
Goal specification in presence of non-deterministic
actions

Chitta Baral and Jicheng Zhao 1

Abstract.
One important aspect in directing cognitive robots or agents is to for-
mally specify what is expected of them. This is often referred to as
goal specification. For agents whose actions have deterministic con-
sequences various goal specification languages have been proposed.
The situation is different, and less studied, when the actions may
have non-deterministic consequences. For example, a simple goal of
achieving p has many nuances such as making sure that p is achieved,
trying ones best to achieve p, preferring guaranteed achievement of
p over possible achievement, and so on. Similarly, there are many
nuances in expressing the goal to try to achieve p, and if it fails then
to achieve q. We develop an extension of the branching time tem-
poral logic CTL∗, which we call π-CTL∗, and show how the above
mentioned goals can be expressed using it, and why they can not be
expressed in CTL∗. We compare our approach to an alternative ap-
proach proposed in the literature.

1 Introduction and Motivation

In recent years it has been proposed [1, 7, 8, 2] that temporal logic
be used to specify goals (of cognitive robots or agents) that go be-
yond only putting conditions on the final state. Most of these papers
– except [8], only consider the case when actions are deterministic. In
presence of non-deterministic actions, as first mentioned in [3], spec-
ifying goals has new challenges. For example, consider the following
domain.

Example 1 There are five different states: s1, s2, s3, s4, and s5. The
proposition p is only true in state s4. The other states are distinguish-
able based on fluents which we do not elaborate here. Suppose the
only possible actions and their consequences are the following: The
agent can go from state s1 to s5 by action a6. In state s1, if the agent
performs the action a1, it may go to s2 or s3. In s2, the action a2

will take the agent to s4 while the action a5 may take it to either s4

or s5. If the agent is in state s2, the action a7 will take it to either
state s2 or state s4. If the agent is in state s3, the action a4 will take
it to state s5. The action a3 will take the agent from s3 to either s4 or
s5. Besides, in each state, there is always an action nop that keeps
the agent in the same state. The transition graph of this domain is in
Figure 1. In it we do not show the transitions due to the nop action.

Consider an agent whose goal is to try its best to reach a state where p
is true. The agents and its controllers are aware that some of the avail-
able actions have non-deterministic effects. Thus they are looking for
policies – mapping from states to actions – instead of simple plans

1 Department of Computer Science and Engineering, Arizona State Univer-
sity, AZ 85281, USA email: {chitta,jicheng}@asu.edu

Figure 1. Transition between the locations

consisting of action sequences. Moreover, due to non-determinism
they are worried about how to specify their goal so that the goal is
not so strict that it is unachievable and still conveys the meaning of
‘trying its best’. To appreciate the various nuances in expressing this
goal let us consider several policies and compare them with respect
to the goal of trying ones best to reach p. In the following we will
represent a policy by a set of pairs of states and actions of the form
(s, a) which will intuitively mean that in state s, action a should be
executed. It is assumed that if no action is specified for a state then
the action nop takes place.

1. Policy π1 = {(s1, a1), (s2, a2), (s3, a3)}
2. Policy π2 = {(s1, a1), (s2, a5), (s3, a3)}
3. Policy π3 = {(s1, a6)}
4. Policy π4 = {(s1, a1), (s2, a2), (s3, a4)}
5. Policy π5 = {(s1, a1), (s2, a5), (s3, a4)}
6. Policy π6 = {(s1, a1), (s2, a7), (s3, a3)}
7. Policy π7 = {(s1, a1), (s2, a7), (s3, a4)}

To specify the goal of ‘trying ones best to reach p’ let us try to use
existing temporal logic formalisms to specify this goal. Since the
use of policies lead to multiple trajectories, we can not directly use
the specification �p from linear temporal logic with future operators
(LTL) [5, 4]. Thus we next try to express this goal in the branching
time temporal logic CTL∗, where we have the operators A (meaning
‘for all paths’) and E (meaning ‘there exists a path’) at our disposal.

Now suppose the initial state of our agent is s1. From s1 there is a
path to s4. Thus the CTL∗ goal E�p will be true with respect to s1

and the transition function regardless of what policy one chooses in-
cluding π3. Definitely, π3 is not a policy that is trying its best to get
to p. Thus the specification E�p is incorrect. Now let us consider the
goal A�p. This goal is too strong as even if we consider our initial
state as s2 from which there is a policy that guarantees reaching p,
the goal A�p will not be true with respect to s2 and the transition
function. This is because the semantics of E and A are tied to the
overall transition relation, and not tied to a given policy. One way to
overcome this is to either tie the semantics of E and A to the policy
under consideration or introduce new operators (say, Eπ and Aπ) that
tie the paths to the policy under consideration. In this paper we chose
the second path, as to express certain goals it becomes necessary to
have both versions (E, A, Eπ and Aπ) of the branching time opera-
tors. In this case the intuitive meaning of the operator Aπ is ‘for all
paths that correspond to the policy under consideration’ and the op-
erator Eπ is ‘there exists a path that corresponds to the policy under
consideration’.
Now let us discuss some of the nuances in expressing the goal ‘try
ones best to reach p’. Earlier we dismissed E�p and A�p as inap-
propriate. Let us now consider the goals Eπ�p and Aπ�p. Both of
these goals are satisfied if our initial state is s2 and our policy in-
cludes (s2, a2). On the other hand if our initial state is s3, we do not
have a policy that will make Aπ�p true, but the policy that includes
(s3, a3) will make Eπ�p true.
Going back to having s2 as the initial state, it is preferable to have the
policy include (s2, a7) instead of (s2, a5) in the absence of a2. That
is because while following (s2, a7) even though there is no guaran-
tee that p will be reached, at any point during the execution there is
always hope (a possible path sanctioned by the policy under consid-
eration) that one might reach p in the future. This is not the case with
respect to the policy (s2, a5), as once s5 is reached there is no way
to get to p. How does on express a goal that encodes this preference?
Now let us consider s1 as our initial state. The policies π1, π2, π4,
π5, π6 and π7 each satisfy the goal Eπ�p, while the policy π3 does
not. (Also no policy satisfies the goal Aπ�p.) Now let us compare
π1, π2, π4, π5, π6 and π7. We claim that π1 is preferable to the oth-
ers with respect to the intuitive goal of trying ones best to achieve
p. Among π1 π2, and π6, the first one is preferable as once one gets
to s2 the π1 guarantees that p will be reached while such is not the
case with π2 and π6. π6 is preferable than π2 as once one gets to s2,
the π6 guarantees that there is always hope of reach p in the future.
Among π4, π5, and π7, we have similar result for the same reason.
Between π1 and π4, the former is preferable as if s3 is reached dur-
ing the execution then with respect to π1 there is still hope that p may
be reached, but such is not the case with respect to π4. Between π2

and π5, the former is preferable for the same reason. The goal repre-
sentation questions that arise are: How does one specify a goal with
respect to which π1, π2 and π4 are acceptable but π5 is not? π1 is
acceptable, and π2, π4 and π5 are not?
Our research in this paper on specifying goals in presence of non-
deterministic actions is motivated by the work in [3] where some of
the above nuances are mentioned. But there, a specialized language
is proposed, and although it can capture some of the nuances it is
not clear if it can capture all of them. Moreover, as we will elaborate
a bit in Section 4, the approach and definitions in [3] have several
other shortcomings. In this paper we try to stay within the framework
of temporal logic and figure out a way to express non-deterministic
goals using temporal logic such that it is easy to combine temporally
expressed goals from earlier work [1, 7, 2] with the kind of goals that

we discuss in this paper.

The rest of the paper is organized as follows. In Section 2 we intro-
duce the notions that are necessary to express goals such as ‘try your
bests to achieve p’ in presence of non-deterministic effects and give
the syntax and semantics of the language π-CTL∗. In Section 3 we
show how various goals can be encoded in π-CTL∗. In Section 4 we
relate our proposal with some of the constructs in [3] and finally we
conclude in Section 5.

2 Syntax and semantics of π-CTL∗: goal
specification in presence of non-deterministic
actions and policies

In this section we show how to expand on the notions in the previous
section so as to be able to specify goals such as the ones mentioned
in Section 1. To start with in presence of non-deterministic actions,
we need to expand the notion of a plan from a simple sequence of
actions to a policy which is a mapping from states to actions. This is
necessary because in presence of non-deterministic actions an agent
can not be sure during planning time what state it would be in after
executing an action or a sequence of actions. Thus often there may
not exist a conformational plan consisting of sequence of actions,
while there may exist a policy that will achieve a goal.
In the non-deterministic domain, we not only have to consider if there
exists a path (even if that path is not a path that the agent will possi-
bly follow by adhering to its policy), it is more important to consider
if the path that exists is a path consistent with respect to the pol-
icy that is followed. To express the later we introduce the operators
Eπ (and Aπ) which means that there exists a path (and for all paths
respectively) consistent with respect to the policy π.
We now formally define the syntax and semantics of this extended
branching time logic, which we will refer to as π-CTL∗.

2.1 Syntax of π-CTL∗

The syntax of state and path formulas in π-CTL∗ is as follows. Let
〈p〉 denote an atomic proposition, 〈sf〉 denote state formulas, and
〈pf〉 denote path formulas.

〈sf〉 ::= 〈p〉 | 〈sf〉 ∧ 〈sf〉 | 〈sf〉 ∨ 〈sf〉 | ¬〈sf〉 |E〈pf〉 | A〈pf〉 |
Eπ〈pf〉 | Aπ〈pf〉

〈pf〉 ::= 〈sf〉 | 〈pf〉 ∨ 〈pf〉 | ¬〈pf〉 | 〈pf〉 ∧ 〈pf〉 |〈pf〉 U 〈pf〉 |
©〈pf〉 | �〈pf〉 | �〈pf〉

The new symbols Aπ and Eπ are the branching time operators mean-
ing ‘for all paths that agree with the policy that is being executed’ and
‘there exists a path that agrees with the policy that is being executed’
respectively. Since we now allow actions to be non-deterministic the
transition function Φ is now a mapping from states and actions to a
set of states. Now we need to consider two transition relations R and
Rπ , the first used for defining paths for A and E and the second used
in defining paths for Aπ and Eπ .

Recall that R(s, s′) means that the state of the world can change
from s to s′ in one step. This could be due to an agent’s action, or
an exogenous action. Thus R(s, s′) is true if there exists an action a
such that s′ ∈ Φ(a, s). Rπ(s, s′) on the other hand means that the
state of the world can change from s to s′ in one step by following
the agent’s policy π. Thus Rπ(s, s′) is true if s′ ∈ Φ(π(s), s).

Definition 1 Path starting from s consistent with respect to the
given policy Let s be a state, Φ be the transition between states due
to actions, and π be a policy.

A sequence of states σ = s0, s1, . . . such that s0 = s is said to be a
path starting from s consistent with respect to π, if σ is a path in Rπ .
I.e., si+1 ∈ Φ(π(si), si).

We refer to such paths as π-paths. �

In Section 4 finite trajectories are considered. For that purpose
we will abuse notation and by finite π-paths we will refer to fi-
nite sequences s0, s1, . . . , sn such that for 0 ≤ i < n, si+1 ∈
Φ(π(si), si).

2.2 Formal semantics of π-CTL∗:

Recall that in CTL∗ truth of state formulas is defined with respect to
a pair (sj , R), where sj is a state, R is the transition relation.

Definition 2 (Truth of state formulas in π-CTL∗) The truth of
state formulas is defined with respect to the triplet (sj , R, Rπ),
where sj and R are as before, and Rπ is the transition relation with
respect to the policy π. In the following p denotes a propositional
formula sfis are state formulas and pfis are path formulas.

• (sj , R, Rπ) |= p iff p is true in sj .
• (sj , R, Rπ) |= ¬sf iff (sj , R, Rπ) �|= sf .
• (sj , R, Rπ) |= sf1 ∧ sf2 iff (sj , R, Rπ) |= sf1 and

(sj , R, Rπ) |= sf2.
• (sj , R, Rπ) |= sf1∨sf2 iff (sj , R, Rπ) |= sf1 or (sj , R, Rπ) |=

sf2.
• (sj , R, Rπ) |= E pf iff there exists a path σ in R starting from sj

such that (sj , R, Rπ, σ) |= pf .
• (sj , R, Rπ) |= A pf iff for all paths σ in R starting from sj we

have that (sj , R, Rπ, σ) |= pf .
• (sj , R, Rπ) |= Eπ pf iff there exists a path σ in Rπ starting from

sj such that (sj , R, Rπ, σ) |= pf .
• (sj , R, Rπ) |= Aπ pf iff for all paths σ in Rπ starting from sj

we have that (sj , R, Rπ, σ) |= pf . �

Definition 3 (Truth of path formulas in π-CTL∗) The truth of
path formulas are now defined with respect to the quadruple
(sj , R, Rπ, σ), where sj , R, and Rπ are as before and σ given by
the sequence of states s0, s1, . . . , is a path.

• (sj , R, Rπ, σ) |= sf iff (sj , R, Rπ) |= sf .
• (sj , R, Rπ, σ) |= ¬pf iff (sj , R, Rπ, σ) �|= pf
• (sj , R, Rπ, σ) |= pf1 ∧ pf2 iff (sj , R, Rπ, σ) |= pf1 and

(sj , R, Rπ, σ) |= pf2.
• (sj , R, Rπ, σ) |= pf1 ∨ pf2 iff (sj , R, Rπ, σ) |= pf1 or

(sj , R, Rπ, σ) |= pf2.
• (sj , R, Rπ, σ) |= ©pf iff (sj+1, R, Rπ, σ) |= pf .
• (sj , R, Rπ, σ) |= �pf iff (sk, R, Rπ, σ) |= pf , for all k ≥ j.
• (sj , R, Rπ, σ) |= �pf iff (sk, R, Rπ, σ) |= pf , for some k ≥ j.
• (sj , R, Rπ, σ) |= pf1 U pf2 iff there exists k ≥ j such that

(sk, R, Rπ, σ) |= pf2, and for all i, j ≤ i < k, (si, R, Rπ, σ) |=
pf1. �

2.3 Plans/policies for π-CTL∗ goals:

Now we need to define when a mapping π from states to actions is
a policy with respect to a π-CTL∗ goal G, an initial state s0, and a
transition function Φ from states and actions to sets of states.

Definition 4 (Policy for a goal from an initial state) Given an ini-
tial state s0, a policy π, a transition function Φ, and a goal G we
say π is a policy for G from s0, denoted by (s0, π) |= G, iff
(s0, R, Rπ) |= G. �

From the above definition it is clear that goals must be state formu-
las. This is in contrast to the case where actions are deterministic and
instead of policies one only needs to deal with plans consisting of ac-
tion sequences. There it is preferable to have goals as path formulas.

3 Goal representation with π-CTL∗

In this section we show how various kinds of goals which can not
be appropriately expressed in LTL or CTL∗, can be expressed using
π-CTL∗. We categorize our goals to three classes: reachability goals;
maintainability goals; and bi-composed goals.

3.1 Reachability goals

In considering whether a goal can be reached or not, following are
some observations when actions have non-deterministic effects.

1. Given the initial state and a policy, a state s is not reachable in any
π-path. By following such a policy, it is impossible for the agent
to get into a state where p can be reached by following the policy.

2. Given the initial state and a policy, a state s may be reachable
in some π-paths and not in others. By following such a policy,
at some stage, it is possible that the agent gets into a state from
where it can guaranteedly reach s. It is also possible that the agent
gets into a state from where he can never reach s by following the
policy.

3. Given the initial state and a policy, a state s can be reached in any
π-path. The agent can guarantee to reach s in any future state by
following such a policy.

We now illustrate how various kinds of reachability goals can be
specified in π-CTL∗. In this we consider the domain in Example 1
and the subsequent discussion.

1. The goal “from the initial state there is a possibility that p can be
reached” is expressed by the specification Eπ�p. With respect to
the initial state s1, the policies π1, π2, π4, π5, π6, and π7 each
satisfy the goal Eπ�p, while the policy π3 does not.

2. The goal “from the initial state p must be reached” is expressed
by the specification Aπ�p. With respect to the initial state s1, this
goal is not satisfied as there is no policy which can make this true.
But with respect to the state s2 the policy {(s2, a2)} satisfies this
goal.

3. The goal “all along the trajectory there is always a possible path to
p” is expressed as Aπ�(Eπ�p). With respect to the initial state
s1, this goal is not satisfied as there is no policy which can make
this true. But with respect to the state s2 the policy {(s2, a7)}
satisfies this goal. So does the policy {(s2, a2)}.

4. The goal “from the initial state, if it is possible to reach p, the
agent should possibly reach p” is expressed as E�p → Eπ�p.
Policies that satisfy this goal are: π1, π2, π4, π5, π6, and π7. A
policy that does not satisfy this goal is π3.
Intuitively, this goal says that if it is possible to reach p, then the
agent can possibly reach it. Otherwise, we consider the agent to
have achieved this goal even if it does nothing. The usefulness of
such goals will be shown in the next section where the agent can
pursue an alternative goal when its initial goal is not achievable.

5. The goal “If from any state that is reachable by following the pol-
icy it is possible to reach p, then the agent should possibly reach
p from that state” is expressed as Aπ�(E�p → Eπ�p). Policies
π1, π2, and π6 satisfy this goal while policies π4, π5, and π7 do
not satisfy this goal.

3.2 Maintainability goals

In this paper we consider maintainability as the opposite of reacha-
bility. For example, in the deterministic domain, given a plan, we say
the propositional formula p is maintained iff ¬p cannot be reached.
It is also the case in the non-deterministic domain. For example, if
we require that p must be maintained in any trajectory starting from
a state by following the policy, then the policy is satisfied iff there is
no trajectory such that ¬p is reached. Formally, it is ¬Eπ�¬p, which
is equivalent to Aπ�p. As a consequence, in formulating the goals
about maintainability, we can indeed translate them into the goals of
checking whether a state can be reached or not, thus the various no-
tions of reachability from the previous section have corresponding
notions of maintainability.

3.3 Bi-composed goals: combining two sub-goals

In this section we consider goals constructed by the composition of
two sub-goals. Even if we only consider reachability goals, because
of the various nuances of individual reachability goals, their compo-
sition leads to many more nuances. Intuitively, the dynamics of the
various possibilities comes from the following aspects:

1. Initially a formula can be reached by the policy; however, during
the execution of the actions in the policy, when the agents come
to some state, it may realize that from that point on the formula it
intended to reach can never be reached.

2. Initially a formula can be reached by the policy, but the formula is
not guaranteed by the policy. During the execution of the actions
in the policy, when the agent gets to some state, it may realize
that the formula can be guaranteedly reached even taking the non-
deterministic property of the domain into account.

In general, different (bi-composed) goals can be constructed by dif-
ferent answers to the following questions: Do we have to reach the
first goal? When we give up the first goal? When the first goal is
reached, do we still need to reach the second goal? When the first
goal cannot be reached, do we need to reach the second goal? In the
processing of reaching the second goal, do we need to keep an eye
on the first goal? When we start to keep an eye on the first goal? In
what condition, we pause the second goal and resume the first goal?
When the whole formula is considered as satisfied? We now specify
– using π-CTL∗ – some bi-composed goals made up of reachabil-
ity goals, corresponding to various answers to the above mentioned
questions.

1. We require the policy must reach p, and must reach q after reach-
ing p. We start to consider q only after reaching p, we do not care
whether q is reached or not in the process of reaching p. The π-
CTL∗ representation of the goal is Aπ�(p ∧ Aπ�q).

2. In a state if it is possible to reach p, try to reach p until it is impos-
sible to do so. From the state that p can never be reached, try to
reach q until it is impossible to do so. The π-CTL∗ representation
of this goal is Aπ�((E�p → Eπ�p) ∧ ((¬E�p ∧ E�q) →
Eπ�q)).

3. If there is a trajectory that makes it possible to reach p, try to
reach it. If you are in a state that p can never be reached, you must
reach q from that state. The π-CTL∗ representation of the goal is
Aπ�((E�p → Eπ�p) ∧ (¬(E�p) → Aπ�q)).

4 Relation with Dal Lago et al.’s formulation

In this section we consider some of the constructs from [3] and show
how they can be expressed using π-CTL∗.
Their goal language is defined as follows where p denotes proposi-
tional formulas and g denotes extended goals.

p ::= � | ⊥ | ¬p | p ∨ p | p ∧ p
g ::= p | g And g | g Then g | g Fail g | Repeat g |

DoReach p | TryReach p |
DoMaint p | TryMaint p

Their definition of a policy satisfying a goal from an initial state is
based on defining two states Sg(s) and Fg(s). Intuitively, Sg(s) is
the set of finite paths consistent with respect to π that leads to success
in the achievement of g from s. Similarly, Fg(s) is the set of finite
paths consistent with respect to π that leads to failure in the achieve-
ment of g from s. In their definition, a policy π satisfies a goal g –
denoted by (s, π) |=dlpt g – from an initial state s if Fg(s) = ∅.

They define the sets Sg(s) and Fg(s) for each of the different kinds
of goals. We give them below. In these definitions σ ≤ σ′ means σ
is a prefix of σ′ (we also say that σ′ is an extension of σ) , first(σ)
and last(σ) denote the first and last state in σ, min is defined with
respect to ≤, and semicolon denotes concatenation and σ; σ′ is only
defined when last(σ) = first(σ′).
Using the above results we now show how some of their constructs
can be expressed in π-CTL∗. Note that we use (s, π) |=dlpt g to
denote a policy π satisfies a goal g from an initial state s in [3].

Proposition 1 Let s0 be an initial state and π be a policy.

1. (s0, π) |=dlpt p iff (s0, π) |= p.
2. (s0, π) |=dlpt TryReach p iff (s0, π) |= Aπ�Eπ�p.
3. (s0, π) |=dlpt DoReach p iff (s0, π) |= Aπ�p.
4. (s0, π) |=dlpt TryMaint p iff (s0, π) |= Aπ�p.
5. (s0, π) |=dlpt DoMaint p iff (s0, π) |= Aπ�p.
6. (s0, π) |=dlpt g1 And g2 iff (s0, π) |= g1 ∧ g2. �

4.1 Discussion on the comparisons

So far we have given some formal results about the formulation in [3]
and about the relation between some of the constructs their constructs
and our language of π-CTL∗. In this subsection we make some fur-
ther comparisons and observations.

1. TryReach p : The intended meaning of this goal is that an agent
policy that satisfies this goal must do its best to reach p. That
means if the agent follows its policy then at every state reached
while following this policy there is a path (which is possible by
following the agent’s policy but not necessarily guaranteed by the
agent’s policy) from that state to a state where p is true. From
Proposition 1 this can be expressed in π-CTL∗ by Aπ�Eπ�p.

Now suppose the intention is that once p is reached p must re-
main true after that, then in that case the specification would be
Aπ�Eπ��p. Similarly, if the intention is that the existence of the
path be only true at the initial state s0 then we can remove the
Aπ� in the beginning and either Eπ�p or Eπ��p would suffice.

It is not clear how these alternatives and the other ones mentioned
earlier in the paper (with respect to reachability) can be expressed
using the language in [3].

2. DoReach p : The intended meaning of this goal is that an agent
policy that satisfies this goal must take the world to a state where
p is true. That means if the agent follows its policy then no matter
what path it takes (due to the non-deterministic effect of actions),
all those paths lead to a state where p is true. From Proposition 1
this can be expressed in π-CTL∗ by Aπ�p.

Now suppose the intention is that once p is reached p must re-
main true after that, then in that case the specification would be
Aπ��p. It is not clear how these alternatives can be expressed
using the language in [3].

3. DoMaint p : The intended meaning of this goal is that an agent
policy that satisfies this goal must take paths where p is true in
all states of the path. That means if the agent follows its policy
then no matter what path it takes (due to the non-deterministic
effect of actions), p is true in all the states of those paths. From
Proposition 1 this can be expressed in π-CTL∗ by Aπ�p.

4. TryMaint p : From Proposition 1 the exact representation of
this, based on the characterization in [3], in π-CTL∗ by Aπ�p.
This is same as the representation of DoMaint p. Thus, ac-
cording to [3] there is no distinction between TryMaint p and
DoMaint p, which is somewhat unintuitive.

It seems to us there is a more intuitive (but different) characteri-
zation of the notion of trying to maintain p, according to which if
the agent follows its policy then at every state reached while fol-
lowing this policy there is a path (which is possible by following
the agent’s policy but not necessarily guaranteed by the agent’s
policy) from that state where p is true all through the path. This
can be expressed in π-CTL∗ by Aπ�Eπ�p.

Now suppose the intention is that the existence of the path be only
true at the initial state s0 then we can remove the Aπ� in the
beginning and Eπ�p would suffice.

5. g1 Then g2 : There are several different intuitive meaning of
this based on whether or not g2 is forced to be false before g1

is achieved. Besides, with respect to [3], the goal p1 Then p2

is satisfied when p1 and p2 are both true in the initial state. This
seems counterintuitive to us. We will discuss this in detail in the
full version of the paper.

6. g1 Fail g2 : The intended meaning of this goal is to achieve g1

and when it becomes clear that g1 is not achievable then g2 is
achieved. Earlier we discussed various nuances of expressing this.
Only one of those can correspond to the semantics of [3].

7. It seems that the notion Eπ , and other temporal notions such as ©
and � are not expressible using the formalism in [3].

8. The formalism in [3] does not allow nesting of many of the oper-
ators. There are no such restrictions in π-CTL∗.

There are many other issues of concern with respect to the for-
mulation in [3]. For example, intuitively, for all policy policy,
(s, R, Rpolicy) |= DoMaint p iff (s, R, Rpolicy) |= TryMaint p
where p is a proposition formula. However, (s, R, Rpolicy) |=
DoMaint p Fail q cannot imply that (s, R, Rpolicy) |=
TryMaint p Failq. Nevertheless, the paper [3] was the first one
(to the best of our knowledge) that talked about the issues that crop
up when expressing goals in a non-deterministic domain, and thus
is a pioneer in that respect. We hope we have given an alternative
appropriate framework to address the issues raised there.

5 Conclusion and future work

In this paper we considered representing goals with temporal aspects
in presence of non-deterministic actions. We analyzed why temporal
logics such as LTL and CTL∗ were thought to be not adequate to ex-
press certain kind of goals. By our analysis we discovered the source
of confusion: the notion of path that is tied to the branching time op-
erators A and E. We showed that by introducing additional branching
time operators Aπ and Eπ where the path is tied to the policy being
executed we can express the goals that were thought inexpressible
using temporal logic in [3].

We believe our approach is preferable to the approach in [3] where
a specialized language is introduced. This is because by using our
language we can still represent the goals that were traditionally rep-
resented (when actions were assumed to be deterministic) using tem-
poral logic, and also combine such goals with the kind of goals dis-
cussed in this paper. Use of a specialized language, as in [3], makes
this difficult if not impossible.

In terms of future work we need to consider some further general-
izations. For example, in certain cases we may need to distinguish
between paths solely due to actions that can be executed by an agent,
and paths solely due to exogenous actions. Or we may need to con-
sider paths that interleave agent’s actions and exogenous actions in a
particular way such as alternating them. Each of these may necessi-
tate use of additional transition relations (such as Ra corresponding
to agent’s actions, and Re corresponding to exogenous actions) and
additional branching time operators (such as Ee, Ae, Ea, and Aa).

We also plan to further elaborate on the π-CTL∗ specifications of the
various constructs of [3]. Finally, we also plan to consider alterna-
tive notions of maintainability [6] and explore its relation with the
formulations in this paper.

6 Acknowledgement

This work was partially supported by NSF grant number 0070463,
NASA grant number NCC2-1232 and a grant from ARDA under the
second phase of its AQUAINT program. The authors acknowledge
encouragement and feedback from Matt Barry of NASA JPL and
Vladimir Lifschitz. The authors also acknowledge the valuable com-
ments of the referees of this paper and its earlier versions.

REFERENCES
[1] F. Bacchus and F. Kabanza, ‘Planning for temporally extended goals’,

Annals of Math and AI, 22, 5–27, (1998).
[2] C. Baral, V. Kreinovich, and R. Trejo, ‘Computational complexity of

planning with temporal goals’, in IJCAI 2001, (2001).
[3] U. Dal Lago, M. Pistore, and P. Traverso, ‘Planning with a language for

extended goals’, in AAAI’02, pp. 447–454, (2002).
[4] E. A. Emerson, ‘Temporal and modal logic’, in Handbook of theoretical

computer science: volume B, ed., J. van Leeuwen, 995–1072, MIT Press,
(1990).

[5] Z. Manna and A. Pnueli, The temporal logic of reactive and concurrent
systems: specification, Springer Verlag, 1992.

[6] M. Nakamura, C. Baral, and M. Bjareland, ‘Maintainability: a weaker
stabilizability like notion for high level control’, in Proc. of AAAI’00,
pp. 62–67, (2000).

[7] R. Niyogi and S. Sarkar, ‘Logical specification of goals’, in Proc. of 3rd
international conference on Information Technology, pp. 77–82, (2000).

[8] M. Pistore and P. Traverso, ‘Planning as model checking for extended
goals in non-deterministic domains’, in IJCAI’01, (2001).

