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Abstract. We present a simple signal transduction pathway from the
literature, modelled using a knowledge-based approach in the tool BioSigNet-RR.
This allows qualitative analysis of the pathway in three ways.
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1 Introduction

Signal transduction, the correct receiving and processing of external and internal
signals, is essential for the proper functioning of cells and ultimately the organ-
ism. Mammalian cells have more genes for signal transduction than they have to
control metabolism or maintain the integrity of the genome [1]. The importance
of signal transduction is further documented by the fact that almost any disease
can be described in terms of aberrations of signalling processes and that many
important diseases are caused by a breakdown in communication between and
within cells. The classical examples are cancer and autoimmune diseases, where
either cells proliferate uncontrollably or attack other cells in the body, respec-
tively. Thus, there is great interest in signal transduction research, and enor-
mous progress has been made in the last two decades, in particular regarding
component identification. Deciphering the function of these signal transduction
pathways has turned out much harder, mainly because they are not organised
as linear pathways as originally perceived, but in large networks where compo-
nents are linked to many other components featuring extensive crosstalk and
crossregulation. Further, many components are re-used in different functional
contexts.

Specific biological responses to stimuli are generated in a combinatorial fash-
ion by integrating both qualitative and quantitative aspects of signalling. These
aspects are generated through biochemical reactions, often phosphorylation, that
change the activity of signal transduction enzymes and ultimately specify a
change in the biological behaviour of the cell. While biochemistry and genet-
ics are very powerful in analysing single biochemical reactions and individual
steps in signal transduction networks, they fail us in understanding the results
of many reactions and steps and ultimately the behaviour of the network. There-
fore, there is a need for mathematical modelling of signalling networks in order



to improve our understanding of how specific network behaviour is generated in
response to defined inputs.

The emerging area of systems biology yields many computational approaches
to such pathways [2, 3]. Most models are quantitative, and analysis predicts quan-
tities of various species, given initial conditions. Choosing parameters (such as
reaction rates) is non-trivial. The experimental determination of such rates is
tedious and usually not feasible for all reactions in a pathway model. As such
measurements have to be carried out using purified enzymes in vitro, it is un-
clear whether they really reflect the activities in their physiological environment
in intact cells. Additionally, in models with large numbers of variables, consid-
ering all interesting initial conditions (combinations of initial concentrations of
proteins) is intractable.

An alternative approach is to ignore quantitative data, and concentrate on
qualitative aspects of the problem. In this paper we present a preliminary report
on describing a a simple network (the ERK pathway of [4]) using the declara-
tive language of the tool BioSigNet-RR [5] (BSN for short), and carrying out
qualitative analyses. This work is at an early stage; currently we are explor-
ing the requirements of the problem area and different modelling approaches
within BSN. BSN itself is very much under current development; exploratory
work at this stage will influence future implementation developments. The pa-
per is structured as follows. Section 2 introduces BSN and the ERK pathway.
Section 3 explains the construction of the model in BSN. Although we use the
ERK pathway for illustration here, the method is general and can be easily ap-
plied to other pathways. Section 4 describes the qualitative analyses that can
be carried out. A comparison with related work is given in Section 5, and con-
clusions may be found in Section 6, together with a brief discussion of ongoing
work and future directions.

2 Background

2.1 BioSigNet-RR

BioSigNet-RR [5] is a system for representing and reasoning about signal net-
works. The name derives from ‘biological signal networks’ and ‘representation
and reasoning’. The input to BSN is a knowledge base and observations. A
knowledge base encodes knowledge about a signal network, including logical
statements based on symbols termed fluents and actions. Fluents represent the
various properties of the cell while actions denote biological processes (e.g. bio-
chemical reactions, protein interactions) or external interventions. The logical
statements describe the impact of these actions on the fluents, how actions can
be triggered or inhibited inside the cell. The logical statements are also called
rules of the knowledge base. Let us consider a simple knowledge base as follows.

bind(ligand, receptor) causes bound(ligand, receptor) (1)
high(ligand) triggers bind(ligand, receptor) (2)
bound(another, receptor) inhibits bind(ligand, receptor) (3)



Here, high(ligand) is a fluent representing the that the concentration level of
the ligand is high; bound(ligand, receptor) represents that ligand is being bound
to receptor and bind(ligand, receptor) is an action denoting the association of
ligand with receptor. (1) describes that the association of ligand and receptor
results in ligand being bound to receptor; (2) describes that the association
occurs when the level of ligand is high; and (3) describes that the association is
blocked when receptor is bound to another molecule.

Observations are statements about the truth value of properties or about
action occurrences at time points. For example, the statement f at t is the
observation that a formula f is true at time t; and the statement a occurs at t′

is the observation that action a occurs at time t′.
Given a knowledge base and observations, BSN’s reasoning engine can per-

form various kinds of reasoning such as prediction, explanation, and planning.
Let a1, . . . , an be a sequence of actions and F be a logical formula. Asking if F
will be true given the sequence a1, . . . , an is referred to as prediction. Now if F is
given, but the reasoning system has to find the appropriate a1, . . . , an so that F
is achieved then we have planning. Finally, if a set of observations is given and
we need to find particular action occurrences and/or facts about intermediate
states of the world that explain the observations, then we do explanation. All
the above kinds of reasoning may have to be done with partial or incomplete
information in the knowledge base. In BSN, the formula F is expressed using
linear temporal logic (LTL) [6]. LTL allows us to express properties over paths,
including cyclic properties, such as reaching a particular state infinitely often.
Currently the BSN implementation does not support cyclic queries, but this is
planned for future work.

In the context of signalling networks, predict is equivalent to saying: given
some initial concentrations of proteins show that it is possible to achieve some
particular output. explain allows us to state the desired outcome and discover
the initial conditions giving rise to that outcome. Lastly, given some initial con-
centrations of proteins, and assuming there is some external intervention, plan
tells us when the intervention should occur to get the desired outcome.

The knowledge representation language of BSN has a precise semantics, defin-
ing the models of a knowledge base and observations [7]. A model is a trajectory
of the form s0A0s1Aa . . . snAn, where Ai’s are sets of actions and si’s are logical
interpretations of fluents (i.e. states of the cell). Ai consists of actions occuring
at state si, which can be either triggered by the cell (internally) or carried out
by the environment (externally). The actions in Ai transform the cell from state
si into state si+1. Thus a model describes a possible evolution of the cell in time.

BSN is implemented using the declarative programming language AnsPro-
log [8]. This stands for programming in logic using answer sets, or stable models.
This approach is useful for non-monotonic reasoning, especially in the context of
incomplete information. Note that AnsProlog is a declarative language different
from Prolog. Prolog has many non-logical features, and is not purely declarative.
This makes Prolog unsuitable for knowledge representation1.

1 Please refer to [5, 7] for more details.



BSN can be used in three main modes. There is a graphical interface which
makes initial description of the model easy and less error-prone; however, only
simple queries may be expressed in this interface. The system can also be used
from the command-line, taking as arguments a text file containing the knowledge
base and one containing the query. This allows more complex queries, but is of
course rather error-prone. Finally, the user can access the components of BSN
(the tools lparse and smodels [9]) to get more information about the underlying
models constructed.

2.2 The features of pathways

The example we use in the rest of the paper is that of the Ras/Raf-1*/MEK/ERK
pathway presented in [4] (ERK pathway for short). The ERK pathway controls
a number of fundamental cellular processes including cell survival, proliferation,
motility and differentiation. Briefly, the pathway consists of a core of three ki-
nases, Raf, MEK and ERK. Raf is activated by growth factor receptors on the
cell surface via the small G-protein Ras. Raf phosphorylates and activates MEK,
which in turn phosphorylates and activates ERK. The interaction between Raf
and MEK is negatively regulated by RKIP, which can bind to Raf and prevent
it from interacting with MEK, thereby interfering with MEK phosphorylation
by Raf [10]. ERK has more than 80 known substrates which it regulates by
phosphorylation [11]. One substrate of ERK is RKIP. ERK inactivates RKIP by
phosphorylation resulting in the dissociation of RKIP from Raf-1*, permitting
Raf to interact with MEK. When RKIP is dephosphorylated it can bind to Raf
again. Thus, ERK mediated RKIP phosphorylation constitutes a positive feed-
back loop. A graphical representation of the pathway is presented in Figure 1.
Phosphorylation is indicated by the suffix -P; e.g. ERK-P is monophosphorylated
ERK, ERK-PP is double phosphorylated ERK.

Although signalling networks are many and varied, they can all be described
by kinetic equations, allowing standard features to be exposed. In the Figure,
reactants are represented as circles and reaction rates as rectangles. A reaction
then is a collection of arrows between reactants and a reaction rate. For example,
k1 is the association of Raf-1* and RKIP to produce Raf-1*/RKIP. Reactions
have direction; k2 is the dissociation of Raf-1* and RKIP, i.e. the reverse of
reaction k1.

Our model is abstract and purely qualitative, therefore we represent neither
the precise amount of any compound nor the numerical value of reaction rates.
Instead we use a binary representation: either we have the compound (and as-
sume that this is a sufficient amount to participate in a reaction), or we have
none of the compound (alternatively, an insufficient amount to participate in a
reaction). Taking a simple view of the model makes it much easier to describe
and analyse, but yet it is still possible to make useful observations about the
network, as will be demonstrated in Section 4.

Before constructing any model, it is important to ask, what is the model
for? In this case, what biological insights do we hope to gain by analysing our
model? Such insights can then be backed up by wet lab experimentation. At
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Fig. 1. RKIP inhibited ERK pathway

a topological level, we want to be able to determine which parts of a network
are important. For example, if we cut one part of the network out (perhaps
using a chemical treatment), how does that affect the rest of the network? A
related question might be that if there are two paths both achieving a particular
outcome then how and when can we switch between those paths? Conversely, we
might identify parts of the network which may not be omitted. There may also
be patterns in the way in which the network is traversed, e.g. cycling between
particular states. Suitable queries can be formulated for all these questions.

3 Encoding pathways in BioSigNet-RR

We present a model of the ERK signalling pathway in BSN to illustrate the
language of the tool. Many modelling choices are made in constructing even
this simple example. These are not the focus of this paper; we simply present
one particular set of decisions. Some discussion may be found in Section 6 and
more detail in a follow-up paper [12]. The modelling technique is manual but
also deliberately mechanistic; a future development may be to automatically
generate BSN descriptions from existing network descriptions, e.g. in SBML.
The full input knowledge base used here, together with several other variants, is
available from www.public.asu.edu/~cbaral/biosignet/.



3.1 Fluents

A fluent in the BioSigNet-RR system represents a reactant in the pathway. Flu-
ents represent real world facts and can have the value true or false. We indicate
presence of a protein by high(xxx) and absence by -high(xxx), where - is log-
ical negation and xxx denotes the particular protein (see below). The choice of
name is arbitrary; we could have used is present(xxx) instead.

For example, for the ERK pathway of Figure 1, we declare:

<fluent> high(raf1).
<fluent> high(rkip).
<fluent> high(raf1_rkip).

among others. Note that this simply declares the names to be used, and the
presence or absence of proteins for a particular query will be set up in its initial
conditions. See Section 4.

3.2 Actions

An action in the BioSigNet-RR system represents a reaction, or possibly a com-
bination of reactions, in the network. For each reaction, specify an action name.
Here we are only giving names to actions; the causes and consquences of actions
are expressed using rules in the following sections.

For example, for the ERK pathway of Figure 1, we declare:

<action> k1k2.
<action> k5.

and so on. For bidirectional reactions we model the combined reaction, hence
k1k2 above. Recall that this name has no numerical meaning in our model.

3.3 Dynamic Rules

Given the ingredients of our system, the reactants/proteins and the reactions,
we describe how each reaction affects the reactants. The dynamic rules describe
the results of each action. For example, for the ERK pathway of Figure 1, we
declare reaction k1k2 to have the following effects:

k1k2 <causes> high(raf1_rkip).
k1k2 <causes> -high(raf1).
k1k2 <causes> -high(rkip).

That is, the reaction k1k2 produces the new protein composed of raf1 and
rkip, but in the process uses up the available raf1 and rkip. These values
remain until further actions change them, e.g. k3k4 depletes Raf-1*/RKIP to
produce Raf-1*/RKIP/ERK-PP.



3.4 Trigger Rules

The dynamic rules only describe the results of an action; we must also describe
the causes of actions. For example, for the ERK pathway of Figure 1, we declare
the trigger for reaction k1k2 as:

high(raf1) ; high(rkip) ; -high(raf1_rkip) <triggers> k1k2.

The semicolon can be read as logical and.

3.5 Inhibiting Rules

Lastly, there may be situations in which the action cannot occur, even if the trig-
gering rules described above are satisfied, i.e. we explicitly over-ride the normal
triggering mechanisms. This facilitates non-monontonic reasoning and elabora-
tion tolerance. For example, for the ERK pathway of Figure 1, we declare the
inhibitions for reaction k1k2 as:

high(raf1_rkip) <inhibits> k1k2.

That is, if the result compound is already present the action will be blocked.
Inhibition becomes important in situations where one component can partic-

ipate in several reactions or pathways. For instance, ERK can translocate from
the cytosol into the cell nucleus and regulate transcription factors. Preventing
ERK from entering the nucleus precludes it from activating transcription factors,
but still allows it to phosphorylate cytosolic substrates. In contrast, inhibition
of ERK by MKP phosphatases terminates all ERK signalling, as MKPs remove
the activating phosphates from ERK causing it to switch back into the inactive
conformation.

4 Reasoning about pathways

For each kind of analysis, queries must be formed. These are expressed using lin-
ear temporal logic. Queries can use the path quantifiers always and eventually,
standard logical operators (and, or, not) and fluent literals.

4.1 Predict

Essentially, this form of analysis can be expressed as

Given some initial conditions, prove formula F holds.

In other words, this is rather similar to standard model checking.
In the context of signalling networks, this is equivalent to saying: given some

initial concentrations of reactants show that it is possible to achieve some par-
ticular output. For the ERK pathway, a predict query might be:



1 initial(0).
2 observed(high(raf1),0).
3 observed(high(rkip),0).
4 observed(high(mek_pp),0).
5 observed(high(erk_pp),0).
6 observed(high(rp),0).
7 the_prediction(evnt(high(erk_p)),0).
8 evnt(high(erk_p)).
9 :- predict(true), not holds(evnt(high(erk_p)),T),

match(0,T), time(T).
10 :- predict(false), holds(evnt(high(erk_p)),T),

match(0,T), time(T).
11 prediction.

(This is the text file representation of the query, with added line numbers. This
particular query could have been carried out in the GUI.)

This example says, given that we have high concentrations of raf1, rkip,
mek pp, erk pp and rp at time 0, show that we can get high erk p eventually
(the operator evnt) (node m5 in Figure 1). For this to be true we must find
a positive model (line 9), and no negative models (line 10). This query is an
abstract version of the claim of Cho et al [4], and is proved true by BioSigNet-RR.

Other properties are proved in a similar fashion. For example, given high
raf1, rkip, mek, erk pp and rp, then we can show

not(evnt(wedge(high(mek_raf1), high(raf1_rkip))))

where wedge represents logical and. This is a sort of mutual exclusion formula
and can only be true if k1k2 and k12k13 can proceed simultaneously.

4.2 Explain

This can be regarded as the reverse of Predict:

Assuming formula F holds at some point in the future, deduce possible
initial conditions.

In the context of signalling networks, this allows us to state the desired out-
come and discover the initial conditions which might give rise to that outcome.
In an analog of the example above, we can determine initial conditions resulting
in high erk p:

1 initial(0).
2 unknown(high(raf1)).
3 unknown(high(rkip)).
4 unknown(high(rkip_p)).
5 unknown(high(mek_pp)).
6 unknown(high(erk_pp)).
7 unknown(high(rp)).



8 unknown(high(mek)).
9 to_be_explained(evnt(high(erk_p)),0).
10 evnt(high(erk_p)).
11 :- not holds(evnt(high(erk_p)),T), match(0,T), time(T).
12 explanation.

Here we declare the unknown reactants (i.e. their initial concentrations are un-
known), and then ask for our formula (line 9) to be explained. All reactants not
mentioned default to low concentration.

This yields one model satisfying the formula. More usefully, we can ask the
system to tell us all possible models satisfying this formula. For this example, 16
are generated. Manual inspection of the output allows us to categorise the results
into two groups: either we must have high raf1, rkip and erk pp initially, or
we must have high raf1, rkip p, rp and erk pp (which provides a different way
to get RKIP). This is easily verified by examination of the network of Figure 1.
What varies in the models is the concentrations of other reactants. Note that a
different set of models would be obtained with a different set of initial unknown
fluents. A possible future direction for the work may be to carry out some post-
processing of the models generated to make some quantitative judgements about
the relative importance of particular reactants or paths in the system.

4.3 Plan

This last form of analysis is more concerned with the actions carried out, and
can be expressed as

Given some initial conditions, and some intervention action, determine
at what point the intervention must occur to ensure formula F holds at
some point in the future.

Here we have partial information about the state, not enough to show that F
holds, therefore some intervention must be made which changes the state.

In the context of signalling networks, this is equivalent to saying, given some
initial concentrations of reactants, and assuming we will add some new element
to the system, for example a drug treatment, when should it be added to get
the desired outcome. Continuing the example above, we might want to find out
at what point we can add erk pp to the system to still produce erk p.

1 intervention(intro(erk_pp)).
2 initial(0).
3 observed(high(raf1),0).
4 observed(high(mek),0).
5 observed(high(rkip),0).
6 the_goal(evnt(high(erk_p)),0).
7 evnt(high(erk)).
8 :- not holds(evnt(high(erk)),T), match(0,T), time(T).
9 planning.



To the knowledge base we first add a new action intro(erk pp), which is de-
clared to have the single effect of making erk pp high (not shown). The plan
produced by BSN states that this action must occur at time 2. Note that time
is abstract: we have a notion of ordering, but not of real time.

5 Related Work

The abstract approach to modelling signalling pathways was presented using the
Performance Evaluation Process Algebra by Calder, Hillston and Gilmore [13].
We have adopted their approach of using high and low to abstract away from
concentrations; however, we have taken the abstraction further by also disre-
garding reaction rate information. Calder et al were able to reproduce the result
of Cho et al [4] that RKIP damps down the production of ERK. In addition,
properties expressed in CSL (allowing probabilistically quantified logic formulae
to be expressed) were verified.

The logic CTL (Computation Tree Logic) has been used to reason about
biological pathways in [14]. Chabrier-Rivier et al develop a specialised language
to describe pathways, and then translate that to a Kripke structure so standard
model checking tools can be utilised. The approach of [14] can carry out analyses
in the style of predict here (using CTL), but it is not possible to compute explain
or plan queries.

The paper lists interesting properties expressible in CTL that may be of
biological significance. Many of these are also expressible in LTL. CTL is of the
same family as LTL, but is incomparable. That is, in general it is possible to
express some properties in CTL which cannot be expressed in LTL, and vice
versa. For example, cyclic properties referring to the existence of stable states
may be expressed in CTL, but not in LTL. LTL will allow statements to be
made about stable states for all paths. Conversely, it is possible to express that
something occurs infinitely often in LTL, but not in CTL. Both are qualitative,
therefore it is not possible to express properties concerning particular periods of
time, or amounts of reactants.

6 Conclusions and Future Directions

We have presented a tool in which abstract, qualitative models of cell signalling
networks can be described. Several kinds of analysis can be carried out, allow-
ing the important aspects of the system to be seen clearly. In our simple ERK
pathway these analyses could have been carried out by hand since the model is
small; however, our approach will scale up to larger, more complex models in a
straightforward manner. An advantage of the approach is its simplicity; there is
no need to use sophisticated experimental techniques to estimate parameters of
the model, since there is no quantitative data. This approach can therefore be
seen as complementary to established differential equation approaches, perhaps
as a useful first step in analysis, focussing attention on the areas of importance.
A particularly useful application could be the mapping of new connections in



signalling networks. For instance, it is a well know puzzle that in some cellular
systems Ras seems to be upstream of Rac (a Ras related G-protein) while in
others Ras appears downstream of Rac. Logical analysis of the signal transduc-
tion network topology will quickly reveal which connections are permitted and
under which conditions. Another useful feature is to predict how many different
types of network behaviour are possible and under which conditions these types
of behaviour are realized. This will allow a critical evaluation of the model and
will be useful in guiding experimental work.

In this paper we did not discuss modelling decisions, but clearly these are
crucial, and tightly linked to the sorts of analysis to be performed. For ex-
ample, representing the biology of inhibition poses a challenge. RKIP inhibits
the interaction of Raf with MEK and thereby prevents MEK phosphorylation.
For instance, phosphorylation of RKIP by Protein Kinase C (PKC) also will
cause RKIP to dissociate from Raf, thereby releasing Raf inhibition. However,
the PKC phosphorylated RKIP now can bind to G-protein coupled Receptor
Kinase-2 (GRK-2) and inhibit it. Thus, the phosphorylation of RKIP by PKC
inactivates RKIP as an inhibitor for Raf, but activates RKIP as an inhibitor for
GRK-2 [15].

Another important decision concerns resource and competition for that re-
source. In this paper, we assume reactions use up all available reactants. A rea-
sonable alternative is assume there is always some reactant left. This produces
similar results for the ERK system for simple queries; however, this means cycles
in behaviour will not be detectable since once a reactant is present it is never
removed. If resource is finite, then competition becomes important. Consider
the system with initial mek, raf1 and rkip. If all mek is used up in a reaction
then clearly either k1k2 or k12k13 can proceed, but not both. This can be repre-
sented easily in BSN [12]. Biologically, MEK and RKIP actually can compete for
binding to Raf. In a situation where all three proteins are expressed the relative
abundance of the proteins will determine the ratio of Raf-MEK and Raf-RKIP
complexes. As Raf and MEK are expressed in all cells and RKIP expression is
variable, RKIP expression will be the main determinator in most cells.

Future work includes exploration of more complex models as mentioned
above, particularly considering modelling questions, and others from the lit-
erature, such as the Schoeberl et al model [16], and further development of the
BSN system both in the modelling language and in the interface. New directions
in answer set programming, for example the use of preferences to compute the
relative desirability of models, will also be explored.
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