
Fundamenta Informaticae XXI (2001) 1001–1024 1001

IOS Press

A Framework for Composition and Inter-operation of Rules in the
Semantic Web

Enrico Pontelli, Tran Cao Son, Omar Elkhatib
Department of Computer Science

New Mexico State University

epontell | tson | okhatib @cs.nmsu.edu

Chitta Baral
Department of Computer Science and Engineering

Arizona State University

chitta@asu.edu

Abstract. Recent developments in the RuleML initiative have led to the design of several languages
for representing rules. In this paper we describe a framework, based on the integration of different
flavors of logic programming, aimed at facilitate reasoning with multiple sources of knowledge
expressed in an heterogeneity of RuleML languages.

The framework allows the derivation of logic programming modules from each rule base, and their
inter-operation through a well-defined module interface. In this paper we describe the basic syntax
and semantics of the framework, and its preliminary implementation.

Keywords: Logic Programming, Rules, Inter-operation

1. Introduction

One of the main goals of the Semantic Web initiative [6] is to extend the current Web technology to
allow for the development of intelligent agents, which can automatically and unambiguously process the
information available in millions of web pages. It has been recognized very early in the development of
the Semantic Web [5] that rules are essential for the Web and for Semantic Web applications—e.g., in
the description of semantic web services, business rules interchange for e-commerce applications.

Address for correspondence: Enrico Pontelli, Dept. Computer Science, New Mexico State University, Box 30001, MSC CS,
Las Cruces, NM 88003, USA

1002 C. Baral, O. Elkhatib, E. Pontelli, T.C. Son / Framework for Composition of Rules

The RuleML initiative is a response to the need of a shared rule markup language using XML markup,
which has precisely defined semantics and enables efficient implementations. In recent years, a signif-
icant amount of work has been devoted to develop knowledge representation languages suitable for the
task, and a variety of languages for rule markup have been proposed. The initial design [7] included
a distinction (in terms of distinct DTDs) between reaction rules and derivation rules. The first type of
rules is used for the encoding of event-condition-action (ECA) rules, while the second is meant for the
encoding of implicational/inference rules.

Despite the fact that many different proposals for markup languages to encode ECA rules have ap-
peared (e.g., [26, 29, 2, 9]), the work on ECA rules is still a “moving target”. The most recent modular-
ized description of RuleML [22] reports this area (indicated as PR RuleML) as work in progress.

The derivation rules component of the RuleML initiative has originated a family of languages. Fig-
ure 11, from [22], shows the most commonly referred languages; observe that Datalog plays the role of
a core language, with simplified versions (unary and binary Datalog) developed for combining RuleML
with OWL (as in SWRL [23]). Various sub-languages have been created to include features like explicit
equality (e.g., fologeq), negation as failure (e.g., naffolog), and Hilog layers (e.g., hohornlog). In
[24], it is argued that any realistic architecture for the Semantic Web must be based on various indepen-
dent but inter-operable languages, one of them being the logic programming language with negation-
as-failure. The following example, a variation of the reviewer selection problem in [16], illustrates this
point by proposing the encoding of two rule bases based on distinct flavors of RuleML.

Example 1.1. (Reviewer Selection)
Suppose that we need to assign reviewers to papers submitted to RuleML-2006. The goal is to assign
papers to experts in the areas. Reviewers are registered in a knowledge base, called Reviewers, with
their expertise. The knowledge base also contains a description of the sub-area of each research area.
The knowledge base consists of concepts such as area(A), inArea(K,A), referee(P), keyword(K),
and expertIn(P,A). This information can be expressed in RuleML as a set of facts. For example,
semantic web is a keyword and a research area in ai, and john is a referee, who is an expert in
semantic web; these can be encoded by the following facts:
represents the fact that if X is a sub-area of Y and Y is a sub-area of Z then X is a sub-area of Z. We
assume that the knowledge base is available from the location

http: // www. ruleml2006. org/ expertise. ruleml

which we will simplify to expertise hereafter. Observe that the representation of this information only
employs the binary datalog language.

The second knowledge base, called Submissions, consists of information about the submissions to the
conference and rules for assigning papers to reviewers. Each paper is assigned an identification number
and is submitted with a set of keywords. This information is represented as a collection of statements of
the form

paper(#n) the paper is assigned the id number n

kw(#n, kw) the paper #n is listed with keyword kw

This can also be expressed as a set of facts. For example, the facts that paper #1 and paper #2 have been
submitted, and they list nmr and semantic web as respective keywords can be expressed by

1www.ruleml.org/modularization/ruleml_m12n_089_uml_05-06-01.png.

C. Baral, O. Elkhatib, E. Pontelli, T.C. Son / Framework for Composition of Rules 1003

FOL+

SWSL

Negation
Datalog

Binary

naffologeq

naffolog

fologeq

framehohornlogeq

hohornlogeq

hohornlog

nafhornlog

hornlogeq

nafnegdatalog

nafdatalog

negdatalog

bindatalog

bindatagroundlog

bindatagroundfact

Folog

Dishornlog

Hornlog

Datalog

Figure 1. RuleML Derivation Rules

<fact> <head> <atom> <fact> <head> <atom>

<_opr> <rel> paper </rel> </_opr> <_opr> <rel> paper </rel> </_opr>

<ind> 1 </ind> <ind> 2 </ind>

</atom> </head> </fact> </atom> </head> </fact>

<fact> <head> <atom> <fact> <head> <atom>

<_opr> <rel> kw </rel> </_opr> <_opr> <rel> kw </rel> </_opr>

<ind> 1 </ind> <ind> 2 </ind>

<ind> nmr </ind> <ind> semantic_web </ind>

</atom> </head> </fact> </atom> </head> </fact>

The rule for assigning reviewers to papers states that we can only assign reviewer with expertise in the
area. E.g., the rules used for this purpose are shown in Fig. 3.

Observe that in representing the rules for assigning reviewers, we make use of the RuleML nafdatalog
sub-language. We assume that the knowledge base is available from the location

http: // www. ruleml2006. org/ papers. ruleml .
which we will simplify to papers hereafter. 2

1004 C. Baral, O. Elkhatib, E. Pontelli, T.C. Son / Framework for Composition of Rules

<fact>
<head>

<atom>
<_opr>

<rel> inArea </rel>
</_opr>
<ind> semantic_web </ind>
<ind> ai </ind>

</atom>
</head>

</fact>

<fact>
<head>

<atom>
<_opr>

<rel> keyword </rel>
</_opr>
<ind>semantic_web </ind>

</atom>
</head>

</fact>

<fact>
<head>

<atom>
<_opr>

<rel> area </rel>
</_opr>
<ind> ai </ind>

</atom>
</head>

</fact>

<fact>
<head>

<atom>
<_opr>

<rel> expertIn </rel>
</_opr>
<ind> john </ind>
<ind> semantic_web </ind>

</atom>
</head>

</fact>

<fact>
<head>

<atom>
<_opr>

<rel> referee </rel>
</_opr>
<ind> john </ind>

</atom>
</head>

</fact>

Figure 2. Reviewers rule base

1.1. The Problem

Example 1.1 is a simple illustration of a common situation arising in the context of using rule bases and,
more in general, in the context of the general Semantic Web: the co-existence of different languages
with different semantics and reasoning mechanisms and the need to integrate reasoning across these
languages. The need for these languages and their interaction have been extensively discussed (e.g.,
[26, 24]) and it is at the foundation of the most recent work of the Rule Interchange Format working
group.2 It is also important to note that many of the sub-languages of RuleML have been implemented
either through translators, e.g.,

• GEDCOM [14], which translates to XSB and JESS
or independent engines, e.g.,

• j-DREW [30], a top-down engine for RuleML,
• DR-Device [4], an engine supporting defeasible logic and both strong and default negation, and

2http://www.w3.org/2005/rules/

C. Baral, O. Elkhatib, E. Pontelli, T.C. Son / Framework for Composition of Rules 1005

<imp>
<_head>
<atom>
<_opr><rel> assign </rel></_opr>
<var> referee </var>
<var> paper </var>

</atom>
</_head>
<_body>
<atom>
<_opr>
<rel> expertise#referee </rel>

</_opr>
<var> referee </var>

</atom>
<atom>
<_opr><rel> candidate </rel></_opr>
<var> referee </var>
<var> paper </var>

</atom>
<naf>
<atom>
<_opr><rel> not_assign </rel></_opr>
<var> referee </var>
<var> paper </var>

</atom>
</naf>

</_body>
</imp>

<imp>
<_head>
<atom>
<_opr><rel> not_assign </rel></_opr>
<var> referee </var>
<var> paper </var>

</atom>
</_head>
<_body>
<atom>
<_opr><rel> expertise#referee </rel></_opr>
<var> referee </var>

</atom>
<atom>
<_opr><rel> candidate </rel></_opr>
<var> referee </var>
<var> paper </var>

</atom>
<atom>
<_opr><rel> assign </rel></_opr>
<var> ref1 </var>
<var> paper </var>

</atom>
<naf>
<atom>
<_opr><rel> equal </rel></_opr>
<var> referee </var>
<var> ref1 </var>

</atom>
</naf>

</_body>
</imp>

<imp>
<_head>
<atom>
<_opr><rel> assign </rel></_opr>
<var> referee </var>
<var> paper </var>

</atom>
</_head>
<_body>
<atom>
<_opr><rel> expertise#referee </rel></_opr>
<var> referee </var>

</atom>
<atom>
<_opr><rel> candidate </rel></_opr>
<var> referee </var>
<var> paper </var>

</atom>
<naf>
<atom>
<_opr><rel> not_assign </rel></_opr>
<var> referee </var>
<var> paper </var>

</atom>
</naf>

</_body>
</imp>

<imp>
<_head>
<atom>
<_opr><rel> candidate </rel></_opr>
<var> referee </var>
<var> paper </var>

</atom>
</_head>
<_body>
<atom>
<_opr><rel> expertise#referee </rel></_opr>
<var> referee </var>

</atom>
<naf>
<atom>
<_opr><rel> not_candidate </rel></_opr>
<var> referee </var>
<var> paper </var>

</atom>
</naf>

</_body>
</imp>

Figure 3. Rules to Assign Reviewers with Expertise

1006 C. Baral, O. Elkhatib, E. Pontelli, T.C. Son / Framework for Composition of Rules

• CommonRules [13], a bottom-up engine for the Datalog sub-language.
In the development of intelligent agents that interact with the Semantic Web, we can identify a number
of issues that need to be addressed:

1. Reasoning within one knowledge base: Being able to reason within a knowledge base implies the
ability to inter-operate with a computational framework capable of handling the type of knowledge
present in the knowledge base (e.g., a production system for ECA rules, a Datalog system for
Datalog rules).

2. Reasoning across different knowledge bases: the capability of combining knowledge is essential
for intelligent agents (e.g., this is necessary in the context of services composition). This requires

(a) The ability to exchange inference results between different knowledge bases (e.g., the inter-
operability problem between rules and OWL described in [24]);

(b) The ability to combine reasoning results produced by different reasoning engines;
(c) The ability to properly scope the reasoning w.r.t. a specific knowledge base (e.g., the scoped

inference issue described in [24]).
3. Utilizing available knowledge: This requires the ability to use the results produced by differ-

ent reasoning processes from different information sources in the construction/implementation of
complex Semantic Web applications.

2. Proposed Solution

In this work, we propose a general framework to address the problem of
(i) Inter-operation between knowledge bases encoded using different RuleML languages, and

(ii) Development and integration of different components that reason about RuleML knowledge bases.
The approach adopted in this work relies on the use of a core logic programming framework to ad-
dress the issues of integration and inter-operation. In particular, the spirit of our approach relies on the
following beliefs:

• the natural semantics of various levels of the RuleML deduction rules hierarchy can be captured
by different flavors of logic programming;

• modern logic programming systems provide foreign interfaces that allow declarative interfacing to
other programming paradigms.

The idea is to combine the ASP-Prolog framework of [17]—which allows CIAO Prolog [10] programs
to access and modify modules containing Answer Set Programming (ASP) code [27]—with the notation
for modularization of Answer Set Programming of [3, 1]. The result is a logic programming framework,
where modules responding to different logic programming semantics (e.g., Herbrand minimal model,
well-founded semantics, answer set semantics) can co-exist and inter-operate.

The framework provides a natural answer to the problems of use and inter-operation of RuleML
knowledge bases described earlier. The overall structure is depicted in Fig. 4. Most of the emphasis is
on the use of Answer Set Programming to handle some of the sub-languages (e.g., datalog, ur-datalog,
nafdatalog and negdatalog), even though the core framework will naturally support most of the languages
(e.g., hornlog, hohornlog).
The problems mentioned in Sect. 1.1 are addressed by the proposed framework as follows:

• Issue 1: CIAO Prolog offers direct access to a collection of modules that support different forms of

C. Baral, O. Elkhatib, E. Pontelli, T.C. Son / Framework for Composition of Rules 1007

Semantic
Web

RuleML
Documents

PiLLoW
Library

W4
Compiler

CLIPS

Jess

ASP-Prolog

ASP

Prolog

CLP

Compilation
Step

Execution
Step

ASP
Module

ASP
Module

Prolog/CLP
Module

Java/CIAO
Module

Prolog/CLP
Module

Java/CIAO
Module

CLIPS
Module

Jess
Module

Figure 4. Overall Structure

logic programming reasoning, e.g., traditional Prolog, Constraint Logic Programming (over finite
domains and reals), fuzzy Prolog, and a declarative ODBC interface. In addition, CIAO Prolog pro-
vides a mechanism that allows Prolog programs to invoke Java methods, offering a bi-directional
communication and a reflection of Java objects into Prolog. This provides, for example, a natural
way to execute Java-based engines (e.g., Jess) and communicate between the core framework and
external Java packages. Furthermore, CIAO Prolog includes the PiLLoW library, a standardized
Prolog library for Web Programming, which provides the framework with capabilities for Web
access (e.g., management of URLs) and parsing of HTML and XML documents to Prolog terms.

Thus, we envision the core framework as the bridge between distinct execution models for different
RuleML sub-languages.

• Issue 2:
◦ Issue 2(a): This issue will be addressed through the introduction of a module system, where

different knowledge bases can be encoded (directly or indirectly) as distinct modules. The
original import/export of CIAO Prolog can be combined with the languages for answer set
modules of [3] to allow forms of bi-directional communication between the core framework
and the modules representing the knowledge bases.

◦ Issue 2(b): The core framework will provide the full computational power of Prolog, Con-
straint Logic Programming, and Answer Set Programming, combined through a sophisticated
module and class system. Module interfaces will allow extraction of semantic information
from the various knowledge bases (e.g., result of queries, models of knowledge bases) and
reason with them.

◦ Issue 2(c): The scoped inference is naturally supported by the module system of ASP-

1008 C. Baral, O. Elkhatib, E. Pontelli, T.C. Son / Framework for Composition of Rules

Prolog—e.g., skeptical and credulous reasoning w.r.t. answer set modules.
• Issue 3: This aspect can be handled thanks to the combination, in ASP-Prolog and CIAO Prolog,

of web access capabilities along with the full computational power of Prolog.

3. The Proposed Framework

3.1. General Syntax

3.1.1. Languages and Rules

We will consider a logic language 〈F ,Π,V〉, where F is a denumerable collection of function symbols,
Π = Πu ∪ Πd is a denumerable collection of predicate symbols and V is a collection of variables. Πu

are called user-defined predicates while Πd are called built-in predicates (and Πu ∩ Πd = ∅). We will
assume that assert, retract, model, . . . are elements of Πd. We will denote with ar(α) the arity of
the symbol α ∈ Π ∪ F .

A term is either a variable, an element of F of arity 0, or a formula of the form f(t1, . . . , tn) where
f ∈ F , ar(f) = n, and t1, . . . , tn are terms. We will say that a term t is ground if it contains no
variables. We will denote with HP the Herbrand universe for this language—i.e., the set of all ground
terms.

An atom is a formula of the form p(t1, . . . , tn), where p ∈ Π, ar(p) = n, and t1, . . . , tn are terms.
The atom is ground if t1, . . . , tn are ground. A qualified atom is a formula of the form t : A where t is
a ground term (called the label of the qualified atom) and A is an atom. In particular, if the predicate p
of an atom belongs to Πd, then the atom can only appear qualified in a rule. A literal is either an atom,
a qualified atom, or a formula not A, where A is an atom/qualified atom. We will denote with BP the
Herbrand base for this language (i.e., the set of all ground atoms). For an atom (qualified atom, negative
literal) `, we denote with π(`) the predicate symbol used by the atom (qualified atom, negative literal) `.

A general rule is of the form
A :−B1, . . . , Bk (1)

where A is an atom and B1, . . . , Bk are literals.
Depending on the type of programs we wish to represent, different restrictions can be imposed on

the rules:

(a) datalog: the Bi in rule (1) can be only atoms/qualified atoms and the terms used in the literals can
be only variables or constants (i.e., of arity 0).

(b) ground datalog: the Bi in rule (1) can only be atoms/qualified atoms, and the only terms allowed
are constants.

(c) ground binary datalog: the rules satisfy the conditions of case (b), and in addition we require all
predicates used to construct atoms to have arity at most 2.

(d) datalog with negation: the rules have the format as in case (a) but negative literals (not) are
allowed in the body of the rule.

(e) pure Prolog: rules of the format (1) are allowed, where Bi are atoms/qualified atoms, and arbitrary
terms can be employed, but no assert and retract are allowed in the rules.

C. Baral, O. Elkhatib, E. Pontelli, T.C. Son / Framework for Composition of Rules 1009

(f) impure Prolog: rules of the format as in case (e), with the additional ability to use the predicates
assert/2 and retract/2 in the body of the rules.

We will refer to a rule as a Ξ rule (where Ξ is datalog, ground datalog, binary datalog, etc.) to denote a
rule that meets the corresponding requirements. A Ξ-program is a collection of Ξ rules.

Given a rule r, we denote with used(r) the set of ground terms t such that t is a label of a qualified
atom in r. Given a Ξ-program P , we denote with used(P) = {t | ∃r ∈ P. t ∈ used(r)}. We also
introduce

def(P) = {p | p ∈ Πu, ar(p) = k, ∃r ∈ P.∃t1, . . . , tk. head(r) = p(t1, . . . , tk)}.

3.1.2. Module Structure

A module is composed of two parts: a module interface and a module body. A module interface has the
form

:− module : t

:− import : t1, . . . , tk

:− export : q1/k1, . . . , qm/km

where:

• t is a ground term, called the name of the module,

• t1, . . . , tk are ground terms, representing names of other modules,

• q1, . . . , qm are predicates, and k1, . . . , km are non-negative integers, such that ar(qi) = ki.

The body of a module is a Ξ-program for a given Ξ. In that case, we will say that the module is a Ξ
module. Given a module named t, we identify with the export set of t (denoted by exp(t)) the predicates
q1, . . . , qk exported by t. We also identify with imp(t) the import set of t, i.e., the names of the modules
imported by t.

A program P = {Mt1 , . . . ,Mtk} is a collection of modules named t1, . . . , tk. The graph of P
(graph(P)) is a graph (N, E) where the set of nodes N is {t1, . . . , tk} and (ti, tj) ∈ E iff ti ∈ imp(tj).
A program P = {Mt1 , . . . , Mtk} is admissible if it satisfies the following properties:

• for each ti we have that imp(ti) ⊆ {t1, . . . , tk};

• the graph graph(P) is acyclic.

The module structure can be expanded by allowing cyclic dependencies (i.e., two-way communications
between modules) as well as OO-style organization of modules (e.g., as described in [3]). We omit this
discussion due to lack of space.

Example 3.1. The translation process mentioned in Section 3.3 and applied to the first knowledge base,
will produce facts and rules of the form:

1010 C. Baral, O. Elkhatib, E. Pontelli, T.C. Son / Framework for Composition of Rules

:−module : expertise

:− export : referee/1, inArea/2, expert/2, . . .

keyword(semantic web).
. . .

inArea(semantic web, ai).
. . .

expertIn(john, semantic web).
. . .

referee(john).
. . .

inArea(K,K) :− keyword(K).
inArea(K,A) :− inArea(K, A1), inArea(A1, A).
. . .

expert(P,A) :− expertIn(P, A).
expert(P,A) :− inArea(A, A1), expert(P, A1).

The second knowledge base will be translated to a collection of facts and rules as shown in Figure 5.
For later use, let us assume that we have the following:

• REFS is the set of referees consisting of john, sue, and mike;

• KEY S is the set of keywords consisting of the following keywords: semantic web, mathematics,
bioinformatics, hci, logic programming, nmr, ai, answering system, and planning;

• EXPS is the set of pairs of the form (r, a) where r is a referee and a is an area encoding referee’s
expertise, which consists of the following information

– john is an expert in semantic web, logic programming, and hci

– sue is an expert in hci, logic programming, and bioinformatics

– mike is an expert in semantic web, answering system, mathematics, and planning

(e.g., we have (john, semantic web) ∈ EXPS.)

Let us assume that we have the following information about the papers:
• There are four papers 1, 2, 3, and 4.
• The keywords of the papers are given by

◦ Paper 1: semantic web and hci

◦ Paper 2: bioinformatic and hci

◦ Paper 3: logic programming

◦ Paper 4: answering system

C. Baral, O. Elkhatib, E. Pontelli, T.C. Son / Framework for Composition of Rules 1011

:− module : papers

:− import : expertise

:− export : paper/1, . . .

paper(1).
kw(1, nmr).
. . .

not candidate(R, P) :− expertise:referee(R), kw(P,K),
expertise:inArea(K, A),
not expertise:expert(P, A).

candidate(R,P) :− expertise:referee(R),
not not candidate(R, P).

assign(R, P) :− candidate(R,P),
not not assigned(R, P).

not assigned(R, P) :− candidate(R1, P),
assign(R1, P), R1 6= R.

done(P) :− paper(P),
expertise:referee(R), assign(R, P).

false :− assign(R, P), assign(R, P1), P 6= P1.

false :− paper(P), not done(P).

Figure 5. Translation of Second Knowledge Base

The program for assigning referees can be given by

Pref = {expertise, papers}
It is easy to see that expertise is a datalog module while papers is a nafdatalog module: 2

3.2. General Semantics

3.2.1. Pure Programs

In this section we propose a model-theoretic semantics for programs that do not contain any impure
Prolog module. Given a program P , a model naming function τ is an onto function τ : HP 7→ 2BP . We
will use this function to assign distinct names to the models of the different modules. In the rest of this
work, we will assume that the function τ is fixed.

Given a program P = {Mt1 , . . . , Mtk}, the acyclic nature of graph(P) guarantees the ability to
construct a topological sort of {t1, . . . , tk}, say η1, . . . , ηk such that if (ηi, ηj) is an edge of the graph,
then i < j. For the program Pref , the topological order is given by expertise followed by papers.

Given the program P and a topological sorting of the modules η1, . . . , ηk, we construct the seman-
tics module by module, following the topological sort order. The semantics of each module Mi will be
given by a collection of models Mτ (Mi), where Mτ (Mi) ⊆ 2BP . Given a Ξ-program T , not contain-
ing any qualified atoms and not containing any occurrence of predicates from Πd, we assume that its

1012 C. Baral, O. Elkhatib, E. Pontelli, T.C. Son / Framework for Composition of Rules

semantics NAT (T) is given. E.g., if T is a datalog with negation program meeting these conditions,
then NAT (T) will be the set of answer sets of T , while if T is a pure Prolog program (i.e., definite
logic program without extra-logical predicates such as assert and retract), then NAT (T) contains
the least Herbrand model of T .

This suggests a natural way to handle the semantics Mτ of a program P . Mτ is a mapping of the
form Mτ : P 7→ 2BP . Once the topological sort η1, . . . , ηk of the modules is given, we can construct
Mτ as follows:

• the semantics of Mη1 is given, since it does not import any other modules, and

Mτ (Mη1) = NAT (Mη1)

• the semantics of Mηi can be constructed by computing the natural semantics of a “reduct” of the
module,

Mτ (Mηi) = NAT (MR(Mηi ,Mτ))

as defined next.

Let us consider a module Mηi of P . Then:

• If t : A is a ground qualified atom and t ∈ imp(Mηi), then

Mηi |=Mτ t : A iff for each model M ∈Mτ (Mt) we have that M |= A

• if t : A is a ground qualified atom and t 6∈ imp(Mηi), then Mηi |=Mτ t : A iff there exist
ti ∈ imp(Mηi), M ∈Mτ (Mti) such that τ(t) = M and M |= A.

• Mηi |=Mτ t : model(t′) iff t ∈ imp(Mηi) and τ(t′) ∈Mτ (Mt).

• If not t : A is a ground qualified literal and t ∈ imp(Mηi), then

Mηi |=Mτ not t : A iff Mηi 6|=Mτ t : A

The model reduct of Mi w.r.t. Mτ , denoted MR(Mi,Mτ), is defined as follows:
◦ remove from Mi all rules that contain in the body a qualified element x such that Mi 6|=Mτ x;
◦ remove from the remaining rules all occurrences of qualified elements.

One can easily see that MR(Mi,Mτ) is a program without qualified atoms whose semantics is defined
by NAT (as assumed). This allows us to set

Mτ ((Mηi) = NAT (MR(Mηi ,Mτ))

From now on, we will denote with Mτ
P the semantics of a program P .

Example 3.2. Let consider the program Pref from Example 3.1. We have the following:
• expertise does not contain any qualified atoms and is a datalog module. Thus, its semantics,

is given by its least Herbrand model, M0, i.e., NAT (expertise) = {M0}. M0 contains the
following atoms:

C. Baral, O. Elkhatib, E. Pontelli, T.C. Son / Framework for Composition of Rules 1013

◦ keyword(K) for K ∈ KEY S,
◦ inArea(K, K) for K ∈ KEY S and inArea(semantic web, ai),
◦ referee(R) for R ∈ REFS,
◦ expertIn(R, K) for (R,K) ∈ EXPS, and
◦ expert(R, K) for (R,K) ∈ EXPS, expert(john, ai), and expert(mike, ai).

• papers is a nafdatalog module. It imports predicates from the module expertise. The model
reduct of this module is the program containing the following rules:

◦ The set of facts of the form paper(i) and kw(i, k) (e.g., paper(1) and kw(1, semantic web))
which encode the keywords associated to each paper, as described in Example 3.1.

◦ The rules defining not candidate will be simplified to ground rules of the following form

not candidate(r, p) :− kw(p, k)

where p, k, r are the paper number, the keyword, and the referee, such that r is not an expert
in any areas relevant to k. (Here, we require that a candidate must be an expert in areas that
cover all the keywords of the paper.) For example, both sue and mike are not candidates for
the paper 1:

not candidate(sue, 1) :− kw(1, semantic web)
not candidate(mike, 1) :− kw(1, hci)

◦ The rules defining candidates are reduced to the following set of rules of the form

candidate(r, p) :− not not candidate(r, p)

where r is a referee and p is a paper number. For instance, we have

candidate(mike, 1) :− not not candidate(mike, 1)

◦ The rules defining done are obtained by replacing the variable R in assign(R, P) with the
name of one of the referees.

◦ Other rules do not change.

We have that MR(papers,Mτ) is a nafdatalog program which has two answer sets. In both
answer sets, paper 1 is assigned to john, paper 2 is assigned to sue, and paper 4 is assigned to
mike. One of the answer sets assigns paper 3 to john while the other assigns it to sue. 2

3.2.2. Impure Programs

We say that a program is impure if it contains impure Prolog modules and/or it contains modules that are
not based on logic programming. Let P = {Mt1 , . . . , Mtk} be a program; we assume that t1, . . . , tk is
already a topological sort of graph(P). For the sake of simplicity, we consider impure programs under
the following restrictions:

• the user executes the program and interacts with it through the module Mtk , which is a Prolog
(pure or impure) module; the interaction is driven by a Prolog goal.

1014 C. Baral, O. Elkhatib, E. Pontelli, T.C. Son / Framework for Composition of Rules

• the impure predicates assert and retract are allowed to appear only in Prolog modules, and in
particular, we will consider them only in the Mtk module (though it is easy to relax this restriction).

Because of the non-logical nature of the impure predicates, we rely on an operational semantics to char-
acterize the meaning of programs.

The state of a computation is given by a tuple 〈G, θ, P 〉, where G is a Prolog goal, θ is a substitution,
and P is a program. The operational semantics is defined through a state transition system 〈G, θ, P 〉 7→
〈G′, θ′, P ′〉 where3

• If G = A ∧ Rest, π(A) ∈ def(Mtk), and h :− body is a variant of a rule in Mtk such that
Aθσ = hσ, then we have that G′ = body ∧Rest, θ′ = θ ◦ σ, and P ′ = P .

• If G = t : A ∧ Rest, t ∈ imp(Mtk), and let σ be a ground substitution for Aθ such that Aθσ is
true in each model in Mτ

P (Mt) then G′ = Rest, θ′ = θ ◦ σ, and P ′ = P .

• If G = t : model(t′) ∧ Rest, t ∈ imp(Mtk), and σ is a substitution such that t′σ is ground and
τ(t′σ) ∈Mτ

P (Mt) in answer set of P , then G′ = Rest, θ′ = θ ◦ σ, and P ′ = P .

• If G = t : A ∧ Rest, there is t′ ∈ imp(Mtk) and a substitution σ such that (t : A)σ is ground,
τ(tσ) ∈ Mτ

P (Mt′) in the answer set of P , and Aσ is true in τ(tσ), then G′ = Rest, θ′ = θ ◦ σ,
and P ′ = P .

• If G = t : assert(Head,Body) ∧Rest, σ is such that tσ ∈ imp(Mtk), then G′ = Rest, θ′ = θ,
and P ′ = (P \ {Mtσ}) ∪M

′
tσ where M

′
tσ = Mtσ ∪ {Head :−Body}

• If G = t : retract(Head,Body) ∧ Rest, σ is a ground substitution such that tσ ∈ imp(Mtk)
and (Head :−Body)σ ∈ Mtσ, then G′ = Rest, θ′ = θ, and P ′ = (P \ {Mtσ}) ∪ M

′
tσ where

M
′
tσ = Mtσ \ {(Head :−Body)σ}

Given a goal G and a program P with main module Mtk , we say that θ is a solution of G if 〈G, ε, P 〉 7→∗

〈true, θ, P ′〉.

Example 3.3. Let us continue with Example 3.2. Let us assume that a referee john has suddenly re-
quested to be excused from reviewing papers, and we wish to check whether without his/her presence
we can still referee the papers (i.e., whether Mτ

P (papers) 6= ∅ after the change). This can be done by
introducing a Prolog module consisting of the following rules:

:− module : remove refs

:− import : expertise, papers

can remove(R) :− expertise : retract(referee(R)), papers:model(T). (∗)
Let P = Pref ∪ {remove refs}. We can solve the question posed above—i.e., the effect of removing
the fact referee(john)—by issuing the Prolog query

?− can remove(john).

The execution of this goal G = can remove(john) will be considered with respect to the program P
above, and will go through the following steps:
3Recall that, in the current proposal, we do not allow not to appear in Prolog modules.

C. Baral, O. Elkhatib, E. Pontelli, T.C. Son / Framework for Composition of Rules 1015

◦ The initial state of the computation is 〈G, θ, P 〉, where
• G is the goal can remove(john)
• θ is the empty substitution ε

• P is the original program Pref ∪ {remove refs}
◦ G can be unified with the head of the rule (*) in remove refs and the step produces a new state
〈G′, θ′, P ′〉 where
• G′ is the goal expertise : retract(referee(john)), papers:model(T)
• θ′ is the substitution {R/john}
• P ′ is equal to the original program P .

◦ The subgoal expertise : retract(referee(john)) is executed, leading to a state 〈G′′, θ′′, P ′′〉,
where
• G′′ is the goal papers:model(T)
• θ′′ is equal to θ′

• The program P ′′ consists of the following modules:
− remove refs and papers are unchanged; and
− A new module Q = expertise\{referee(john)} which is obtained from expertise

by removing the fact referee(john).
◦ The goal papers:model(T) is evaluated. This requires the computation ofMτ

P ′′(papers). It is
easy to see that without referee(john) as a fact in expertise, Mτ

P ′′(papers) = ∅. This means
that the goal fails.

Backtracking does not help since the first two evaluations in this computation are deterministic. This
means that the goal ?− can remove(john) fails, i.e., without the service of john there are some papers
that cannot be assigned. 2

3.2.3. Non-Logical Programming Modules

The ability to interact with non-logical programming modules is also considered vital to the integration of
different rule-bases. In particular, we consider here the possibility of accessing ECA rule bases (e.g., the
PR RuleML layer or some of the existing formalizations of ECA rules [29]). For the sake of discussion,
we assume that the ECA rules drawn from the RuleML file are converted to CLIPS format [18] and
handled by CLIPS. CLIPS has an elegant foreign interface that makes it easy to embed CLIPS into
Prolog.

The notion of program is extended to allow some of the modules Mti to represent the CLIPS encoding
of a RuleML module. Reasoning within an ECA module requires the module to be provided with the
events necessary for the match-select-execute cycle of CLIPS; we envision these events to be provided
by the other modules. Similarly, the content of the working memory at the end of the complete execution
should be made available to other modules. We take the simple approach of embedding the CLIPS
execution in a Prolog module (to be automatically generated during the process of compiling RuleML
into CLIPS). The intuitive structure of such module is depicted in Fig. 6.

CLIPS facts are associated to Prolog facts; outside events are imported and converted into CLIPS
facts (and added to the working memory of the CLIPS module). The result of the computation (i.e., the
final content of the working memory) is retrieved by the embedding module, represented as Prolog facts,
and publicized through the export declaration.

1016 C. Baral, O. Elkhatib, E. Pontelli, T.C. Son / Framework for Composition of Rules

The semantics of an ECA module is represented by the content of the working memory when the
match-select-execute cycle has reached a fixpoint. In particular, given an ECA module E , let us introduce
the following notation:

• given a ground Prolog fact p, we will denote with ϕ(p) its representation in the ECA language
(e.g., CLIPS fact); given an ECA fact q, we will denote with ϕ−1(q) its representation as a Prolog
fact. These functions can be naturally extended to sets of atoms/facts.

• r(E ,W) is the result of the match-selection process, i.e., the rule of E to selected during the match-
selection process w.r.t. the working memory content W ;

• δ(r,W) is the working memory resulting from executing rule r in the working memory W ;

• The execution is described as follows: given the working memory W ,

E0(E , W) = W

Ei+1(E ,W) = δ(r(E , Ei(E ,W)), Ei(E ,W))

Let S = {i | Ei(E ,W) = Ei+1(E ,W)}. If S 6= ∅, then E(E ,W) = Ek+1(E ,W), where
k = min(S); otherwise E(E , W) = undef.

Let Mt1 , . . . ,Mtk the modules imported by E . Then we define Mτ (E) as follows: ϕ−1(S) ∈ Mτ (E)
iff ∃M1 ∈Mτ (Mt1) . . .Mk ∈Mτ (Mtk) s.t. S = E(E ,

⋃k
i=1 ϕ(Mi)).

ECA Module

Module 1

Module k

export p

import p

import q

export q assert p(a)

getfacts

p(a) :- ...

... :- ..., q, ...

CLIPS

Program

(defrule “...”

?f <- (p ?x)

=>

(retract ?f)

(assert (q ?x)))

Prolog

Program

Figure 6. Embedding of Non-logical Modules

3.3. Framework Implementation

Most of the proposed framework has already been implemented as part of the ASP-Prolog system [17].

C. Baral, O. Elkhatib, E. Pontelli, T.C. Son / Framework for Composition of Rules 1017

3.3.1. Logical Core Implementation

The implementation of the logical core is based on the combination of two logic programming systems:
CIAO Prolog4 and Smodels.5

CIAO Prolog is a full-fledged Prolog system, with a sophisticated module system, and designed to
handle a variety of flavors of logic programming, including Constraint Logic Programming (over reals
and finite domains), fuzzy logic programming, and concurrent logic programming. Smodels is a logic
programming engine which supports computation of the well-founded and answer set semantics for
NAF-datalog programs.

The overall structure of the implementation is depicted in Figure 7. The system is composed of two
parts, a preprocessor and the actual CIAO Prolog system.

Prolog
Modules

ASP
Modules

ASP-Prolog
PreProcessor

CIAO
Prolog

ASP-Prolog
Goals

Answer
Substitutions

Updated
Prolog

Modules

Module Load

Interface
Modules

Model
Classes

Figure 7. Overall Structure of ASP-Prolog Implementation

3.3.2. Preprocessing

The input to the preprocessor is composed of
(i) the main Prolog module (Pr);

(ii) a collection of CIAO Prolog modules (m1,m2, . . . , mn);
(iii) a collection of ASP modules (e1, e2, . . . , em).

The output of the preprocessor is: a modified version of the main Prolog module (NP), a modified
version of the other Prolog modules (nm1, nm2, . . . , nmn), and for each ASP module ei the preprocessor
creates a CIAO module (imi) and a class definition (ci).6

The transformation of the Prolog modules consists of a simple rewriting process, used to adapt the
syntax of the interface constraints and make it compatible with CIAO Prolog’s syntax. For example, the
rules passed as arguments to assert and retracts have to be quoted to allow the peculiarities of ASP
syntax to be accepted.

The transformation of each ASP module leads to the creation of two entities that will be employed
during the actual program execution: an interface module and a model class. These are described in the

4clip.dia.fi.upm.es/Software/Ciao
5www.tcs.hut.fi/Software/smodels
6CIAO provides the ability to define classes and create class instances.

1018 C. Baral, O. Elkhatib, E. Pontelli, T.C. Son / Framework for Composition of Rules

following subsections. The preprocessor will also automatically invoke the CIAO Prolog top-level and
load all the appropriate modules for execution. The interaction with the user is the same as the standard
CIAO Prolog top-level.

Public Part
Export List

Private
Data

Module
Initialization

* access ASP file & parameters
* computation of initial models
* generation of model objects
* interface initialization

MODELS
* Internal ASP Program representation
* Model Objects
* Backtracking checkpoints
* Support Tables

* interface predicates
 - assert/1, assert_nb/1
 - retract/1, retract_nb/1
 - models/2, total_stable_models/1
 - compute/2, change_parm/1

Figure 8. Structure of the Interface Module

asp1

prolog1

prolog2

prolog3asp2

asp3 asp4 asp5

asp6

1) assert(rule_list).

2) change
parent

ASP−State

Figure 9. Parents change their ASP-state
when aspi is changed

3.3.3. Interface Modules

The preprocessor generates one interface module for each ASP module present in the original input
program. The interface module is implemented as a standard CIAO Prolog module and it provides the
client Prolog modules with the predicates used to access and manage the ASP module. The interface
module is created for each ASP module by instantiating a generic module skeleton.

The overall structure of the interface module is illustrated in Figure 8. The module has an export list
which includes all the predicates used to manipulate ASP modules (e.g., assert, retract, model) as
well as all the predicates that are defined within the ASP module.

The definition of the various exported predicates (except for the predicates defined in the ASP mod-
ule) is derived by instantiating a generic definition of each predicate. Each module has an initialization
part, which is in charge of setting up the internal data structures and invoke the ASP solver (Smodels)
for the first time on the ASP module. The result of the computation of the models will be encoded as
a collection of Model Objects (see the description of the Model Classes in the next subsection). The
module will maintain a number of internal data structures, including a representation of the ASP code, a
representation of the parameters to be used for the computation of the answer sets (e.g., values of con-
stants), a list containing the objects representing the models of the ASP module, a counter of the number
of answer sets currently present, etc.

The preprocessor creates a graph-module structure which represents the call hierarchy of modules.
If a Prolog/ASP module up is calling another Prolog/ASP module uc, then up is called the parent module
and uc is one of its children. The tree-module structure is stored in each interface module.

Each interface provides also a timestamp predicate, which is used to inform of the time at which the
module’s semantics have been last computed (recorded as a discrete system time); each interface module

C. Baral, O. Elkhatib, E. Pontelli, T.C. Son / Framework for Composition of Rules 1019

will recompute the local semantics whenever the timestamp of one of the imported modules changes.
This allows the system to propagate the effect of changes (e.g., assert/retract) to all modules that depend
on the modified one.

Finally, the pre-processing will add some code to handle the three types of module qualification.
E.g., assume the qualification (α:t) appears in a rule (r), it will be changed as follows: (i) if α is
an ASP module child, and t 6= model(Q) (where Q is a variable), then (α:t) will be changed into
(α:getSkepticalV alue(t)). (ii) if α is a model name, then it will be changed into (α:atom value(t, 1));
this returns the values for t that are true in the model α. (iii) otherwise (α:t) will not be changed.

3.3.4. Model Classes

The preprocessor generates a CIAO class definition for each module. The objects obtained from the
instantiation of such class will be used to represent the individual models of the module. In particular,
for an ASP module we will have one instance for each answer set, while for a Prolog module we will
have a single model.

Prolog and ASP modules can obtain reference to these objects (e.g., using the model predicate sup-
plied by the interface module) and use them to directly query the content of one model. The definition
of the class is obtained through a straightforward parsing of the export declaration of each module, to
collect the names of the predicates defined in it; the class will provide a public method for each of the
predicates present in the module’s export list. The class defines also a public method add/1 which is
used by the interface module to initialize the content of the model.

Each model of an ASP module is stored in one instance of the class; the actual atoms representing the
model are stored internally in the objects as facts of the form s(〈fact〉). In the case of Prolog modules,
the class module will directly link to the corresponding predicate in the Prolog module—thus, allowing
computation of the model on-the-fly.

To facilitate computation, the preprocessor generates an additional module for each ASP module,
called skeptical module. The module is instantiated to a collection of facts representing the elements
that have the same truth value in all answer sets of the corresponding ASP module.

3.3.5. Further Implementation Details

ASP-State: Every ASP-module has a set of models, atoms, and skeptical model called ASP-states. A
stack is used to store the ASP-states which will be used for backtracking. Any change in the ASP-state of
an ASP module m, requires that all the ASP ancestor modules of m change their own ASP-states. This
can be done with the help of the tree-module structure. Figure 9 illustrates how a tree-module structure
is used in backtracking. Assume that the module hierarchy is represented as the tree. First prolog2
asserts a rule in asp6, which causes asp6 to change its ASP-state; in turn, this will cause a change of the
ASP-state of asp5, which is a parent of asp6.

Partial Grounder: In order for the Smodels system to ground the ASP-modules, all qualification of the
form (α:t) have to be computed and stored as new facts with a newly created ASP-variable. Therefore,
if we have a positive qualification literal (α:t), then the partial grounder will evaluate the predicate t in
module α. If α is a Prolog module, then the builtin predicate findall is used to compute all possible
answers to the goal ?- t. If α is an ASP-module, then the predicate t is evaluated against the skeptical

1020 C. Baral, O. Elkhatib, E. Pontelli, T.C. Son / Framework for Composition of Rules

answers of the ASP-module α. If α is an ASP-model name, then predicate t is computed against the
corresponding answer set named α. After that, all ground values of t are added as facts into the ASP-
module.

Example 3.4. Assume a rule in an ASP-module (in our system):

1 #import(pr, ’prolog1.pl’).
2 p :- ..., pr:p(X,Y), ...

The partial grounder will find all ground values of p(X,Y) by executing:
findall((X,Y),p(X,Y),L).

Assume L=[(1,1), (2,2)], then the second rule is changed to:

p :- ..., aspprolog0(X,Y), ...
aspprolog0(1,1).
aspprolog0(2,2).

where aspprolog0 is a new predicate. A symbol table entry is needed to record that aspprolog0/2 is
associated with pr:p(X,Y).

The same rewriting rules are needed for negative qualification literals (not α:t), domain qualification
literals, cardinality qualification literals, and weight qualification literals.

3.3.6. Non-Logical Components

The non-logical components can be implemented through the high-level foreign interface of CIAO Pro-
log. As illustrated in Fig. 6, each non-logical component is implemented as a Prolog module, which
embeds a CLIPS program. The Prolog module is automatically generated, during pre-processing, to col-
lect from the CLIPS program the events appearing in the left-hand side of the rule and that are exogenous
to the ECA rule base. URIs of events are employed to recognize what modules these events will come
from and to generate the appropriate import declarations. Events asserted by ECA rules are automatically
exported, and the corresponding export declarations generated.

Communication between CLIPS and Prolog is realized using
• the CIAO Prolog C interface, which allows a rich set of functionalities to convert between Prolog

terms and C structures
• the CLIPS foreign interface, which provides C functions to access all the interface commands of

CLIPS (e.g., Assert facts, Load rule bases, Run an execution, retrieve the content of the working
memory GetFactList).

3.3.7. RuleML Specific Issues

As illustrated in Fig. 4, RuleML knowledge bases are retrieved and encoded as modules to support
the reasoning activities. The translation process relies on the PiLLoW library (which supports HTTP
protocol and basic XML manipulation) and the sophisticated XML library provided by CIAO Prolog
(which allows XML parsing, URIs management, and even XPath queries).

The translation process is performed in two steps. During the first step, the RuleML document is
parsed and converted into a Prolog XML representation (as a compound Prolog term). In the second

C. Baral, O. Elkhatib, E. Pontelli, T.C. Son / Framework for Composition of Rules 1021

phase, the Prolog XML representation is parsed and translated into logical rules and collected into a
module.

The import component of the module is automatically derived by retrieving those atoms used in the
program and linking (through URIs) to external components (e.g., used in the rel elements). By default,
the export list will contain all the rel that appear as heads of rules/facts in the knowledge base.

Example 3.5. Let us continue with the rule bases described in Example 1.1. Once the two modules have
been derived, it is possible to write CIAO Prolog programs and queries to access the semantics of the two
modules and reason about them. For example, if we wish to retrieve one possible assignment of referees
and print it:

:− import : papers, expertise.

print assignment :− papers:model(T), findall([P, R], T:assign(R, P), List),
print list(List).

We can also discover whether there are referees that have not been assigned any paper in any possible
assignment with the following rules (thus, the referee could be excused):

unassigned(R) :− expertise:referee(R),
findall(R, (papers:model(T), T : assign(R, P)), []).

It is easy to implement soft constraints and/or preferences; for example, if joe has a preference for
reviewing paper 6, we can modify the print assignment predicate as:

print assignment :− papers:model(T),
T : assign(joe, 6), !,
findall([P, R], T:assign(R, P), List),
print list(List).

print assignment :− papers:model(T),
findall([P, R], T:assign(R, P), List),
print list(List).

Similar approaches can be taken to handle other forms of preferences or conflicts of interest. 2

4. Related Work

The importance of developing languages and frameworks to integrate different aspects of semantic web
reasoning has been highlighted in the literature. Most of the existing focus has been on integrating
rule-based reasoning with ontology reasoning. Two relevant contributions in this field are represented
by the work of Goldbreich [20] and Laera et al. [25]. In [20], the author describes a combination of
reasoning about ontologies (encoded in OWL) with rule-based reasoning (with rules encoded in SWRL
and processed by the Jess system). Differently from our framework, the system is not based on logic
programming (relying on Java’s Jess platform) and limited to SWRL’s rule format.

1022 C. Baral, O. Elkhatib, E. Pontelli, T.C. Son / Framework for Composition of Rules

A wider-breadth approach, and closer to the spirit of ASP-Prolog, is SweetProlog [25]. SweetProlog
offers a platform for integrating rules and OWL ontologies build using logic programming. Rules are
encoded using OWLRuleML, which represents an OWL ontology for the RuleML dialect captured by
the Courteous Logic Programming scheme [21]. Both rules and OWL ontologies are mapped to Pro-
log (specifically, the Java-Internet Prolog engine) for interrogation and reasoning. This project has a
greater emphasis on integration between a fixed rule language (the fragment of RuleML captured by
OWLRuleML) and OWL ontologies, providing an orthogonal contribution to the integration problem.

A remarkable direction has been explored in the context of the DLV project; dlvhex [15] is an
extension of DLV which

• allows answer set programs to invoke external source of computation—i.e., truth value of selected
predicates can be achieved through external deduction systems, e.g., accessing RDF statements;

• allows answer set programs to contain higher-order atoms.

This language has been motivated by similar reasons as those in this paper, to support semantic web
reasoning [16, 15], with particular emphasis on integration of ontologies.

Relatively few proposals have appeared in the literature dealing with the high-level integration of
different forms of logic programming reasoning (specifically, top-down goal-oriented Prolog and bottom-
up answer set semantics). ASP-Prolog [17], on which the work described in this paper builds, is a system
that provides Prolog programs with the ability to seamlessly access modules processed under answer set
semantics. A simplified interface (between the Smodels system and XSB Prolog) has been described
in [12].

Lower level interfaces between answer set systems (dlv and Smodels) and traditional imperative
languages have been developed [28, 31, 11].

5. Conclusions

In this paper, we presented a framework aimed at supporting inter-operation between logic programming
modules operating under different semantics (e.g., pure Prolog, answer set semantics). The objective is
to reflect in this framework the content of RuleML documents and allow cooperative reasoning. RuleML
documents are converted into logic programming modules and manipulated according to their natural
semantics. A clearly defined module interface allows modules to exchange information, in the form of
content of their model-theoretical semantics. We presented the syntax and semantics of the framework,
as well as discussed a preliminary implementation of parts of this framework within the ASP-Prolog
system.

The framework allows sophisticated forms of reasoning, including scoped inference, and the ability
to use logic programming (either in the form of Prolog or in the form of Answer Set Programming) to
reason about the semantics implied by distinct RuleML documents. For example, some of the initial
RuleML specifications (e.g., [8]) provide the ability to associate labels and salience/priority to rules; this
opens the doors to the possibility of encoding qualitative (e.g., overriding of rules) as well as quantitative
(e.g., comparison of salience factors) preferences. This is very important, for example, in the context of
ECA rules—where salience is a commonly used criteria to control order of execution. Our framework
provides a natural way to handle qualitative and quantitative preferences, by allowing the development

C. Baral, O. Elkhatib, E. Pontelli, T.C. Son / Framework for Composition of Rules 1023

of modules that reason on the semantics of other modules—thus, allowing a module to apply preferences
and filter out only the acceptable solutions (in a traditional generate&test approach).

As future work, we propose to complete the implementation of the framework and demonstrate it on
real-world applications, with particular focus on applications on description and manipulation of bioin-
formatics web services. The proposed framework is also expected to have a significant role in facilitate
the deployment of and reasoning about rule-bases constructed according to the guidelines of the Rule
Interchange Format (RIF) initiative [19]. Recent developments in RIF have highlighted the importance
of being able to merge rule sets, and the requirement of supporting standard ways to characterize rule
sets dialects. The proposed framework could easily avail of such standardized identification of dialects
to guide the automated translation of RIF rule sets to ASP-Prolog modules.

Acknowledgments

The authors wish to thank the anonymous reviewers of a previous version of this paper for their comments
and suggestions. The research has been partially supported by NSF grants 0544373, 0454066, 0420407,
0220590, 0412000, and grants N61339-06-C-0143 and N61339-06-C-0123.

References
[1] Answar, S., Baral, C., Tari, L.: A language for modular ASP: application to ACC tournament scheduling,

ASP Workshop, 2005.

[2] Bailey, J., Poulovassilis, A., Wood., P.: An Event Condition Action Language for XML, World Wide Web
Conference, 2002.

[3] Baral, C., Dzifcak, J., Takahashi, H.: Macros, macro calls, and use of ensembles in modular answer set
programming, International Conference on Logic Programming, Springer Verlag, 2006.

[4] Bassiliades, N., Antoniou, G., Vlahavas, I.: DR-DEVICE, a Defeasible Logic Reasoner for the Semantic
Web, Int. Journal on Semantic Web and Information Systems, 2(1), 2006, 1–41.

[5] Berners-Lee, T.: Design Issues – Architectural and Philosphical Points, Personal Notes, www.w3.org/
DesignIssues.

[6] Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web, Scientific American, 284(5), 2001, 34–43.

[7] Boley, H., Grosof, B., Sintek, M., Tabe, S., Wagner, G.: RuleML Design, Version 0.8, www.ruleml.org/
indesign.html, September 2002.

[8] Boley, H., Tabet, S., Wagner, G.: Design Rationale of RuleML: a Markup Language for Semantic Web Rules,
International Semantic Web Working Symposium (SWWS), Stanford University, 2001.

[9] Bry, F., Patranjan, P.-L.: Reactivity on the Web: Paradigms and Applications of the Language XChange,
Symposium on Applied Computing, ACM Press, 2005.

[10] Bueno, F., Cabeza, D., Carro, M., Hermenegildo, M., López-Garcı́a, P., Puebla, G.: The Ciao Prolog System.
Reference Manual, Technical Report CLIP3/97.1, Technical University of Madrid (UPM), 1997.

[11] Calimeri, F., Ianni, G.: External Sources of Computation for Answer Set Solvers, Logic Programming and
Non-Monotonic Reasoning, Springer Verlag, 2005.

[12] Castro, L., Swift, T., Warren, D.: XASP: Answer Set Programming with XSB and Smodels, Technical report,
SUNY Stony Brook, xsb.sourceforge.net/manual2/node149.html, 2002.

1024 C. Baral, O. Elkhatib, E. Pontelli, T.C. Son / Framework for Composition of Rules

[13] Chan, H., Grosof, B.: CommonRules, www.alphaworks.ibm.com/tech/commonrules, 1999.

[14] Dean, M.: RuleML Experiments with GEDCOM, www.daml.org/2001/02/gedcom-ruleml, 2001.

[15] Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: Effective Integration of Declarative Rules with External
Evaluations for Semantic-Web Reasoning, European Semantic Web Conference, Springer Verlag, 2006.

[16] Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining ASP with Description Logics for the
Semantic Web, Principles of Knowledge Representation and Reasoning, AAAI Press, 2004.

[17] Elkhatib, O., Pontelli, E., Son, T.: A Tool for Knowledge Base Integration and Querying, AAAI Spring
Symposium, number SS-06-05, AAAI Press, 2006.

[18] Giarratano, J., Riley, G.: Expert Systems: Principles and Programming, Course Technology, 2004.

[19] Ginsberg, A., Hirtle, D., McCabe, F., Patranjan, P.-L.: RIF Use Cases and Requirements, Technical Report
WD-rif-ucr-20060710, W3C RIF Working Group, 2006.

[20] Golbreich, C.: Combining Rule and Ontology Reasoners for the Semantic Web, RuleML, Springer Verlag,
2004.

[21] Grosof, B.: A Courteous Compiler from Generalized Courteous Logic Programs to Ordinary Logic Pro-
grams, Technical report, IBM T.J. Watson Research Center, 1999.

[22] Hirtle, D., Boley, H.: The Modularization of RuleML, www.ruleml.org/modularization, 2005.

[23] Horrocks, I., Patel-Schneider, P., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: a Semantic Web Rule
Language Combining OWL and RuleML, Technical Report SUBM-SWRL-20040521, W3C Member Sub-
mission, 2004.

[24] Kifer, M., de Bruijn, J., Boley, H., Fensel, D.: A Realistic Architecture for the Semantic Web, RuleML,
Springer Verlag, 2005.

[25] Laera, L., Tamma, V., Bench-Capon, T., Semeraro, G.: SweetProlog: a System to Integrate Ontologies and
Rules, RuleML, Springer Verlag, 2004.

[26] May, W., Alferes, J., Amador, R.: Active Rules in the Semantic Web: Dealing with Language Heterogeneity,
RuleML, Springer Verlag, 2005.

[27] Niemela, I.: Logic Programs with Stable Model Semantics as a Constraint Programming Paradigm, Annals
of Mathematics and Artificial Intelligence, 25(3–4), 1999, 241–273.

[28] Ricca, F.: The DLV Java Wrapper, Italian Congress on Computational Logic (CILC), 2003.

[29] Seiriö, M., Berndtsson, M.: Design and Implementation of an ECA Rule Markup Language, RuleML,
Springer Verlag, 2005.

[30] Spencer, B.: The Design of j-DREW, a Deductive Reasoning Engine for the Semantic Web, Workshop on
Logic-based Program Synthesis and Transformation, number TR CLIP 4/02.0, Univ. Pol. Madrid, 2002.

[31] Syrjanen, T.: Lparse 1.0: User’s Manual, Helsinki University of Technology, 1998.

