ren 2006] Lifschitz, V. and Ren, W. 2006. Towards a Modular action description

language. InProceedings of AAAI 06 Spring Symposium: Formalizing and Compil-
ing Background Knowledge and Its Applications to Knowledge Representation and
Question Answering.

[Maher 1993] Maher, M. 1993. A transformation system for deductive databases modules with
perfect model semantics. InTheoretical computer science, Vol. 110, 377–403.

[McCarthy 1993] McCarthy, J. 1993. Notes on formalizing contexts. In Bajcsy, R., ed.,Pro-
ceedings of the Thirteenth International Joint Conference on Artificial Intelligence,
555–560. San Mateo, California: Morgan Kaufmann.

[Miller et al.1990] Miller, G.; Beckwith, R.; Fellbaum, C.; Gross, D.; and Miller, K. 1990.
Introduction to wordnet: An on-line lexical database.International Journal of Lexi-
cography (special issue)3(4):235– 312.

[Niemel̈a & Simons 1997]Niemel̈a, I., and Simons, P. 1997. Smodels – an implementation of
the stable model and well-founded semantics for normal logic programs. In Dix,
J.; Furbach, U.; and Nerode, A., eds.,Proc. 4th international conference on Logic
programming and non-monotonic reasoning, 420–429. Springer.

[Niles & Pease 2001]Niles, I., and Pease, A. 2001. Towards a standard upper ontology. In
Proceedings of the international conference on Formal Ontology in Information Sys-
tems, 2–9.

[rul 2005] 2005. RuleML: The Rule Markup Initiative. http://www.ruleml.org/.
[Tari, Baral, & Anwar 2005] Tari, L.; Baral, C.; and Anwar, S. 2005. A Language for Modular

ASP: Application to ACC Tournament Scheduling. InProc. of ASP’05.

