
Reasoning about Multi-agent Domains Using Action
Language C: A Preliminary Study

Chitta Baral1, Tran Cao Son2, and Enrico Pontelli2

1 Dept. Computer Science & Engineering, Arizona State University
chitta@asu.edu

2 Dept. Computer Science, New Mexico State University
{tson,epontell}@cs.nmsu.edu

Abstract. This paper investigates the use of action languages, originally devel-
oped for representing and reasoning about single-agent domains, in modeling
multi-agent domains. We use the action language C and show that minimal exten-
sions are sufficient to capture several multi-agent domains from the literature. The
paper also exposes some limitations of action languages in modeling a specific
set of features in multi-agent domains.

1 Introduction and Motivation

Representing and reasoning in multi-agent domains are two of the most active research
areas in multi-agent system (MAS) research. The literature in this area is extensive, and
it provides a plethora of logics for representing and reasoning about various aspects of
MAS domains. For example, the authors of [24] combine an action logic and a coop-
eration logic to represent and reason about the capabilities and the forms of coopera-
tion between agents. The work in [16] generalizes this framework to consider domains
where an agent may control only parts of propositions and to reason about strategies
of agents. In [31], an extension of Alternating-time Temporal Logic is developed to
facilitate strategic reasoning in multi-agent domains. The work in [30] suggests that de-
centralized partially observable Markov decision processes could be used to represent
multi-agent domains, and discusses the usefulness of agent communication in multi-
agent planning. In [18], an extension of Alternating-time Temporal Epistemic Logic is
proposed for reasoning about choices. Several other works (e.g., [12,32]) discuss the
problem of reasoning about knowledge in MAS.

Even though a large number of logics have been proposed in the literature for for-
malizing MAS, several of them have been designed to specifically focus on particu-
lar aspects of the problem of modeling MAS, often justified by a specific application
scenario. This makes them suitable to address specific subsets of the general features
required to model real-world MAS domains. Several of these logics are quite complex
and require modelers that are transitioning from work on single agents to adopt a very
different modeling perspective.

The task of generalizing some of these existing proposals to create a uniform and
comprehensive framework for modeling different aspects of MAS domains is, to the
best of our knowledge, still an open problem. Although we do not dispute the possibility

J. Dix, M. Fisher, and P. Novák (Eds.): CLIMA X, LNAI 6214, pp. 46–63, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Reasoning about Multi-agent Domains Using Action Language C 47

of extending these existing proposals in various directions, the task does not seem easy.
On the other hand, the need for a general language for MAS domains, with a formal and
simple semantics that allows the verification of plan correctness, has been extensively
motivated (e.g., [8]).

The state of affairs in formalizing multi-agent systems reflects the same trend that oc-
curred in the early nineties, regarding the formalization of single agent domains. Since
the discovery of the frame problem [22], several formalisms for representing and reason-
ing about dynamic domains have been proposed. Often, the new formalisms responded to
the need to address shortcomings of the previously proposed formalisms within specific
sample domains. For example, the well-known Yale Shooting problem [17] was invented
to show that the earlier solutions to the frame problem were not satisfactory. A simple
solution to the Yale Shooting problem, proposed by [2], was then shown not to work
well with the Stolen Car example [20], etc. Action languages [15] have been one of the
outcomes of this development, and they have been proved to be very useful ever since.

Action description languages, first introduced in [14] and further refined in [15], are
formal models used to describe dynamic domains, by focusing on the representation
of effects of actions. Traditional action languages (e.g., A, B, C) have mostly focused
on domains involving a single agent. In spite of different features and several differ-
ences between these action languages (e.g., concurrent actions, sensing actions, non-
deterministic behavior), there is a general consensus on what are the essential compo-
nents of an action description language in single agent domains. In particular, an action
specification focuses on the direct effects of each action on the state of the world; the
semantics of the language takes care of all the other aspects concerning the evolution of
the world (e.g., the ramification problem).

The analogy between the development of several formalisms for single agent do-
mains and the development of several logics for formalizing multi-agent systems indi-
cates the need for, and the usefulness of, a formalism capable of dealing with multiple
desired features in multi-agent systems. A natural question that arises is whether single
agent action languages can be adapted to describe MAS. This is the main question that
we explore in this paper.

In this paper, we attempt to answer the above question by investigating whether an
action language developed for single agent domains can be used, with minimal modifica-
tions, to model interesting MAS domains. Our starting point is a well-studied and well-
understood single agent action language—the language C [15]. We chose this language
because it already provides a number of features that are necessary to handle multi-agent
domains, such as concurrent interacting actions. The language is used to formalize a
number of examples drawn from the multi-agent literature, describing different types
of problems that can arise when dealing with multiple agents. Whenever necessary, we
identify weaknesses of C and introduce simple extensions that are adequate to model
these domains. The resulting action language provides a unifying framework for mod-
eling several features of multi-agent domains. The language can be used as a foundation
for different forms of reasoning in multi-agent domains (e.g., projection, validation of
plans), which are formalized in the form of a query language. We expect that further de-
velopment in this language will be needed to capture additional aspects such as agents’
knowledge about other agents’ knowledge. We will discuss them in the future.

48 C. Baral, T.C. Son, and E. Pontelli

We would like to note that, in the past, there have been other attempts to use action
description languages to formalize multi-agent domains, e.g., [6]. On the other hand,
the existing proposals address only some of the properties of the multi-agent scenarios
that we deem to be relevant (e.g., focus only on concurrency).

Before we continue, let us discuss the desired features and the assumptions that we
place on the target multi-agent systems. In this paper, we consider MAS domains as
environments in which multiple agents can execute actions to modify the overall state
of the world. We assume that
• Agents can execute actions concurrently;
• Each agent knows its own capabilities—but they may be unaware of the global

effect of their actions;
• Actions executed by different agents can interact;
• Agents can communicate to exchange knowledge; and
• Knowledge can be private to an agent or shared among groups of agents.

The questions that we are interested in answering in a MAS domain involve
• hypothetical reasoning, e.g., what happens if agent A executes the action a; what

happens if agent A executes a1 while B executes b1 at the same time; etc.
• planning/capability, e.g., can a specified group of agents achieve a certain goal

from a given state of the world.
Variations of the above types of questions will also be considered. For example, what
happens if the agents do not have complete information, if the agents do not cooperate,
if the agents have preferences, etc.

To the best of our knowledge, this is the first investigation of how to adapt a single
agent action language to meet the needs of MAS domains. It is also important to stress
that the goal of this work is to create a framework for modeling MAS domains, with
a query language that enables plan validation and various forms of reasoning. In this
work, we do not deal with the issues of distributed plan generation—an aspect exten-
sively explored in the literature. This is certainly an important research topic and worth
pursuing but it is outside of the scope of this paper. We consider the work presented in
this paper a necessary precondition to the exploration of distributed MAS solutions.

The paper is organized as follows. Section 2 reviews the basics of the action language
C. Section 3 describes a straightforward adaptation of C for MAS. The following sec-
tions (Sects. 4–5) show how minor additions to C can address several necessary features
in representation and reasoning about MAS domains. Sect. 6 presents a query language
that can be used with the extended C. Sect. 7 discusses further aspects of MAS that the
proposed extension of C cannot easily deal with. Sect. 8 presents the discussion and
some conclusions.

2 Action Language C

The starting point of our investigation is the action language C [15]—an action descrip-
tion language originally developed to describe single agent domains, where the agent is
capable of performing non-deterministic and concurrent actions. Let us review a slight
adaptation of the language C.

Reasoning about Multi-agent Domains Using Action Language C 49

A domain description in C builds on a language signature 〈F ,A〉, where F ∩A = ∅
and F (resp. A) is a finite collection of fluent (resp. action) names. Both the elements
of F and A are viewed as propositional variables, and they can be used in formulae
constructed using the traditional propositional operators. A propositional formula over
F ∪ A is referred to simply as a formula, while a propositional formula over F is
referred to as a state formula. A fluent literal is of the form f or ¬f for any f ∈ F .

A domain description D in C is a finite collection of axioms of the following forms:

caused � if F (static causal law)
caused � if F after G (dynamic causa laws)

where � is a fluent literal, F is a state formula, while G is a formula. The language also
allows the ability to declare properties of fluents; in particular non inertial � declares
that the fluent literal � is to be treated as a non-inertial literal, i.e., the frame axiom is
not applicable to �.

A problem specification is obtained by adding an initial state description I to a do-
main D, composed of axioms of the form initially �, where � is a fluent literal.

The semantics of the language can be summarized using the following concepts. An
interpretation I is a set of fluent literals, such that {f,¬f} �⊆ I for every f ∈ F . Given
an interpretation I and a fluent literal �, we say that I satisfies �, denoted by I |= �, if
� ∈ I . The entailment relation |= is extended to define the entailment I |= F where F
is a state formula in the usual way. An interpretation I is complete if, for each f ∈ F ,
we have that f ∈ I or ¬f ∈ I . An interpretation I is closed w.r.t. a set of static causal
laws SC if, for each static causal law caused � if F , if I |= F then � ∈ I . Given an
interpretation I and a set of static causal laws SC, we denote with ClSC(I) the smallest
set of literals that contains I and that is closed w.r.t. SC. Given a domain descriptionD,
a state s in D is a complete interpretation which is closed w.r.t. the set of static causal
laws in D.

The notions of interpretation and entailment over the language of F ∪A are defined
in a similar way.

Given a state s, a set of actionsA ⊆ A, and a collection of dynamic causal laws DC,
we define

Eff DC(s,A) =
{
� | (caused � if F after G) ∈ DC, s ·∪ A |= G, s |= F

}

where s
·∪ A stands for s ∪A ∪ {¬a | a ∈ A \A}.

Let D = 〈SC,DC, IN〉 be a domain, where SC are the static causal laws, DC are
the dynamic causal laws and IN are the non-inertial axioms. The semantics of D is
given by a transition system (StateD, ED), where StateD is the set of all states and
the transitions in ED are of the form 〈s,A, s′〉, where s, s′ are states, A ⊆ A, and s′

satisfies the property

s′ = ClSC(Eff DC(s,A) ∪ ((s \ IFL) ∩ s′) ∪ (IN ∩ s′))
where IFL = {f,¬f | f ∈ IN or ¬f ∈ IN}.

The original C language supports a query language (called P in [15]). This language
allows queries of the form necessarily F after A1, . . . , Ak,where F is a state formula

50 C. Baral, T.C. Son, and E. Pontelli

and A1, . . . , Ak is a sequence of sets of actions (called a plan). Intuitively, the query
asks whether each state s reached after executing A1, . . . , Ak from the initial state has
the property s |= F .

Formally, an initial state s0 w.r.t. an initial state description I and a domain D is
an element of StateD such that {� | initially � ∈ I} ⊆ s0. The transition function
ΦD : 2A×StateD → 2StateD is defined as ΦD(A, s) = {s′ | 〈s,A, s′〉 ∈ ED}, where
(StateD, ED) is the transition system describing the semantics ofD. This function can
be extended to define Φ∗

D , which considers plans, where Φ∗
D([], s) = {s} and

Φ∗
D([A1, . . . , An], s) =

⎧⎨
⎩

∅ if Φ∗
D([A1, . . . , An−1], s) = ∅ ∨
∃s′ ∈ Φ∗

D([A1, . . . , An−1], s).[ΦD(An, s
′) = ∅]⋃

s′∈Φ∗
D([A1,...,An−1],s)

ΦD(An, s
′) otherwise

Let us consider an action domain D and an initial state description I. A query
necessarily F after A1, . . . , Ak is entailed by (D, I), denoted by

(D, I) |= necessarily F after A1, . . . , Ak

if for every s0 initial state w.r.t. I, we have that Φ∗
D([A1, . . . , Ak], s0) �= ∅, and for each

s ∈ Φ∗
D([A1, . . . , Ak], s0) we have that s |= F .

3 C for Multi-agent Domains

In this section, we explore how far one of the most popular action languages developed
for single agent domains, C, can be used and adapted for multi-agent domains. We will
discuss a number of incremental small modifications of C necessary to enable modeling
MAS domains. We expect that similar modifications can be applied to other single-
agent action languages with similar basic characteristics. We will describe each domain
from the perspective of someone (the modeler) who has knowledge of everything, in-
cluding the capabilities and knowledge of each agent. Note that this is only a modeling
perspective—it does not mean that we expect individual agents to have knowledge of
everything, we only expect the modeler to have such knowledge.

We associate to each agent an element of a set of agent identifiers, AG. We will
describe a MAS domain over a set of signatures 〈Fi,Ai〉 for each i ∈ AG, with the
assumption that Ai ∩ Aj = ∅ for i �= j. Observe that

⋂
i∈S Fi may be not empty for

some S ⊆ AG. This represents the fact that fluents in
⋂

i∈S Fi are relevant to all the
agents in S.

The result is a C domain over the signature 〈⋃n
i=1 Fi,

⋃n
i=1 Ai〉. We will require the

following condition to be met: if caused � if F after G is a dynamic law and a ∈ Ai

appears in G, then the literal � belongs to Fi. This condition summarizes the fact that
agents are aware of the direct effects of their actions. Observe that on the other hand,
an agent might not know all the consequences of his own actions. For example, a deaf
agent bumping into a wall might not be aware of the fact that his action causes noise
observable by other agents. These global effects are captured by the modeler, through
the use of static causal laws.

Reasoning about Multi-agent Domains Using Action Language C 51

The next two sub-sections illustrate applications of the language in modeling co-
operative multi-agent systems. In particular, we demonstrate how the language is al-
ready sufficiently expressive to model simple forms of cooperation between agents even
though these application scenarios were not part of the original design of C.

3.1 The Prison Domain

This domain has been originally presented in [24]. In this example, we have two prison
guards, 1 and 2, who control two gates, the inner gate and the outer gate, by operating
four buttons a1, b1, a2, and b2. Agent 1 controls a1 and b1, while agent 2 controls a2

and b2. If either a1 or a2 is pressed, then the state of the inner gate is toggled. The outer
gate, on the other hand, toggles only if both b1 and b2 are pressed.

The problem is introduced to motivate the design of a logic for reasoning about the
ability of agents to cooperate. Observe that neither of the agents can individually change
the state of the outer gate. On the other hand, individual agents’ actions can affect the
state of the inner gate.

In C, this domain can be represented as follows. The set of agents is AG = {1, 2}.
For agent 1, we have:

F1 = {in open, out open, pressed(a1), pressed(b1)}.
Here, in open and out open represent the fact that the inner gate and outer gate are
open respectively. pressed(X) says that the button X is pressed where X ∈ {a1, b1}.
We have A1 = {push(a1), push(b1)}. This indicates that guard 1 can push buttons a1

and b1. Similarly, for agent 2, we have that

F2 = {in open, out open, pressed(a2), pressed(b2)} A2 = {push(a2), push(b2)}
We assume that the buttons do not stay pressed—thus, pressed(X), for
X∈{a1, b1, a2, b2}, is a non-inertial fluent with the default value false.
The domain specification (Dprison) contains:

non inertial ¬pressed(X)
caused pressed(X) after push(X)
caused in open if pressed(a1),¬in open
caused in open if pressed(a2),¬in open
caused ¬in open if pressed(a1), in open
caused ¬in open if pressed(a2), in open
caused out open if pressed(b1), pressed(b2),¬out open
caused ¬out open if pressed(b1), pressed(b2), out open

whereX ∈ {a1, b1, a2, b2}. The first statement declares that pressed(X) is non-inertial
and has false as its default value. The second statement describes the effect of the action
push(X). The remaining laws are static causal laws describing relationships between
properties of the environment.

The dynamic causal laws are “local” to each agent, i.e., they involve fluents that are
local to that particular agent; in particular, one can observe that each agent can achieve

52 C. Baral, T.C. Son, and E. Pontelli

certain effects (e.g., opening/closing the inner gate) disregarding what the other agent
is doing (just as if it was operating as a single agent in the environment). On the other
hand, if we focus on a single agent in the domain (e.g., agent 1), then such agent will
possibly see exogenous events (e.g., the value of the fluent in open being changed
by the other agent). On the other hand, the collective effects of actions performed by
different agents are captured through “global” static causal laws. These are laws that
the modeler introduces and they do not “belong” to any specific agent.

Let us now consider the queries that were asked in [24] and see how they can be
answered by using the domain specification Dprison. In the first situation, both gates
are closed, 1 presses a1 and b1, and 2 presses b2. The question is whether the gates are
open or not after the execution of these actions.

The initial situation is specified by the initial state description I1 containing

I1 =
{

initially ¬in open, initially ¬out open}

In this situation, there is only one initial state s0={¬� | �∈F1∪F2}. We can show that

(Dprison,I1) |= necessarily out open ∧ in open after {push(a1), push(b1), push(b2)}
If the outer gate is initially closed, i.e., I2 = { initially ¬out open}, then the set of
actions A = {push(b1), push(b2)} is both necessary and sufficient to open it:

(Dprison, I2) |= necessarily out open after X
(Dprison, I2) |= necessarily ¬out open after Y

where A⊆X and A\Y �=∅. Observe that the above entailment correspond to the envi-
ronment logic entailment in [24].

3.2 The Credit Rating Domain

We will next consider an example from [16]; in this example, we have a property of
the world that cannot be changed by a single agent. The example has been designed to
motivate the use of logic of propositional control to model situations where different
agents have different levels of control over fluents.

We have two agents, AG = {w, t}, denoting the website and the telephone operator,
respectively. Both agents can set/reset the credit rating of a customer. The credit rating
can only be set to be ok (i.e., the fluent credit ok set to true) if both agents agree.
Whether the customer is a web customer (is web fluent) or not can be set only by the
website agent w. The signatures of the two agents are as follows:

Fw = {is web, credit ok} Aw =
{
set web, reset web,
set credit(w), reset credit(w)

}

Ft = {credit ok} At = {set credit(t), reset credit(t)}
The domain specification Dbank consists of:

caused is web after set web
caused ¬is web after reset web
caused ¬credit ok after reset credit(w)
caused ¬credit ok after reset credit(t)
caused credit ok after set credit(w) ∧ set credit(t)

Reasoning about Multi-agent Domains Using Action Language C 53

We can show that

(Dbank, I3) |= necessarily credit ok after {set credit(w), set credit(t)}

where I3 = { initially ¬� | � ∈ Fw ∪ Ft}. This entailment also holds if I3 = ∅.

4 Adding Priority between Actions

The previous examples show that C is sufficiently expressive to model the basic aspects
of agents executing cooperative actions within a MAS, focusing on capabilities of the
agents and action interactions. This is not a big surprise, as discussed in [6]. We will
now present a small extension of C that allows for the encodings of competitive behavior
between agents, i.e., situations where actions of some agents can defeat the effects of
other agents.

To make this possible, for each domain specification D, we assume the presence of
a function PrD : 2A → 2A. Intuitively, PrD(A) denotes the actions whose effects will
be accounted for when A is executed. This function allows, for example, to prioritize
certain sets of actions. The new transition function ΦD,P will be modified as follows:

ΦD,P (A, s) = ΦD(PrD(A), s)

where ΦD is defined as in the previous section. Observe that if there is no competition
among agents in D then PrD is simply the identity function.

4.1 The Rocket Domain

This domain was originally proposed in [31]. It was invented to motivate the devel-
opment of a logic for reasoning about strategies of agents. This aspect will not be ad-
dressed by our formalization of this example as C lacks this capability. Nevertheless,
the encoding is sufficient for determining the state of the world after the execution of
actions by the agents.

We have a rocket, a cargo, and the agents 1, 2, and 3. The rocket or the cargo are either
in london or paris. The rocket can be moved by 1 and 2 between the two locations.
The cargo can be loaded (unloaded) into the rocket by 1 and 3 (2 and 3). Agent 3 can
refill the rocket if the tank is not full.

There are some constraints that limit the effects of the actions. They are:
• If 1 or 2 moves the rocket, the cargo cannot be loaded or unloaded;

• If two agents load/unload the cargo at the same time, the effect is the same as if it
were loaded/unloaded by one agent.

• If one agent loads the cargo and another one unloads the cargo at the same time,
the effect is that the cargo is loaded.

We will use the fluents rocket(london) and rocket(paris) to denote the location of the
rocket. Likewise, cargo(london) and cargo(paris) denote the location of the cargo.
in rocket says that the cargo is inside the rocket and tank full states that the tank is
full. The signatures for the agents can be defined as follows.

54 C. Baral, T.C. Son, and E. Pontelli

F1 =
{
in rocket, rocket(london), rocket(paris),
cargo(london), cargo(paris)

}

A1 =
{
load(1), unload(1),move(1)

}

F2 =
{
in rocket, rocket(london), rocket(paris),
cargo(london), cargo(paris)

}

A2 =
{
unload(2),move(2)

}

F3 =
{
in rocket, rocket(london), rocket(paris),
cargo(london), cargo(paris), tank full

}

A3 =
{
load(3), refill

}

The constraints on the effects of actions induce priorities among the actions. The action
load or unloadwill have no effect if move is executed. The effects of two load actions
is the same as that of a single load action. Likewise, two unload actions have the same
result as one unload action. Finally, load has a higher priority than unload.

To account for action priorities and the voting mechanism, we define PrDrocket
:

• PrDrocket
(X) = {move(a)} if ∃a. move(a) ∈ X .

• PrDrocket
(X) = {load(a)} if move(x) �∈ X for every x∈{1, 2, 3} and load(a)∈X .

• PrDrocket
(X) = {unload(a)} if move(x) �∈ X and load(x) �∈ X for every

x∈{1, 2, 3} and unload(a) ∈ X .
• PrDrocket

(X) = X otherwise.
It is easy to see that PrDrocket

defines priorities among the actions: if the rocket is
moving then load/unload are ignored; load has higher priority than unload; etc. The
domain specification consists of the following laws:

caused in rocket after load(i) (i ∈ {1, 3})
caused ¬in rocket after unload(i) (i ∈ {1, 2})
caused tank full if ¬tank full after refill
caused ¬tank full if tank full after move(i) (i ∈ {1, 2})
caused rocket(london) if rocket(paris), tank full after move(i) (i ∈ {1, 2})
caused rocket(paris) if rocket(london), tank full after move(i) (i ∈ {1, 2})
caused cargo(paris) if rocket(paris), in rocket
caused cargo(london) if rocket(london), in rocket

Let I4 consist of the following facts:

initially tank full initially rocket(paris)
initially cargo(london) initially ¬in rocket

We can show the following

(Drocket, I4) |= necessarily cargo(paris)
after {move(1)}, {load(3)}, {refill}, {move(3)}.

Observe that without the priority function PrDrocket
, for every state s,

ΦDrocket
({load(1), unload(2)}, s) = ∅,

i.e., the concurrent execution of the load and unload actions is unsuccessful.

Reasoning about Multi-agent Domains Using Action Language C 55

5 Adding Reward Strategies

The next example illustrates the need to handle numbers and optimization to represent
reward mechanisms. The extension of C is simply the introduction of numerical flu-
ents—i.e., fluents that, instead of being simply true or false, have a numerical value.
For this purpose, we introduce a new variant of the necessity query

necessarily max F for ϕ after A1, . . . , An

where F is a numerical expressions involving only numerical fluents, ϕ is a state for-
mula, and A1, . . . , An is a plan. Given a domain specification D and an initial state
description I, we can define for each fluent numerical expression F and plan α:

value(F, α) = max {s(F) | s ∈ Φ∗(α, s0), s0 is an initial state w.r.t. I, D}
where s(F) denotes the value of the expression F in state s. This allows us to define

the following notion of entailment of a query:

(D, I) |= necessarily max F for ϕ after A1, . . . , An

if:
◦ (D, I) |= necessarily ϕ after A1, . . . , An

◦ for every other plan B1, . . . , Bm such that (D, I) |=
necessarily ϕ after B1, . . . , Bm we have that value(F, [A1, . . . , An]) ≥
value(F, [B1, . . . , Bm]).

The following example has been derived from [5] where it is used to illustrate the co-
ordination among agents to obtain the highest possible payoff. There are three agents.
Agent 0 is a normative system that can play one of two strategies—either st0 or ¬st0.
Agent 1 plays a strategy st1, while agent 2 plays the strategy st2. The reward system is
described in the following tables (the first is for st0 and the second one is for ¬st0).

st0 st1 ¬st1
st2 1, 1 0, 0

¬st2 0, 0 −1,−1

¬st0 st1 ¬st1
st2 1, 1 0, 0

¬st2 0, 0 1, 1

The signatures used by the agents are

F0 = {st0, reward} F1 = {st1, reward1} F2 = {st2, reward2}
A0 = {play 0, play not 0} A1 {play 1, play not 1} A2 = {play 2, play not 2}

The domain specification Dgam consists of:

caused st0 after play 0 caused ¬st0 after play not 0
caused st1 after play 1 caused ¬st1 after play not 1
caused st2 after play 2 caused ¬st2 after play not 2
caused reward 1 = 1 if ¬st0 ∧ st1 ∧ st2
caused reward 2 = 1 if ¬st0 ∧ st1 ∧ st2
caused reward 1 = 0 if ¬st0 ∧ st1 ∧ ¬st2
caused reward 2 = 0 if ¬st0 ∧ st1 ∧ ¬st2
. . .
caused reward = a+ b if reward1 = a ∧ reward2 = b

56 C. Baral, T.C. Son, and E. Pontelli

Assuming that I = { initially st0} we can show that

(Dgame, I) |= necessarily max reward after {play1, play2}.

6 Reasoning and Properties

In this section we discuss various types of reasoning that are directly enabled by the
semantics of C that can be useful in reasoning about MAS. Recall that we assume that
the action theories are developed from the perspective of a modeler who has the view
of the complete MAS.

6.1 Capability Queries

Let us explore another range of queries, that are aimed at capturing the capabilities of
agents. We will use the generic form can X do ϕ, where ϕ is a state formula and
X ⊆ AG where AG is the set of agent identifiers of the domain. The intuition is to
validate whether the group of agents X can guarantee that ϕ is achieved.

If X = AG then the semantics of the capability query is simply expressed as
(D, I) |= can X do ϕ iff ∃k. ∃A1, . . . , Ak such that

(D, I) |= necessarily ϕ after A1, . . . , Ak.

If X �= {1, . . . , n}, then we can envision different variants of this query.

Capability query with non-interference and complete knowledge: Intuitively, the
goal is to verify whether the agents X can achieve ϕ when operating in an environment
that includes all the agents, but the agents AG \ X are simply providing their knowl-
edge and not performing actions or interfering. We will denote this type of queries as
cann

k X do ϕ (n: not interference, k: availability of all knowledge).
The semantics of this type of queries can be formalized as follows: (D, I) |=

cann
k X do ϕ if there is a sequence of sets of actions A1, . . . , Am with the follow-

ing properties:
◦ for each 1 ≤ i ≤ m we have that Ai ⊆ ⋃

j∈X Aj (we perform only actions of
agents in X)

◦ (D, I) |= necessarily ϕ after A1, . . . , Am

Capability query with non-interference and projected knowledge: Intuitively, the
query with projected knowledge assumes that not only the other agents (AG \ X) are
passive, but they also are not willing to provide knowledge to the active agents. We will
denote this type of queries as cann

¬k X do ϕ.
Let us refer to the projection of I w.r.t. X (denoted by proj(I, X)) as the set of all

the initially declarations that build on fluents of
⋃

j∈X Fj . The semantics of cann
¬k

type of queries can be formalized as follows: (D, I) |= cann
¬k X do ϕ if there is a

sequence of sets of actions A1, . . . , Am such that:
• for each 1 ≤ i ≤ m we have that Ai ⊆

⋃
j∈X Aj

• (D, proj(I, X)) |= necessarily ϕ after A1, . . . , Am (i.e., the objective will be
reached irrespective of the initial configuration of the other agents)

Reasoning about Multi-agent Domains Using Action Language C 57

Capability query with interference: The final version of capability query takes into
account the possible interference from other agents in the system. Intuitively, the query
with interference, denoted by cani X do ϕ, implies that the agents X will be able to
accomplish X in spite of other actions performed by the other agents.

The semantics is as follows: (D, I) |= cani X do ϕ if there is a sequence of sets of
actions A1, . . . , Am such that:
• for each 1 ≤ i ≤ m we have that Ai ⊆

⋃
j∈X Aj

• for each sequence of sets of actions B1, . . . , Bm, where
⋃m

j=1 Bj ⊆ ⋃
j /∈X Aj , we

have that (D, I) |= necessarily ϕ after (A1 ∪B1), . . . , (Am ∪Bm).

6.2 Inferring Properties of the Theory

The form of queries explored above allows us to investigate some basic properties of a
multi-agent action domain.

Agent Redundancy: agent redundancy is a property of (D, I) which indicates the
ability to remove an agent to accomplish a goal. Formally, agent i is redundant w.r.t. a
state formula ϕ and an initial state I if (D, I) |= can X \ {i} do ϕ. The “level” of
necessity can be refined, by adopting different levels of can (e.g., cann

¬k implies that
the knowledge of agent i is not required); it is also possible to strengthen it by enabling
the condition to be satisfied for any I.

Agent Necessity: agent necessity is symmetrical to redundancy—it denotes the inabil-
ity to accomplish a property ϕ if an agent is excluded. Agent i is necessary w.r.t. ϕ and
(D, I) if for all sequences of sets of actions A1, . . . , Am, such that for all 1 ≤ j ≤ m
Aj ∩Ai = ∅, we have that it is not the case that

(D, I) |= necessarily ϕ after A1, . . . , Am.

We can also define different degrees of necessity, depending on whether the knowledge
of i is available (or it should be removed from I) and whether i can interfere.

6.3 Compositionality

The formalization of multi-agent systems in C enables exploring the effects of com-
posing domains; this is an important property, that allows us to model dynamic MAS
systems (e.g., where new agents can join an existing coalition).

Let D1, D2 be two domains and let us indicate with 〈F1
i ,A1

i 〉i∈AG1 and
〈F2

i ,A2
i 〉i∈AG2 the agent signatures of D1 and D2. We assume that all actions sets

are disjoint, while we allow (
⋃

i∈AG1
F1

i) ∩ (
⋃

i∈AG2
F2

i) �= ∅.
We define the two instances (D1, I1) and (D2, I2) to be composable w.r.t. a state

formula ϕ if (D1, I1) |= can AG1 do ϕ or (D2, I2) |= can AG2 do ϕ implies

(D1 ∪D2, I1 ∪ I2) |= can AG1 ∪AG2 do ϕ

Two instances are composable if they are composable w.r.t. all formulae ϕ. Domains
D1, D2 are composable if all the instances (D1, I1) and (D2, I2) are composable.

58 C. Baral, T.C. Son, and E. Pontelli

7 Reasoning with Agent Knowledge

In this section, we will consider some examples from [12,30,18] which address another
aspect of modeling MAS, i.e., the exchange of knowledge between agents and the rea-
soning in presence of incomplete knowledge. The examples illustrate the limitation of
C as a language for multi-agent domains and the inadequacy of modeling MAS from
the perspective of an omniscient modeler.

7.1 Heaven and Hell Domain: The Modeler’s Perspective

This example has been drawn from [30], where it is used to motivate the introduction of
decentralized POMDP and its use in multi-agent planning. The following formalization
does not consider the rewards obtained by the agents after the execution of a particular
plan.

In this domain, there are two agents 1 and 2, a priest p, and three rooms r1, r2, r3.
Each of the two rooms r2 and r3 is either heaven or hell. If r2 is heaven then r3 is
hell and vice versa. The priest has the information where heaven/hell is located. The
agents 1 and 2 do not know where heaven/hell is; but, by visiting the priest, they can
receive the information that tells them where heaven is. 1 and 2 can also exchange their
knowledge about the location of heaven. 1 and 2 want to meet in heaven.

The signatures for the three agents are as follows (k, h ∈ {1, 2, 3}):

F1 = {heaven2
1, heaven3

1, atk
1} A1 = {m1(k, h), ask2

1, askp
1}

F2 = {heaven2
2, heaven3

2, atk
2} A2 = {m2(k, h), ask1

2, askp
2}

Fp = {heaven2
p, heaven3

p} Ap = ∅

Intuitively, heavenj
i denotes that i knows that heaven is in the room j and atji denotes

that i is at the room j. askj
i is an action whose execution will allow i to know where

heaven is if j knows where heaven is. On the other hand,mi(k, h) encodes the action
of moving i from the room k to the room h.

Observe that the fact that i does not know the location of heaven is encoded by the
formula ¬heaven2

i ∧ ¬heaven3
i .

The domain specification Dhh contains the following laws:

caused heavenj
1 if heavenj

x after askx
1 (j ∈ {2, 3}, x ∈ {2, p})

caused heavenj
2 if heavenj

x after askx
2 (j ∈ {2, 3}, x ∈ {1, p})

caused atji if atki after mi(k, j) (i ∈ {1, 2, p}, j, k ∈ {1, 2, 3})
caused ¬atji if atki (i ∈ {1, 2, p}, j, k ∈ {1, 2, 3}, j �= k)
caused ¬heaven2

i if heaven3
i (i ∈ {1, 2, p}, j ∈ {2, 3})

caused ¬heaven3
i if heaven2

i (i ∈ {1, 2, p}, j ∈ {2, 3})

The first two laws indicate that if 1 (or 2) asks 2 or p (or 1 or p) for the location of
heaven, then 1 (or 2) will know where heaven is if 2/p (or 1/p) has this information.
The third law encodes the effect of moving between rooms by the agents. The fourth
law represents the static law indicating that one person can be at one place at a time.

Reasoning about Multi-agent Domains Using Action Language C 59

Let us consider an instance that has initial state described by I5 (j ∈ {2, 3}):

initially at11 initially at22 initially heaven2
p

initially ¬heavenj
1 initially ¬heavenj

2

We can show that

(Dhh, I5) |= necessarily at21 ∧ at22 after {askp
1}, {m1(1, 2)}

7.2 Heaven and Hell: The Agent’s Perspective

The previous encoding of the domain has been developed considering the perspective of
a domain modeler, who has complete knowledge about the world and all the agents. This
perspective is reasonable in the domains encountered in the previous sections. Never-
theless, this perspective makes a difference when the behavior of one agent depends on
knowledge that is not immediately available, e.g., agent 1 does not know where heaven
is and needs to acquire this information through knowledge exchanges with other agents.
The model developed in the previous subsection is adequate for certain reasoning tasks
(e.g., plan validation) but it is weak when it comes to tasks like planning.

An alternative model can be devised by looking at the problem from the perspective
of each individual agent (not from a central modeler). This can be captured through an
adaptation of the notion of sensing actions discussed in [25,26]. Intuitively, a sensing
action allows for an agent to establish the truth value of unknown fluents. A sensing
action a can be specified by laws of the form

determines l1, . . . , lk if F after a

where l1, . . . , lk are fluent literals, F is a state formula, and a is a sensing action. Intu-
itively, a can be executed only when F is true and after its execution, one of l1, . . . , lk
is set to true and all the others are set to false. The semantics of C extended with sens-
ing actions can be defined in a similar fashion as in [26] and is omitted here for lack
of space. It suffices to say that the semantics of the language should now account for
different possibilities of the multi-agent systems due to incomplete information of the
individual agents.

The signatures for the three agents are as follows (k, h ∈ {1, 2, 3}):

F1 = {heaven2
1, heaven3

1, ok
2
1 , okp

1 , atk
1} A1 = {m1(k, h), ask2

1, askp
1 , know?2

1, know?p
1}

F2 = {heaven2
2, heaven3

2, ok
1
2 , okp

2 , atk
2} A2 = {m2(k, h), ask1

2, askp
2 , know?1

2, know?p
2}

Fp = {heaven2
p, heaven3

p} Ap = ∅
Intuitively, the fluent okx

y denotes the fact that agent y knows that agent x knows the lo-
cation of heaven. The initial state for 1 is given by I1

5 = { initially at11, initially okp
1}.

Similarly, the initial state for 2 is I2
5 = { initially at22, initially okp

2}, and for p is
Ip
5 = { initially heaven2

p}. The domain specification D1 for 1 include the last four
statements of Dhh and the following sensing action specifications:

determines heaven2
1, heaven

3
1 if okx

1 after askx
1 (x ∈ {2, p})

determines okx
1 ,¬okx

1 after know?x
1 (x ∈ {2, p})

60 C. Baral, T.C. Son, and E. Pontelli

The domain specification D2 for 2 is similar. The domain specification Dp consists of
only the last two static laws of Dhh. Let D′

hh = D1 ∪D2 ∪Dp and I ′5 = I1
5 ∪ I2

5 ∪ Ip
5 ,

we can show that

(D′
hh, I

′
5) |= necessarily heaven2

1 ∧ heaven2
2 after {askp

1}, {know?1
2}, {ask1

2}.

7.3 Beyond C with Sensing Actions

This subsection discusses an aspect of modeling MAS that cannot be easily dealt with
in C, even with sensing actions, i.e., representing and reasoning about knowledge of
agents. In Section 7.1, we use two different fluents to model the knowledge of an agent
about properties of the world, similar to the approach in [26]. This approach is adequate
for several situations. Nevertheless, the same approach could become quite cumbersome
if complex reasoning about knowledge of other agents is involved.

Let us consider the well known Muddy Children problem [12]. Two children are
playing outside the house. Their father comes and tells them that at least one of them
has mud on his/her forehead. He then repeatedly asks “do you know whether your
forehead is muddy or not?”. The first time, both answer “no” and the second time, both
say ’yes’. It is known that the father and the children can see and hear each other.

The representation of this domain in C is possible, but it would require a large number
of fluents (that describe the knowledge of each child, the knowledge of each child about
the other child, etc.) as well as a formalization of the axioms necessary to express how
knowledge should be manipulated, similar to the fluents okj

i in the previous example.
A more effective approach is to introduce explicit knowledge operators (with manip-

ulation axioms implicit in their semantics—e.g., as operators in a S5 modal logic) and
use them to describe agents state. Let us consider a set of modal operators Ki, one for
each agent. A formula such as Kiϕ denotes that agent i knows property ϕ. Knowledge
operators can be nested; in particular, K∗

Gψ denotes all formulae with arbitrary nesting
of KG operators (G being a set of agents).

In our example, let us denote the children with 1 and 2, mi as a fluent to denote
whether i is muddy or not. The initial state of the world can then be described as follows:

initially m1 ∧m2 (1)

initially ¬Kimi ∧ ¬Ki¬mi (2)

initially K∗(m1 ∨m2) (3)

initially K∗{1,2}\{i}mi (4)

initially K∗(K∗{1,2}\{i}mi ∨K∗{1,2}\{i}¬mi) (5)

where i ∈ {1, 2}. (1) states that all the children are muddy. (2) says that i does not
know whether he/she is muddy. (3) encodes the fact that the children share the common
knowledge that at least one of them is muddy. (4) captures the fact that each child can
see the other child. Finally, (5) represents the common knowledge that each child knows
the muddy status of the other one.

The actions used in this domain would enable agents to gain knowledge; e.g., the
’no’ answer of child 1 allows child 2 to learn K1(¬K1m1 ∧ ¬K1¬m1). This, together

Reasoning about Multi-agent Domains Using Action Language C 61

with the initial knowledge, would be sufficient for 2 to conclude K2m2. A discussion
of how these inferences occur can be found, for example, in [12].

8 Discussion and Conclusion

In this paper, we presented an investigation of the use of the C action language to model
MAS domains. C, as several other action languages, is interesting as it provides well
studied foundations for knowledge representation and for performing several types of
reasoning tasks. Furthermore, the literature provides a rich infrastructure for the imple-
mentation of action languages (e.g., through translational techniques [27]). The results
presented in this paper identify several interesting features that are necessary for mod-
eling MAS, and they show how many of these features can be encoded in C—either
directly or with simple extensions of the action language. We also report challenging
domains for C.

There have been many agent programming languages such as the BDI agent pro-
gramming AgentSpeak [23], (as implemented in Jason [4]), JADE [3] (and its extension
Jadex [7]), ConGolog [10], IMPACT [1], 3APL [9], GOAL [19]. A good comparison
of many of these languages can be found in [21].

We would like to stress that the paper does not introduce a new agent “program-
ming language”, in the style of languages mentioned above. Rather, we bring an action
language perspective, where the concern is on succinctly and naturally specifying the
transition between worlds due to actions. Thus our focus is how to extend actions lan-
guages to the multi-agent domain in a way to capture various aspects of multi-agent
reasoning. The issues of implementation and integration in a distributed environment
are interesting, but outside of the scope of this paper. To draw an analogy, what we
propose in this paper is analogous to the role of situation calculus or PDDL in the
description of single-agent domains, which describe the domains without providing im-
plementation constructs for composing programs, as in Golog/ConGolog or GOAL. As
such, our proposal could provide the underlying representation formalism for the devel-
opment of an agent programming language; on the other hand, it could be directly used
as input to a reasoning system, e.g., a planner [8]. Our emphasis in the representation
is exclusively on the description of effects of actions; this distinguishes our approach
from other logic-based formalisms, such as those built on MetateM [13].

Although our proposal is not an agent programming language, it is still interesting to
analyze it according to the twelve dimensions discussed in [11] and used in [21];

1. Purpose of use: the language is designed for formalization and verification of MAS.
2. Time: the language does not have explicit references to time.
3. Sensing: the language supports sensing actions.
4. Concurrency: our proposed language enables the description of concurrent and in-

teracting actions.
5. Nondeterminism: the language naturally supports nondeterminism.
6. Agent knowledge: our language allows for the description of agents with incomplete

knowledge and can be extended to handle uncertainty.
7. Communication: this criteria is not applicable to our language.

62 C. Baral, T.C. Son, and E. Pontelli

8. Team working: the language could be used for describing interaction between
agents including coordination [28] and negotiation [29].

9. Heterogeneity and knowledge sharing: the language does not force the agents to
use the same ontology.

10. Programming style: this criteria is not applicable to our language since it is not an
agent programming language.

11. Modularity: our language does not provide any explicit mechanism for modulariz-
ing the knowledge bases.

12. Semantics: our proposal has a clear defined semantics, which is based on the tran-
sition system between states.

The natural next steps in this line of work consist of (1) exploring the necessary ex-
tensions required for a more natural representation and reasoning about knowledge of
agents in MAS domains (see Sect. 7); (2) adapting the more advanced forms of reason-
ing and implementation proposed for C to the case of MAS domains; (3) investigating
the use of the proposed extension of C in formalizing distributed systems.

Acknowledgement. The last two authors are partially supported by the NSF grants
IIS-0812267, CBET-0754525, CNS-0220590, and CREST-0420407.

References

1. Subrahmanian, V.S., Bonatti, P., Dix, J., Eiter, T., Kraus, S., Ozcan, F., Ross, R.: Heteroge-
neous Agent Systems: Theory and Implementation. MIT Press, Cambridge (2000)

2. Baker, A.: A simple solution to the Yale Shooting Problem. In: KRR, pp. 11–20 (1989)
3. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with JADE.

J. Wiley & Sons, Chichester (2007)
4. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-agent Systems in AgentS-

peak using Jason. J. Wiley and Sons, Chichester (2007)
5. Boella, G., van der Torre, L.: Enforceable social laws. In: AAMAS 2005, pp. 682–689. ACM,

New York (2005)
6. Boutilier, C., Brafman, R.I.: Partial-order planning with concurrent interacting actions. J.

Artif. Intell. Res (JAIR) 14, 105–136 (2001)
7. Braubach, L., Pokahr, A., Lamersdorf, W.: Jadex: a BDI-Agent System Combining Middle-

ware and Reasoning. In: Software Agent-based Applications, Platforms and Development
Kits. Springer, Heidelberg (2005)

8. Brenner, M.: Planning for Multi-agent Environments: From Individual Perceptions to Coor-
dinated Execution. In: Work. on Multi-agent Planning and Scheduling, ICAPS, pp. 80–88
(2005)

9. Dastani, M., Dignum, F., Meyer, J.J.: 3APL: A Programming Language for Cognitive
Agents. ERCIM News, European Research Consortium for Informatics and Mathematics,
Special issue on Cognitive Systems (53) (2003)

10. De Giacomo, G., Lespèrance, Y., Levesque, H.J.: ConGolog, a concurrent programming lan-
guage based on the situation calculus. Artificial Intelligence 121(1–2), 109–169 (2000)

11. Jennings, N., Sycara, K., Wooldridge, M.: A roadmap of agent research and development.
Autonomous Agents and Multi-Agent Systems 1, 7–38 (1998)

12. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning about Knowledge. MIT Press,
Cambridge (1995)

Reasoning about Multi-agent Domains Using Action Language C 63

13. Fisher, M.: A survey of Concurrent METATEM – the language and its applications. In: Gab-
bay, D.M., Ohlbach, H.J. (eds.) ICTL 1994. LNCS (LNAI), vol. 827, pp. 480–505. Springer,
Heidelberg (1994)

14. Gelfond, M., Lifschitz, V.: Representing actions and change by logic programs. Journal of
Logic Programming 17(2,3,4), 301–323 (1993)

15. Gelfond, M., Lifschitz, V.: Action languages. ETAI 3(6) (1998)
16. Gerbrandy, J.: Logics of propositional control. In: AAMAS 2006, pp. 193–200. ACM, New

York (2006)
17. Hanks, S., McDermott, D.: Nonmonotonic logic and temporal projection. Artificial Intelli-

gence 33(3), 379–412 (1987)
18. Herzig, A., Troquard, N.: Knowing how to play: uniform choices in logics of agency. In:

AAMAS 2006, pp. 209–216 (2006)
19. de Boer, F.S., Hindriks, K.V., van der Hoek, W., Ch, J.-J.: Meyer. A verification framework

for agent programming with declarative goals. Journal of Applied Logic 5, 277–302 (2005)
20. Kautz, H.: The logic of persistence. In: Proceedings of AAAI 1986, pp. 401–405. AAAI

Press, Menlo Park (1986)
21. Mascardi, V., Martelli, M., Sterling, L.: Logic-Based Specification Languages for Intelligent

Software Agents. Theory and Practice of Logic Programming 4(4), 495–537
22. McCarthy, J., Hayes, P.: Some philosophical problems from the standpoint of artificial intel-

ligence. Machine Intelligence 4, 463–502 (1969)
23. Rao, A.S.: AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Language. In:

Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp. 42–55. Springer,
Heidelberg (1996)

24. Sauro, L., Gerbrandy, J., van der Hoek, W., Wooldridge, M.: Reasoning about action and
cooperation. In: AAMAS 2006, pp. 185–192. ACM Press, New York (2006)

25. Scherl, R., Levesque, H.: Knowledge, action, and the frame problem. Artificial Intelli-
gence 144(1-2) (2003)

26. Son, T.C., Baral, C.: Formalizing sensing actions - a transition function based approach.
Artificial Intelligence 125(1-2), 19–91 (2001)

27. Son, T.C., Baral, C., Tran, N., McIlraith, S.: Domain-dependent knowledge in answer set
planning. ACM Trans. Comput. Logic 7(4), 613–657 (2006)

28. Son, T.C., Sakama, C.: Reasoning and Planning with Cooperative Actions for Multiagents
Using Answer Set Programming. In: Baldoni, M., Bentahar, J., van Riemsdijk, M.B., Lloyd,
J. (eds.) DALT 2009. LNCS, vol. 5948, pp. 208–227. Springer, Heidelberg (2010)

29. Son, T.C., Pontelli, E., Sakama, C.: Logic Programming for Multiagent Planning with Nego-
tiation. In: Hill, P.M., Warren, D.S. (eds.) Logic Programming. LNCS, vol. 5649, pp. 99–114.
Springer, Heidelberg (2009)

30. Spaan, M., Gordon, G.J., Vlassis, N.A.: Decentralized planning under uncertainty for teams
of communicating agents. In: AAMAS 2006, pp. 249–256 (2006)

31. van der Hoek, W., Jamroga, W., Wooldridge, M.: A logic for strategic reasoning, pp. 157–
164. ACM, New York (2005)

32. van Ditmarsch, H.P., van der Hoek, W., Kooi, B.P.: Concurrent Dynamic Epistemic Logic for
MAS. In: AAMAS (2003)

	Reasoning about Multi-agent Domains Using Action Language C: A Preliminary Study
	Introduction and Motivation
	Action Language C
	C for Multi-agent Domains
	The Prison Domain
	The Credit Rating Domain

	Adding Priority between Actions
	The Rocket Domain

	Adding Reward Strategies
	Reasoning and Properties
	Capability Queries
	Inferring Properties of the Theory
	Compositionality

	Reasoning with Agent Knowledge
	Heaven and Hell Domain: The Modeler's Perspective
	Heaven and Hell: The Agent's Perspective
	Beyond C with Sensing Actions

	Discussion and Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

