
Reasoning in description logics using declarative logic programming

Güray Alsaç and Chitta Baral
Department of Computer Sc. and Engg.

Arizona State University
Tempe, AZ, 85287, USA.
{guray,chitta}@asu.edu

Abstract

In this paper our goal is to bridge two popular and well-
studied knowledge representation formalisms: description
logics (DLs), and declarative logic programs (DLPs). In re-
cent years there has been tremendous development in both
fields in terms of theoretical studies and implementations.
However, despite a few papers on allowing logic program-
ming style rules in description logic, there has been little re-
search on how they relate to each other, how one can be sim-
ulated by the other, and how ideas and constructs in one can
be used in the other. We show that DLs can be simulated in
DLPs and point out why early description logic researchers
thought this was not possible. Besides giving a general trans-
lation that produces a not so efficient DLP we consider special
cases for which more efficient DLPs can be constructed. We
also suggest new DL constructs inspired by DLPs.

Introduction and Motivation
One of the important sub-fields of knowledge representa-
tion and reasoning centers arounddescription logics, also
referred to asconcept languagesandterminological systems
at different stages of its evolution. Its origin traces back
to frame based systemsandsemantic networks, both early
attempts to represent the classification of objects to a hier-
archy of classes (w.r.t. the subset relationship), represent
(mostly binary) relationships between classes, and reason
with such information. A critical evolutionary step in this
field, the KL-ONE system (Brachman & Schmolze 1985),
formalized the main ideas in various frame based and se-
mantic network based systems into a logical characteriza-
tion of classes (or concepts), and relationships (or roles),
and proposed a set of constructs to build new classes and
relationships from these. Since then, several different de-
scription logics have been proposed, each distinguished by
the constructs and kinds of relationships allowed. Many of
these have been implemented (for example, (Borgidaet al.
1989)), usually in sound but incomplete fashion. For some,
reasoning methodologies have been proposed, and for some
the complexity of reasoning has been analyzed. In analyzing
the complexity it has been noticed that sometimes seemingly
minor syntactic extensions increases the complexity drasti-
cally. Recently many attempts have been made in develop-
ing expressive description logics with greater applicability.

Copyright c© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

For example, in (Calvanese, DeGiacomo, & Lenzerini 2001)
identification constraints and functional dependencies are
added to the description logicDLR, which already includes
n-ary relations. In (Haarslev & Moller 2000) a description
logic with number restrictions, role hierarchies and transi-
tively closed roles is proposed. In (Levy & Rousset 1996;
Cadoli, Palopoli, & Lenzerini 1997; Doniniet al. 1998) de-
scription logics are augmented with Datalog constructs and
hybrid languages are proposed.

We now give a small example of representation using de-
scription logic and then discuss the applicability and use-
fulness of description logics. Consider a simple hierarchy
of concepts withperson at the top (meaning every object
in the world is a person) and beneath it the atomic con-
ceptsmale and female. Also, let childof be an atomic
relation. Using these we can define a new conceptchild
consisting of elementsx such that there exists a persony
and(x, y) belongs to the relationchildof (i.e., x is a child
of y). In classical logic this is expressed aschild(x) ≡
∃y childof(x, y) ∧ person(y). In description logic it is
said that the conceptchild can be formed using the con-
ceptperson and the rolechildof using the construct∃≥n

as∃≥1childof.person. Sinceperson is the top concept,
it may be skipped and it is enough to write∃≥1childof or
simply ∃childof . Similarly, a conceptson can be formed
by male u child meaning that the conceptson consists
of elements who are bothmale and child. In Borgida’s
(Borgida 1992) syntax, the above definitions ofchild and
son are expressed aschild = at-least[1, childof] andson =
and[male, child].

Many consider such description logic expressions to be eas-
ier to write and follow than the corresponding expression
in classical logic, as in the former the variables are not ex-
plicitly specified. Some query languages for querying object
oriented databases also have a similar syntax.

A knowledge base in a description logic consists of two parts
traditionally referred to as theTBox (meaning “Termino-
logical Box”) and theABox (meaning “Assertional Box”).
The first consists of several assertions about concepts and
roles, such as the definition ofchild andson in the above
example, and the second consists of specific facts about a
particular object belonging to a concept or a particular pair
of objects belonging to a particular role, such as Jim being

the child of Mary.

In the absence of anABox, the questions of interest are
whether two concepts are equivalent, whether one concept
subsumes another, whether a concept is consistent (is non-
empty), or whether a knowledge base as a whole is consis-
tent. For example, from a knowledge base consisting of the
TBox with the assertionson = and[male, child], we can
conclude that the conceptsmale andchild subsume the con-
ceptson. I.e., every son is both a male and a child. At first
glance it is often not clear to many people – mainly to those
not familiar with description logics – why we should care
about subsumption between concepts. This becomes clear
when we consider reasoning in the presence of anABox.
Given a knowledge base with a non-emptyABox, the ques-
tions of interest are whether a particular object belongs to a
particular concept or whether two objects have a particular
role. To answer the first, concept subsumption is often an
intermediate step. For example, given thatjohn is ason we
can easily conclude thatjohn is a male if we are able to
figure out that the conceptmale subsumes the conceptson.
Besides such reasoning, another important usefulness of de-
scription logic is that it can be used in expressing intensional
answers to queries to a database. In other words instead of
giving an answer as a set of objects, the answer can be ex-
pressed as a concept defined using DL constructors in terms
of other concepts and classes. Such answers are often more
informative than the standard approach of listing individual
objects.

Similar to the origin of logic programming, where a subset
of first-order formulas called Horn clauses were chosen for
efficient reasoning, initial description logics focused on a se-
lect set of constructors that were expected to lead to efficient
implementations. Many of the early implementations were
subsequently found to be incomplete and since then expres-
siveness has also become an important issue in DL and many
new constructors have been proposed.

Currently many people view DL to be useful in expressing
a particular partof a knowledge base that is about concepts
and roles and expect the complete knowledge base to consist
of other parts in other knowledge representation languages.
In recent years declarative logic programming (DLP), with a
critical mass of building block results, available implemen-
tations and applications (Baral 2002), has been a leading
contender as a knowledge representation language.In this
paper our goal is to show how reasoning in particular DLs
can be expressed in DLPs. In particular, we will show how
several DL constructs can be expressed in DLP.In this re-
gard it should be noted that although some of the initial DLs
have been shown (Borgida 1992) to be easily translated to
subsets of first-order logic, many of the recent and more ex-
pressive constructs, such as transitive closure of roles, are
not amenable to a first-order translation.

The motivation behind our goal to formulate DL reasoning
as reasoning in a DLP translation is manyfold: (i) It may
lead to easier integration of DL features into DLP knowl-
edge bases. (ii) It will help both the DL community and
the DLP community to understand the advantages of the
other approach. In particular, it will help clear misunder-

standings in the DL community about the expressiveness
of DLP. Although the DL community has looked into DLP
features, they (Doniniet al. 1998; Levy & Rousset 1996;
Cadoli, Palopoli, & Lenzerini 1997) have mostly concen-
trated on Datalog augmented with stratified negation. The
expressiveness of DLP is vastly increased by allowing un-
restricted negation as failure characterized by the answer
set (stable model) semantics, and by using disjunctions and
function symbols. (iii) The translation of DL constructs to
DLP will also shed light on some strong points of DL and
how to encode them in a DLP. (iv) This may lead to iden-
tifying parts of a DLP that specify knowledge that can be
otherwise expressed and reasoned efficiently using DLs.
The rest of this paper is organized as follows. We first for-
mally define a DL and its semantics and also DLP and its
semantics. We then present a general translation from a de-
scription logic to DLP and then present a translation for a
sub-class that generates a more efficient DLP. Subsequently
we briefly mention how some of the constructs in other de-
scription logics can be expressed in DLP, suggest some fu-
ture DL constructs that are inspired by DLP and conclude.

Background
Description Logics
In this section we define the description logic language
ALCQI from the recent paper (Calvaneseet al. 2001).

Concepts and Roles: syntax and semanticsConcepts
and roles inALCQI are formed using the following syn-
tax:
C,C ′ −→ A | ¬C | C u C ′ | C t C ′ | ∀R.C | ∃R.C |

∃≥nR.C | ∃≤nR.C

R −→ P | P−
whereA and P are atomic concepts and atomic roles re-
spectively,C andR denote arbitrary concepts and roles and
n denotes a positive integer. For readability, for any atomic
conceptA, A u ¬A is abbreviated as⊥, andA t ¬A is ab-
breviated as>. Similarly,¬CtD is abbreviated asC ⇒ D,
∃≥nR.C u ∃≤nR.C is abbreviated as∃=nR.C, andR.> is
abbreviated asR.
Concepts are interpreted as subsets of a domain, and roles
as binary relations over that domain. An interpretationI =
(∆I , ·I) over a setA of atomic concepts and a setP of
atomic roles consists of a nonempty set∆I (the domain of
I) and a function·I that maps every atomic conceptA ∈ A
to a subset of∆I and every atomic roleP ∈ P to a subset
PI of ∆I ×∆I . The interpretation function is extended to
arbitrary concepts and roles as follows:
(¬C)I = ∆I \ CI .
(C u C ′)I = CI ∩ C ′I . (C t C ′)I = CI ∪ C ′I .
(∀R.C)I = {o ∈ ∆I | ∀o′.(o, o′) ∈ RI → o′ ∈ CI}.
(∃R.C)I = {o ∈ ∆I | ∃o′.(o, o′) ∈ RI ∧ o′ ∈ CI}.
(∃≥nR.C)I = {o ∈ ∆I :

|{o′ | (o, o′) ∈ RI ∧ o′ ∈ CI}| ≥ n}.
(∃≤nR.C)I = {o ∈ ∆I :

|{o′ | (o, o′) ∈ RI ∧ o′ ∈ CI}| ≤ n}.
(R−)I = {(o, o′) ∈ ∆I ×∆I | (o′, o) ∈ RI}.
Definition 1 A conceptC is said to besatisfiableif it has a
non-empty interpretation.

Given two conceptsC1 andC2, we sayC2 subsumesC1 if
CI1 ⊆ CI2 holds in every interpretation. 2

Knowledge bases: TBox and ABox A knowledge base
(in ALCQI) consists of two parts: aTBox and anABox.
TheTBox consists of a finite set ofinclusion assertionsof
the form C1 v C2.

whereC1 andC2 are concepts. Often we will abbreviate
the two assertionsC1 v C2 andC2 v C1 by the single
statementC1 ≡ C2.

If C1 above is an atomic concept then it is referred to as
a primitive inclusion assertionand statements of the form
C1 ≡ C2 are then referred to asequality assertions.

An interpretationI is said to satisfy an assertion of the form
C1 v C2 if CI1 ⊆ CI2 .

TheABox consists offact assertionsof the form:
C(a) and R(a, b)
whereC is a concept,R is a role, anda, b are elements of
a new alphabetHB. In presence of non-emptyABox the
interpretation function·I is extended to individuals inHB
such thataI ∈ ∆I for each individuala ∈ HB andaI 6= bI
if a 6= b.

A fact assertionC(a) is said to be satisfied by an interpreta-
tion I if aI ∈ CI , and a fact assertionR(a, b) is said to be
satisfied by an interpretationI if (aI , bI) ∈ CI .

Definition 2 An interpretation is said to be a model of a
knowledge baseK if it satisfies all assertions in it;K is said
to besatisfiableif it has a model; a conceptC is said to be
consistentin K if K has a modelI such thatCI 6= ∅; and
for an assertionα, we sayK |= α, if α is satisfied by each
modelI of K. 2

Since in logic programming the semantics is defined with
respect to a Herbrand Universe, we will define a restricted
notion of interpretation, models and entailment for DLs. An
HB-interpretation is an interpretation where the domain is
HB. An HB-interpretation is said to be an HB-model of
a knowledge baseK if it satisfies all assertions in it; and
K |=HB α, if α is satisfied by each HB-modelI of K.

Declarative Logic Programming with answer sets
A declarative logic program (DLP) is a collection of rules of
the form

l0 or . . . or lk ← lk+1, . . . , lm,not lm+1, . . . ,not ln (1)

whereli’s are literals in the sense of classical logic.1 For a
literal l, “not l” is referred to as a naf-literal. Intuitively,
the above rule means that iflk+1 . . . lm are believed to be
true andlm+1 . . . ln can be assumed to be false then at least
one ofl0, . . . , lk must be believed as true. In the notation of
(Baral 2002) a DLP of the above form is referred to as an

1Although in our translation from DL to DLP we will not use
programs withor , for giving a big picture of DLP to people not fa-
miliar with them we consider them here. Also, we will allow rules
with empty heads as they can be compiled away. For example: the
rule← body can be replaced by the rulep ← not p, body,where
p is a new atom.

AnsPrologor ,¬ program. Ifk = 0 (i.e., there is no disjunc-
tion) and if li’s are atoms (i.e., there is no classical nega-
tion) then the program consisting of such rules is referred to
as an AnsProlog program (also called a normal or general
logic program), and furthermore ifm = n, then we have an
AnsProlog−not program (also called a definite program).

The semantics of arbitrary AnsPrologor ,¬ programs are
with respect to the grounding of the program whereby the
variables in the rules are substituted by elements of the Her-
brand universe consisting of all the ground terms made up
of constants, and function symbols in the language. We
now present the semantics of AnsProlog programs (which
we will use in this paper) and refer to (Baral 2002) and
the DLP literature for the semantics of AnsPrologor ,¬ pro-
grams. In our definition we only consider ground AnsProlog
programs.

AnsProlog−not programs – also referred to as definite pro-
grams – have unique answer sets, which are the least mod-
els of the theory obtained by treating rules of the form
a0 ← a1, . . . , am (whereais are ground atoms) as the clas-
sical formulaa1 ∧ . . .∧ am ⊃ a0. Given an AnsProlog pro-
gramP and a set of atomsS, the Gelfond-Lifschitz transfor-
mationPS is defined as the set of rules obtained fromP by
removing all rules fromP whose body containsnot b such
thatb ∈ S, and then removing the naf-literals from the rest
of the rules.

Definition 3 A set S of atoms is said to be an answer set
(also referred to as stable model) of an AnsProlog program
P if S is the answer set of the definite programPS .

Given an AnsProlog programP and a ground atoma, we
sayP entailsa, denoted byP |=dlp a, if a is true in all
answer sets ofP . 2

Notable among the major recent developments on DLP are:
(i) development of several DLP interpreters, most notably
smodels(Niemela & Simons 1997) and dlv (Citrignoet al.
1997); (ii) various results on how to represent knowledge,
reason and declaratively express problem solving tasks, and
systematically build DLP programs as compiled in (Baral
2002); (iii) complexity and expressibility results of various
DLP classes as compiled in (Dantsinet al. 1999); and (iv)
use of DLP in various applications such as planning, product
configuration, cryptography etc.

Since in this paper we are comparing two different knowl-
edge represent languages we would like to briefly mention
some of the complexity and expressiveness results about
AnsPrologor and its sub-classes.

• function-free programs: Here the complexity results are
divided into two kinds: program complexity and data
complexity. For AnsProlog program the program and data
complexity is co-NEXPTIME complete and co-NP com-
plete respectively; and for AnsPrologor programs the
program and data complexity is co-NEXPTIMENP com-
plete andΠ2P complete respectively.

In terms of expressibility, AnsProlog captures the class
co-NP while AnsPrologor captures the classΠ2P.

• programs with functions: The complexity of both
AnsProlog and AnsPrologor programs in presence of
functions isΠ1

1 and they both capture the classΠ1
1.

Translating ALCQI to DLP
Before we give a general translation fromALCQI to DLP
we will first illustrate the problem with a straight-forward
and simplistic translation. (This translation was used in
(Borgida 1992) to demonstrate an inadequacy of logic pro-
gramming in modeling such knowledge.) A straightforward
translation of the TBox assertions (from Section)child =
∃ childof andson = maleu child to declarative logic pro-
gramming would be the following rules.
r1 : child(X) ← childof(X,Y).
r2 : son(X) ← male(X), child(X).
The above DLP is equivalent to the first-order formula
(∀X.child(X) ⇐⇒ ∃Y childof(X,Y))∧
(∀X.son(X) ⇐⇒ male(X)∧ child(X)). The TBox asser-
tions are also equivalent to the above formulas. Neverthe-
less, if we add the fact assertionson(a) to the DL knowl-
edge base then we will be able to inferchild(a), while the
same is not true for the logic program translation. I.e., while
{child = ∃ childof, son = male u child, son(a)} |=
child(a), {r1, r2, son(a)} 6|=dlp child(a).
The above illustrated inadequacy is now well-understood in
logic programming and proposals have been made to over-
come it. One proposal is to use abductive logic program-
ming (Kakas & Mancarella 1990) and have the predicates
male andchildof as abducibles and treatson(a) as an ob-
servation. An alternative approach is to use non-stratified
negation in enumerating the predicatesmale and childof
and assimilateson(a) through filtering (Baral 2002). If we
follow this technique, besidesr1 andr2, the translation will
consist of the following rules:
r3 : male(X) ← top(X),not female(X).
r4 : female(X) ← top(X),not male(X).
r5 : childof(X, Y) ← top(X), top(Y), X 6= Y,

not not childof(X, Y).
r6 : not childof(X, Y) ← top(X), top(Y), X 6= Y,

not childof(X, Y).
r7 : ← childof(X, Y), childof(Y, X).
and facts about the predicatetop listing all elements belong-
ing to the concept>.
Now to assimilate theson(a) we need to add the following:
r8 : ← not son(a).
whose effect is to eliminate all potential answer sets which
do not containson(a).
Suppose the concept> consists of objectsa andb. In that
case the program
P1 = {r1, r2, r3, r4, r5, r6, r7, top(a), top(b)} will have
twelve answer sets, two of which will be answer sets
of the programP2 obtained by addingr8 to P1. These
two are {top(a), top(b),male(a),male(b), childof(a, b),
not childof(b, a), child(a), son(a)} and {top(a), top(b),
male(a), female(b), childof(a, b), not childof(b, a),
child(a), son(a)}. Sincechild(a) belongs to both of them
we haveP2 |=dlp child(a).

We now give a general translation fromALCQI to DLP,
first focusing only on entailment of fact assertions.

A general DLP translation for entailing fact
assertions
In the following if capital letterC is a concept and capital
letter R is a role then the small letterc is a predicate that
corresponds toC and the small letterr is a predicate that
corresponds toR.

Step 1: For each elementa of HB the translation contains
the fact: top(a) ←.

Step 2: For each atomic conceptB the translation will have
the rules:

b(X) ← top(X),not not b(X).
not b(X) ← top(X),not b(X).
Step 3: For each atomic roleP the translation will have the
rules:

p(X, Y) ← top(X), top(Y),not not p(X,Y).
not p(X,Y) ← top(X), top(Y),not p(X,Y).
Step 4: For each fact assertion of the formC(a), the trans-
lation will havetr(C) as described in Step 7 and the follow-
ing: ← not c(a).
Step 5: For each fact assertion of the formR(a, b), the trans-
lation will havetr(R) as described in Step 8 and the follow-
ing: ← not r(a, b).
Step 6: For each inclusion assertion of the formC1 v C2,
the translation will have rules defining predicatesc1 andc2

as described in Step 7 below and the following (ifC1 and
C2 are non atomic concepts thenc1 andc2 will be new pred-
icates): ← c1(X),not c2(X).
Step 7: For a concept expressionC, its definition in terms
of a predicatec denoted bytr(C) is as follows:

1. If C is of the form¬C ′, thentr(C) contains the rule
c(X) ← top(X),not c′(X).
and the translationtr(C ′).

2. If C is of the formC1 u C2, thentr(C) contains the rule
c(X) ← top(X), c1(X), c2(X).
and the translationstr(C1), andtr(C2).

3. If C is of the formC1 tC2, thentr(C) contains the rules
c(X) ← top(X), c1(X).
c(X) ← top(X), c2(X).
and the translationstr(C1), andtr(C2).

4. If C is of the form∀R.C ′, thentr(C) contains the rules
not c(X) ← r(X, Y),not c′(Y).
c(X) ← top(X),not not c(X).
and the translationstr(R) (to be defined in Step 8), and
tr(C ′).

5. If C is of the form∃R.C ′, thentr(C) contains the rule
c(X) ← r(X, Y), c′(Y).
and the translationstr(R) (defined in Step 8), andtr(C ′).

6. If C is of the form∃R≥n.C ′, thentr(C) contains the rule
c(X) ← r(X, Y1), . . . , r(X,Yn), c′(Y1), . . . , c′(Yn),

Y1 6= Y2 6= . . . 6= Yn.
and the translationstr(R) (defined in Step 8), andtr(C ′).

7. If C is of the form∃R≤n.C ′, thentr(C) contains the rule
not c(X) ← r(X, Y1), . . . , r(X, Yn+1), c′(Y1), . . . , c′(Yn+1),

Y1 6= Y2 6= . . . 6= Yn+1.
c(X) ← top(X),not not c(X).
and the translationstr(R) (to be defined in Step 8), and
tr(C ′).

Step 8: For an arbitrary roleR its definition in terms of a
predicater denoted bytr(R) is as follows:

1. If R is an atomic roleP , thentr(R) contains the rule
r(X, Y) ← p(X,Y).

2. If R is of the formP−, whereP is an atomic role, then
tr(R) contains the rule r(X, Y) ← p(Y, X).

Given a DL knowledge baseK, we will denote the DLP ob-
tained by the above steps bytr(K).

Example 1 Lets us now consider the example in the be-
ginning of this section and translate it into DLP us-
ing tr. The DL knowledge base consists of{child ≡
∃childof.top, son ≡ male u child, son(a)}, with HB =
{a, b}.
• Step 1. top(a) ←. top(b) ←.
• Step 2. child(X) ← top(X),not not child(X).

not child(X) ← top(X),not child(X).
male(X) ← top(X),not not male(X).
not male(X) ← top(X),not male(X).
son(X) ← top(X),not not son(X).
not son(X) ← top(X),not son(X).

• Step 3.
childof(X, Y) ← top(X), top(Y),not not childof(X, Y).
not childof(X, Y) ←
top(X), top(Y),not childof(X,Y).

• Step 4. ← not son(a).
• Step 6.
← child(X),not c(X). ← c(X),not child(X).
← son(X),not c′(X). ← c′(X),not son(X).

• Step 7. c(X) ← childof(X, Y), top(Y).
c′(X) ← male(X), child(X). 2

Theorem 0.1 LetK be a DL knowledge base.
K |=HB C(a) if and onlytr(K) |=dlp c(a) and
K |=HB R(a, b) if and only if tr(K) |=dlp r(a, b).2 2

Entailing inclusion assertions and other reasoning
tasks
In this section we discuss a translation with respect to|=
(instead of|=HB) and consider reasoning tasks such as if a
DL knowledge baseK entails a inclusion assertion; or if it
is satisfiable; or if a concept is consistent in it. We now give
the translationtr′.

2Note that this theorem is not true for|= instead of|=HB . The
discrepancy may arise whenC is a concept using universal quan-
tifiers. For example, as suggested by an anonymous reviewer, if
K = {C(a), R(a, a)} with HB = {a} thenK 6|= ∀R.C(a),
while K |=HB ∀R.C(a). In logic programming, this discrepancy
is referred to as the universal query problem and several ways to
overcome it are proposed in the literature. In the next section we
use one such proposal.

Step 1’: For each elementa of HB the translation contains
the fact: top(a) ←.
In addition, the translation3 contains the following:
top(a′) ←. top(f(X)) ← top(X).
wherea′ is an object constant that does not appear inK, and
f is a unary function symbol used to construct an infinite
Herbrand Universe.
Step 2-8remain the same as in Section . Given a DL knowl-
edge baseK, we will denote the DLP obtained by the above
steps bytr′(K).
Step 9: For a queryα given asC1 v C2, the translation
qtr(α) will have (a) rules defining two new predicatesc1

andc2 as described in Step 7 and (b) the following.
violated ← c1(X),not c2(X).
satisfied ← not violated.

Theorem 0.2 Let K be a DL knowledge base andα be an
inclusion assertion.
K |= α if and only if tr′(K) ∪ qtr(α) |=dlp satisfied. 2

Lemma 0.3 LetK be a DL knowledge base.C2 subsumes
C1 in K iff K |= C1 v C2. 2

Theorem 0.4 LetK be a DL knowledge base.
(i) K is satisfiable ifftr′(K) has an answer set.
(ii) A concept C is consistent inK iff tr′(K) ∪
{non empty c ← c(X), top(X)} has an answer set con-
tainingnon empty c. 2

A translation for DL knowledge bases with
non-cyclic equality assertions
The translation in the previous two sections are general in
the sense that they do not restrict the inclusion assertions.
The program obtained by the translation enumerates all the
atomic concepts and thus may result in a large search space
while computing the answer sets. In this section we consider
a restriction on the inclusion assertions and present a trans-
lation that cuts down on the enumeration and hence reduces
the search space during answer set computation.
The restriction that we impose, which is also imposed in
many early DL systems, is that the TBox consist only of
equality assertions with an atomic concept in the left hand
side and that there be no cycles in the sense that no concept
in the right hand side of an equality assertion refers (either
directly or indirectly) to the atomic concept in the left part
of the assertion.
Given such a TBox we refer to those atomic concepts that
appear in the left hand side of an equality assertion asde-
rived atomic conceptsand all other atomic concepts asnon-
derived atomic concepts. We now describe the translation
trn.
The translationtrn has the same Step 1, 3, 4, 5, 7 and 8
as tr. The Step 2 oftrn enumerates only thenon-derived
atomic conceptsother thantop. In Step 6, for each equality
assertion of the formA ≡ C, the translation hastr(C) as
described in Step 7 oftr and the rule: a(X) ← c(X).

3In cases where we are only concerned with finite domains the
second rule can be omitted, making the translation simpler.

Example 2 Let us now consider our running example
with the TBox = {child ≡ ∃childof.top; son ≡
male u child} and ABox = {son(a)}. With respect
to this TBox, son and child are derived atomic con-
cepts whilemale and top are non-derived atomic con-
cepts. We now show that the program obtained bytrn

for this DL knowledge base is very close to the program
{r1, r2, r3, r4, r5, r6, r7, r8, top(a), top(b)} analyzed in the
beginning of Section .
Step 1 oftrn gives ustop(a) andtop(b). Step 2 oftrn gives
us r3 andr4 where we enumerate the non-derived concept
male. Step 3 gives usr5 andr6. Step 4 gives usr8. Step 6
gives usr2 and a slight variant ofr1. 2

Theorem 0.5 LetK be a DL knowledge base whose TBox
consists of equality assertions and is non-cyclic.
K |=HB C(a) if and onlytrn(K) |=dlp c(a) and
K |=HB R(a, b) if and only if trn(K) |=dlp r(a, b). 2

If it is given thatK is consistent and we are interested in find-
ing outK |=HB C(a) whereC is a derived atomic concept
then we can even avoid enumeration of non-derived atomic
concepts. We will explore more along these lines in the fu-
ture.

Conclusion and Future work
In this paper so far we only focused on the constructs
in the DL languageALCQI and their translation to
DLP. In the full paper we will consider translations of a
more exhaustive list of DL constructs including concept
constructors such assubset[R, P], same-as[R, P], not-
same-as[R,P], fills[R, i] and one-of[i1,..., in] and role
constructors such asrole-and[R, P], role-or[R, P], role-
not[R], restrict[R, A], compose[R,P], product[C1, C2],
andtrans[R].
Among the above, transitive closure is a construct which is
not expressible in first-order logic, but is easily expressible
in DLP. For example, ifR is the transitive closure of a role
P , thentr(R) will contain the rules
r(X, Y) ← p(X,Y).
r(X, Y) ← p(X,Z), p(Z, Y).
Besides the formal results about expressiveness of
AnsPrologor subclasses that we mentioned in Section ,
its practical implication is that it allows us to (i) enumer-
ate predicates, (ii) perform aggregation, (iii) capture de-
fault reasoning, and (iv) do declarative problem solving.
We notice that the existing few DL+DLP synthesis papers
(Levy & Rousset 1996; Cadoli, Palopoli, & Lenzerini 1997;
Donini et al. 1998; Toman & Weddell 2001) usually fo-
cus on less expressive DLP subclasses. Allowing non-
stratification in DLPs by using the answer set semantics en-
hances the expressive power of DLP and allows us to do (i),
(ii) and (iv) which are not easily doable without these con-
structs (in the absence of function symbols). For example,
in (Cadoli, Palopoli, & Lenzerini 1997) uses inclusion as-
sertions to express enumeration and Datalog rules to define
a concept while encoding 3-colorability of a graph. AnsPro-
log can express both aspects of that example.
Although our focus so far was on translating DL to DLP,
we now suggest a role constructor inspired by the notion

of aggregation in DLPs. Suppose we want to state a new
relationshipRsame using a relationshipR with the intuitive
meaning thata is related tob by Rsame if the number of
tuples inR with a in its first position is same as the number
of tuples inR with b in its first position.

(Rsame)I = {(a, b) | card{o′ | (a, o′) ∈ RI} =
card{o′ | (b, o′) ∈ RI}}
The above can not be expressed in logics, such as first order
logic, where we can not do aggregation. It can be expressed
(Zaniolo, Arni, & Ong 1993) in AnsProlog.

References
Baral, C. 2002.Knowledge representation, reasoning and declar-
ative problem solving.Cambridge University Press. (in press)

Borgida, A.; Brachman, R.; McGuinness, D.; and Resnick, L.
1989. CLASSIC: A structural data model for objects. InProc.
SIGMOD 89, 58–67.

Borgida, A. 1992. Description logics are not just for the flightless-
birds: A new look at the utility and foundations of description
logics. Technical report, Rutgers University.

Brachman, R., and Schmolze, J. 1985. An overview of the
KLONE knowledge rep. system.Cog. Science9(2):171–216.

Cadoli, M.; Palopoli, L.; and Lenzerini, M. 1997. Datalog and
DLs: expressive power. InProc. of DBPL’97, 281–298.

Calvanese, D.; DeGiacomo, G.; Nardi, D.; and Lenzerini, M.
2001. Reasoning in expressive DLs. In Robinson, A., and
Voronkov, A., eds.,Handbook of automated reasoning. N. Hol-
land.

Calvanese, D.; DeGiacomo, G.; and Lenzerini, M. 2001. Iden-
tification constraints and functional dependencies in description
logics. InProc. of IJCAI 2001, 155–161.

Citrigno, S.; Eiter, T.; Faber, W.; Gottlob, G.; Koch, C.; Leone,
N.; Mateis, C.; Pfeifer, G.; and Scarcello, F. 1997. The dlv sys-
tem: Model generator and application front ends. InProceedings
of the 12th Workshop on Logic Programming, 128–137.

Dantsin, E.; Eiter, T.; Gottlob, G.; and Voronkov, A. 1999. Com-
plexity and expressive power of logic programming. Technical
Report INFSYS 1843-99-05, Technische Universitat Wien.

Donini, F.; Lenzerini, M.; Nardi, D.; and Schaerf, A. 1998. AL-
log: Integrating datalog and DLs.JIIS10(3):227–252.

Haarslev, V., and Moller, R. 2000. Expressive abox reasoning
with number restrictions, role hierarchies, and transitively closed
roles. InKR’00, 273–284.

Kakas, A., and Mancarella, P. 1990. Generalized stable models:
a semantics for abduction. InProc. of ECAI-90, 385–391.

Levy, A., and Rousset, M. 1996. CARIN: A representation lan-
guage combining Horn rules and description logics. InProc. of
ECAI-96, 323–327.

Niemela, I., and Simons, P. 1997. Smodels – an implementa-
tion of the stable model and well-founded semantics for normal
logic programs. In Dix, J.; Furbach, U.; and Nerode, A., eds.,
Proc. 4th international conference on Logic programming and
non-monotonic reasoning, 420–429. Springer.

Toman, D., and Weddell, G. 2001. On attributes, roles and de-
pendencies in description logics and the Ackermann case of the
decision problem. InProc. of DL’01, 76–85.

Zaniolo, C.; Arni, N.; and Ong, K. 1993. Negation and aggregates
in recursive rules: the LDL++ approach. InDOOD, 204–221.

