
“Add Another Blue Stack of the Same Height!”:
Plan Failure Analysis and Interactive Planning Through

Natural Language Communication

Chitta Baral1 and Tran Cao Son2

1Department of Computer Science and Engineering, Arizona State University, Tempe, AZ
2Department of Computer Science, New Mexico State University, Las Cruces, NM

Abstract. We discuss a challenge in developing intelligent agents (robots) that
can collaborate with human in problem solving. Specifically, we consider situa-
tions in which a robot must use natural language in communicating with human
and responding to the human’s communication appropriately. In the process, we
identify three main tasks. The first task requires the development of planners
capable of dealing with descriptive goals. The second task, called plan failure
analysis, demands the ability to analyze and determine the reason(s) why the
planning system does not success. The third task focuses on the ability to under-
stand communications via natural language. We show how the first two tasks can
be accomplished in answer set programming and discuss how the third task could
be solved using the available tools and answer set programming and identify the
challenges that need to be addressed.

1 Introduction
Human-Robot interaction is an important field where humans and robots collaborate to
achieve tasks. Such interaction is needed, for example, in search and rescue scenarios
where the human may direct the robot to do certain tasks and at times the robot may
have to make its own plan. Although there has been many works on this topic, there
has not been much research on interactive planning where the human and the robot col-
laborate in making plans. For such interactive planning, the human may communicate
to the robot about some goals and the robot may make the plan, or when it is unable it
may explain why it is unable and the human may make further suggestions to overcome
the robot’s problem and this interaction may continue until a plan is made and the robot
executes it. The communication between the robot and the human happens in natural
language as ordinary Search and Rescue officials may not be able to master the Robot’s
formal language to instruct it in situations of duress. Following are a few abstract ex-
amples of such an interactive planning using natural language communication.

Imagine a robot that can pick up cubical named blocks (each block is labeled with
one letter on all sides) and stack them atop of each other to create towers of blocks. The
robot can recognize the letters written on the blocks. Furthermore, a user can commu-
nicate with the robot via a screen. When the user types “LPNMR” on the screen, the
robot will pick up the blocks with letters ‘L’, ‘P’, ‘N’, ‘M’, and ‘R’, and creates a stack
LPNMR1 (with L on P, P on N, etc.).

1 One of such robot was on display at the Tech Museum of Innovation, San Jose, CA in 2000.



It is easy to see that when the string LPNMR is communicated to the robot and the
robot understands that it needs to create a tower using letters specified in the string, i.e.,
it needs to create a plan for the following properties2 on(P,L), on(N,P), on(M,N),
on(R,M), and ontable(R). In other words, the robot understands that it needs to (a)
find a solution of a planning problem; and then (b) execute the plan. Observe that beside
the ability of creating and executing a plan, the key for the success of the robot is the
ability to understand the goal of the planning problem specified by the string. In this
case, this task is simple as the translation of a string to the planning goal is rather
straightforward.

Imagine now that the robot can recognize also colors and the blocks come with
color. The following scenario, discussed in [7], is significantly more challenging:

Fig. 1: A Simplified Version of The Blocks World Example from the BAA

Consider the block world domain in Figure 1. The robot has its own blocks and the
human has some blocks as well. The two share a table and some other blocks as well.
Suppose that the human communicates to the robot the sentence “Add another blue
stack of the same height!.” Even if we assume that the robot is able to recognize the
color of the blocks, create, and execute plans for constructions of stack of blocks, such
a communication presents several challenges to a robot. Specifically, it requires that the
robot is capable of understanding natural language, i.e., it requires that the robot is able
to identify that

– the human refers to stacks of only blue blocks (blue stack);
– the human refers to the height of a stack as the number of blocks on the stack;
– there is a blue stack of the height 2 on the table; and
– it should use its two blue blocks to build a new stack of two blue blocks.

It is easy to see that among the above points, the first three are clearly related to the
research in natural language processing (NLP) and the last one to planning, i.e., an
integration of NLP and planning is needed for solving this problem. Ideally, given the
configuration in Figure 1 and the reasoning above, the robot should devise a plan to
create a new stack using its two blue blocks and execute the plan. On the other hand, if
the robot has only one blue block, the robot should realize that it cannot satisfy the goal

2 on(X,Y) states that Y is on X.



indicated by the human and it needs to respond to the human differently, for example, by
informing the human that it does not have enough blue blocks or by asking the human
for permission to use his blue blocks.

As planning in various settings has been considered in answer set programming
(e.g., [8, 12, 18, 19]) and there have been attempts to translate NLP into ASP (e.g.,
[1, 2, 15]), we would like to explore the use of ASP and related tools in solving this
type of problems. We demonstrate that ASP can be a viable option for the building of
such a system. Specifically, we discuss components and methodologies that are already
available and can be used. We identify challenges that lie ahead and discuss possible
solutions.

The main contributions of the paper is combining natural language processing (se-
mantic parsing), and use of linguistic knowledge with ASP based reasoning to address
human-computer interactive planning. Such combination is needed in building inte-
grated AI systems3. In addition we give an initial formulation of plan failure analysis
and show its role in human-computer interactive planning.

2 Background: Answer Set Programming (ASP)
A logic program Π is a set of rules of the form

c1 | . . . | ck ← a1, . . . , am, not am+1, . . . , not an (1)

where 0 ≤ m ≤ n, 0 ≤ k, each ai or cj is a literal of a first order language and not
represents negation-as-failure (naf). For a literal a, not a is called a naf-literal. For a
rule of the form (1), the left and right hand sides of the rule are called the head and the
body, respectively. Both the head and the body can be empty. When the head is empty,
the rule is called a constraint. When the body is empty, the rule is called a fact.

For a ground instance r of a rule of the form (1), head(r) denotes the set {c1, . . . , ck};
and pos(r) and neg(r) denote {a1, . . . , am} and {am+1, . . . , an}, respectively.

Consider a set of ground literals X . X is consistent if there exists no atom a such
that both a and ¬a belong to X . The body of a ground rule r of the form (1) is satisfied
byX if neg(r)∩X = ∅ and pos(r) ⊆ X . A ground rule of the form (1) with nonempty
head is satisfied by X if either its body is not satisfied by X or head(r) ∩ X 6= ∅. In
particular, a constraint is satisfied by X if its body is not satisfied by X .

For a consistent set of ground literals S and a ground program Π , the reduct of Π
w.r.t. S, denoted by ΠS , is the program obtained from Π by deleting (i) each rule that
has a naf-literal not a in its body with a ∈ S, and (ii) all naf-literals in the bodies of the
remaining rules.

S is an answer set of a ground program4 Π [11] if it satisfies the following con-
ditions: (i) If Π does not contain any naf-literal (i.e., m = n in every rule of Π) then
S is a minimal consistent set of literals that satisfies all the rules in Π; and (ii) If Π
contains some naf-literal (m < n in some rule of Π), then S is an answer set of ΠS .
Note that ΠS does not contain naf-literals, and thus its answer set is defined in case (i).

3 Similar example of such combination is the work [15] where NLP is combined with ASP based
reasoning to address a class of Winograd Schema Challenge problems.

4 A program with variables is viewed as a collection of all ground instances of its rules.



A program Π is said to be consistent if it has a consistent answer set. Otherwise, it is
inconsistent.

To increase the expressiveness of logic programming and simplify its use in appli-
cations, logic programming has been extended with several constructs such as

– Weight constraint atom (e.g., [13]): atoms of the form

l [a1 = w1, . . . , an = wn, not bn+1 = wn+1, . . . , bn+k = wn+k] u (2)

where ai and bj are literals and l, u, and wj’s are integers, l ≤ u.
– Aggregates atoms (e.g, [9, 14, 16]): Atoms of the form

f(S) op v (3)

where S is a set-literal defined in , f ∈ {SUM,COUNT,MAX,MIN}, op ∈ {>,<
,≥,≤,=}, and v is a number; and, a set-literal is of the form (i) {X | p(W )}
where X is a vector of variables, W is vector of parameters and constants such
that each variable in X also occurs in W ; or (ii) {{X | Y .p(W )}} where X and
Y are vectors of variables, W is vector of parameters and constants such that each
variable in X or Y also occurs in W .

The semantics of logic programs with such atoms has been defined (e.g., [9, 13, 14,
16]. Standard syntax for these types of atoms has been proposed and adopted in most
state-of-the-art ASP-solvers such as CLASP [10] and DLV [5].

3 Planning in The Blocks World Domain
In this section, we present an ASP encoding of the block world domain that will be
used throughout the paper. This section can also be seen as a review of answer set
planning. We assume that blocks are specified by the predicate block(.). We start with
writing the basic actions in the blocks word domain. For simplicity, we only consider
two actions, one says that the robot can put down a block onto the table and the other
on top of a block.

action(putontable(X)) :- block(X).
action(put(X,Y)) :- block(X), block(Y).

We describe properties of the world by fluents and encoded using predicates—
similar to the use of predicates in Situation Calculus—whose last parameter represents
the situation term or an time step in ASP. In particular, we use two fluents on(X,Y) and
ontable(X) which denote Y is on X or X is on the table, respectively. The time(.)

atom represents a time step whose value ranges from 0 to nwhere n is a constant denot-
ing the maximal number of steps that we are interested in. We now define some derived
fluents such as when a block is clear and when it is not; and when a block is above
another block.

occupied(X,T) :- time(T),block(X),block(Y),X!=Y,on(X, Y, T).
clear(X,T) :- time(T),block(X),not occupied(X, T).
above(X,Y,T) :- time(T),on(X,Y,T).
above(X,Y,T) :- time(T),on(Z,Y,T),above(X,Z,T).



We define the executability conditions of actions. The next lines below specify when
the action putontable(X) and the action put(X,Y) are executable, respectively.
More specifically, the first two lines say that putontable(X) is executable when it
is an action and the block is clear; the last two lines state that put(X,Y) is executable
when both X and Y are clear.

executable(putontable(X),T):-time(T),
action(putontable(X)),clear(X,T).

executable(put(X,Y),T):-time(T),
action(put(X,Y)),clear(X,T),clear(Y,T).

We now specify the effect of the actions on the two fluents on and ontable. The
first line below says that putting Y on X causes on(X,Y) to be true in the next time step.
The next two lines account for the inertial effects of actions, i.e, if Y is on X and Y was
not moving somewhere or on to the table then Y will still be on X; likewise, X will be on
the table if it is put on the table (line 4) or it was on the table and it is not moved on top
of another block.

on(X,Y,T+1):-time(T),occ(put(X,Y),T).
on(X,Y,T+1):-time(T),on(X,Y,T),#count{Z:occ(put(Z,Y),T)}==0.
on(X,Y,T+1):-time(T),on(X,Y,T),not occ(putontable(Y),T).
ontable(X,T+1):-time(T),occ(putontable(X),T).
ontable(X,T+1):-time(T),ontable(X,T),#count{Z:occ(put(Z,X),T)}==0.

The above code, denoted with Db, encodes a set of actions of a domain, in this
case the actions putontable and put in the block world domain. Db can be used
for planning, hypothetical reasoning, and diagnosis. Formally, a planning problem is
specified by a triple (D, I,O) where D is the set of actions, I specifies the initial state
of the world, and O is a fluent formula. Observe that each these components can be
given by a set of logic programming rules as shown above, i.e., Db encodes the set of
actions. To use Db in planning, we need the following components:

– Action generation rules: To find a linear plan, we need to specify that at each time,
exactly one action occurs. Furthermore, we also need to make sure that an action
can occur when it is executable. This can be encoded as follows.

1 {occ(A, T) : action(A)} 1:- time(T), T < n.
:- occ(A, T), not executable(A, T).

– Initial state specification: The initial state will be specified by a set of ground atoms
of the form block(x), ontable(z), and on(x,y) that describes the initial con-
figuration of the block world. An encoding of the configuration for the block world
domain in Figure 1 is shown in the next section.

– Goal state specification: The goal state is specified by a set of rules that defines
when a configuration is achieved at a certain step, say n. For example, to create the
tower ‘LPNMR’, a goal is specified by the following rules:

satisfied_goal(n) :- on(‘P’,‘L’,n),on(‘N’,‘P’,n),
on(‘M’,‘N’,n),on(‘R’,‘M’,n),
ontable(‘R’,n).

:- not satisfied_goal(n).



Proof of correctness of logic programming encoding of planning has been discussed
extensive in the literature (see, e.g., [8, 12, 18, 19]).

4 Add Another Blue Stack of the Same Height!: How To Respond?
In this section, we discuss possible responses to the communication from the human
“Add another blue stack of the same height!” to the robot. We start with the planning
problem implied by this communication.

4.1 What Are We Planning For? and How Do We Plan For It?
Assume that the robot can recognize that it needs to create and execute a plan in re-
sponding to the communication. The question is then what is the goal of the planning
problem. Instead of specifying a formula that should be satisfied in the goal state, the
sentence describes a desirable state. This desirable state has two properties: (i) it needs
to have the second blue stack; and (ii) the new blue stack has the same height as the ex-
isting blue stack. In other words, the goal is descriptive. We will call a planning problem
whose goal is descriptive as a descriptive planning problem. Intuitively, a descriptive
planning problem is given by a set of actionsD, an initial state I , and a formula ϕ about
the trajectory of the plan. For example, the formula describing the desirable state com-
municated to the robot relates the goal state and the initial state. Such a formula can be
represented in the goal language proposed in [17]. How to translate the given sentence
to a goal is a challenging problem that we will attempt to address in the next section.

In the rest of this subsection, we will present an encoding of the planning problem
for “Add another blue stack of the same height!.” First, we need to represent the goal.
Considering that a stack can be represented by the block at the top, the goal for the
problem can be represented by a set of goal conditions in ASP as follows.

goal_cond(S, is, stack):- block(S).
goal_cond(S, color, blue):- block(S).
goal_cond(S, height, same):- block(S).
goal_cond(S, type, another):- block(S).

The first rule states that the goal is to build a stack represented by S. The second
rule indicates the color of the stack. The third rule states that the stack needs to have the
same height. The fourth rule requires that this is another stack. Note that these rules are
still vague in the sense that they contain unspecified concepts, e.g., “what is a stack?,”
“what does it mean to be the same height?,” etc.

The problem can be solved by adding rules to the block program described in the
last section to define when a goal condition is satisfied. Afterwards, we need to make
sure that all goal conditions are satisfied. As we only need to obtain one new stack, the
following rules do that:

not_satisfied_goal(S,T) :- block(S),goal_cond(X,Y,Z),
not satisfied(X,Y,Z,T).

satisfied_goal(S, T) :- not not_satisfied_goal(T).
:- X = #count {S : satisfied_goal(S, n)}, X ==0.

The first two rules define blocks that are considered to satisfy a goal condition. The
last rule ensures that at least one of the blocks satisfies all four goal conditions at the
time step n.



We now need rules defining when different kinds of goal conditions are satisfied.
For simplicity, let us consider stacks to have at least one block. In that case we have the
following rule defining when a block is a stack.

satisfied(S,is,stack,T):-block(S),time(T),clear(S,T).

We next define that the color of a stack at time point T is blue if all blocks in that
stack at that time point are blue. The next rule simply says that a stack is blue if its top
is blue and all blocks below the top are also blue.

satisfied(S,color,blue,T):-block(S),time(T),
color(S,blue),clear(S,T),
#count{U:above(U,S,T), not color(U,blue)}==0.

Defining satisfied(S,height,same,T) is less straightforward. First, we define
a predicate same height(S,U,T) meaning that in the context of time step T, S and U

have the same height (or two stacks represented by S and U have the same height). We
then use this predicate to define satisfied(S,height,same,T) as follows. Note
that the definition of the predicate satisfied(S,height,same,T) also enforces the
constraint that the blue stack that is compared to the stack represented by S does not
change.

same_height(S, U, T) :- block(S), block(U), S!= U,
ontable(S, T), ontable(U, T).

same_height(S, U, T) :- block(S), block(U), S!= U,
on(S1, S, T), on(U1, U, T),
same_height(S1, U1, T).

satisfied(S,height,same,T):- satisfied(S,is,stack,T),
satisfied(U,is,stack,T),
satisfied(U,color,blue,T),
S != U, unchanged(U, T),
clear(S, T), clear(U, T),
same_height(S, U, T).

Similarly, defining satisfied(S, type, another,T) is also not straightfor-
ward. Intuitively, it means that there is another stack U different from S and U has not
changed over time. We define it using a new predicate unchanged(U,T) which means
that the stack with U at the top has not changed over time (from step 0 to step T).

satisfied(S,type,another,T):-block(U),unchanged(U,T),
same_height(S,U,T).

unchanged(U,T):- time(T),block(U),not changed(U,T).
changed(U,T) :- time(T),T>0,block(U),

above(V,U,0), not above(V,U,T).
changed(U,T) :- time(T), T > 0, block(U),

ontable(U,0), not ontable(U,T).
changed(U,T) :- time(T), T > 0, block(U),

not ontable(U,0), ontable(U,T).
changed(U,T) :- time(T), T > 0, block(U),

not ontable(U,0), on(X,U,T).



Let us denote with Gb the collection of rules developed in this section. To compute
a plan, we will only need to add the initial state and the rules described above for
enforcing that all goal conditions must be satisfied. Initializing the initial situation as
0 (Figure 1), the description of who has which blocks and what is on the table can be
expressed through the following facts, denoted with Ib:

has(human,bl1,0). color(bl1,red). has(human,bl2,0). color(bl2,brown).
has(human,bl3,0). color(bl3,brown).has(human,bl4,0). color(bl4,green).
has(human,bl5,0). color(bl5,blue). has(robot,bl6,0). color(bl6,red).
has(robot,bl7,0). color(bl7,red). has(robot,bl8,0). color(bl8,blue).
has(robot,bl9,0). color(bl9,blue). has(robot,bl10,0).color(bl10,green).
has(robot,bl11,0).color(bl11,green).ontable(bl12,0). color(bl12,red).
ontable(bl13,0). color(bl13,blue).on(bl13,bl14,0). color(bl14,blue).

It is easy to see that the programDb∪Ib∪Gb with n=2 has two answer sets, one con-
tains the atoms occ(putontable(block8),0), occ(put(block8,block9),1)

that corresponds to a possible plan putontable(block8),put(block8,block9)

for the robot; the other one corresponds to the plan putontable(block9),put(block9,block8).

4.2 What If Planning Fails?
The previous subsection presents an initial configuration in which the robot can generate
and execute a plan satisfying the request from the human. Obviously, there are several
configurations of the block world in which the planning generation phase can fail. What
should be the robot’s response? What is the ground for such response? Let us consider
one of such situations.

Assuming a different initial configuration in which the robot has only one blue
block, say block8 (or block9). Let Ibf be the new initial situation. Furthermore, we
require that the robot cannot use the block belonging to the human if it does not get the
human’s permission. In this case, the robot will not be able to add another blue stack
of the same height to the table because there is no plan that can satisfy this goal. More
specifically, it is because the robot does not have enough blue blocks for the task at
hand. This is what the robot should respond back to the human user. We next discuss a
possible way for the robot to arrive at this conclusion.

First, the encoding in the previous subsection must be extended to take into consid-
eration the requirement that the robot can only use its own blocks or the blocks on the
table in the construction of the new stack. This can be done by adding the following
rules:

available(X, T) :- time(T),block(X),has(robot,X,T).
available(X, T) :- time(T),block(X),ontable(X, T),clear(X,T).
available(X, T) :- time(T),block(X),above(Y,X,T),clear(X,T).
:-occ(putontable(X),T),not available(X,T).
:-occ(put(Y,X),T),not available(X,T).

The first three rules define the predicate availale(.,.), i.e., when a block is
available for the robot to use. The next two rules enforce the constraint that the robot
can only use blocks at its disposal in its actions. Let Dbf be Db unions with the above
rules.



It is easy to see that, for any constant n, the program Dbf ∪ Ibf ∪Gb does not have
an answer set. When the planning fails, the robot should analyze the situation and come
up with an appropriate response. A first reasonable step for the robot is to identify why
the planning fails. As it turns out, the program described in the previous subsection only
needs only minor changes to accomplish this task.

goal_cond(S,is,stack) :- block(S),ok(1).
goal_cond(S,color,blue) :- block(S),ok(2).
goal_cond(S,height,same) :- block(S),ok(3).
goal_cond(S,type,another):- block(S),ok(4).
{ok(1..4)} 4.
ngoals(X):- X = #count{I : ok(I)}.
#maximize {X : ngoals(X)}.

The above rules are self-explanatory. Let Gbf be the new goal, obtained from Gb

by replacing the rules defining goal cond(.,.,.) with the above rules. It is easy to
check that every answer set of the program Dbf ∪ Ibf ∪Gbf does not contain the atom
ok(2) which indicates that the goal condition goal cond(S,color,blue) cannot be
satisfied. As such, the robot should use the missing goal condition as a ground for its
response. However, the robot could use this information in different ways. For example,
it can tell the human that it does not have enough blue blocks or it could ask the human
for permission to use the human’s blue blocks to complete the goal. It means that the
robot needs the ability to make assumptions and reason with them. This can be defined
formally as follows.

Definition 1. A planning problem with assumptions is a tuple P = (D, I,G,AP,AF )
where (D, I,G) is a planning problem, AP is a set of actions, and AF is a set of
fluents.

We say that P needs a plan failure analysis if (D, I,G) has no solution.

Intuitively, AP is the set of actions that the robot could execute and AF is a set of
assumptions that the robot could assume. For example, for our running example, AP
could contain the logic program encoding of an action ask(blue) whose effect is that
the robot can use the blue block from the human; AF could be {has(robot,blx),
color(blx,blue)}. So, a planning problem with assumption for the robot is Pbf =
(Dbf , Ibf , Gb, {ask(blue)}, {has(robot, blx), color(blx, blue)}).

Definition 2. A plan failure analysis for a planning problem with assumptions P =
(D, I,G,AP,AF ) is a pair (A,F ) such that A ⊆ AP , F ⊆ AF , and the planning
problem (D ∪A, I ∪ F,G) is solvable.

(A,F ) is a preferred plan failure analysis if there exists no analysis (A′, F ′) such
that A′ ( A or F ′ ( F .

It is easy to see thatPbf = (Dbf , Ibf , Gb, {ask(blue)}, {has(robot, blx), color(blx, blue)})
has two preferred plan failure analyses; one, (∅, {has(robot,blx),color(blx,blue)}),
tells the robot that it does not have enough blue blocks; another one ({ask(blue)}, ∅)
tells the robot to ask for permission to use the human’s blue blocks.



To compute a preferred plan failure analysis, we can apply the same method used
in identifying a minimal set of satisfying goal conditions. We assume that for each
action act in AP , AP consists of the rules defines its effects and a declaration of the
form is ap(act). For each fluent l in AF , we assume that AF contains a declaration
is af(l) as well as the rules for describing how l changes when actions are executed.
Let Da be the following set of rules:

{action(A) : is_ap(A)}.
a_assume(A) :- action(A),is_ap(A).
{assume(L) : is_af(L)}.
L@0 :- assume(L).
nl_assume(F) :- F = #count {L : assume(L)}.
na_assume(Y) :- Y = #count {A : a_assume(A)}.
#minimize {1@1,F : nl_assume(F)}.
#minimize {1@1,A : na_assume(A)}.

The first rule says that the robot can assume any action in AP . Any action that is
assumed will be characterized by the predicate a assume(.) (the second rule). The
third rule says that the robot can assume any fluent in AF . L@0 represents the fact that
L is true at the time 0. The rest of the rules minimizes the number of actions and the
number of assumed fluents, independent from each other. We can show the following:

Proposition 1. For planning problem with assumptions is a tupleP = (D, I,G,AP,AF ),
the program D ∪ I ∪ G ∪ AP ∪ AF ∪Da returns the possible preferred plan failure
analyses of P .

5 How To Get The Goal Conditions?
We now discuss a possible approach to extracting the goal conditions from the commu-
nications and to creating natural language response for the robot. Obviously, to convert
the communication “Add another blue stack of the same height!” to the goal conditions
goal cond(S, , ), we will need to use a system with NLP capability. In this paper,
we propose to use KPARSER [15] which is a graph based semantic parser5 that has the
following salient features: (i) a well established and rich vocabulary to represent event-
entity and inter-event relations from the KM component library [4, 6] which has been
proven useful in building many knowledge bases such as AURA [3]; (ii) relations such
as prototype of and instance of, from [6], that allows expression of limited but useful
quantification; (iii) conceptual classes of nodes based on word sense disambiguation on
WordNet senses of the words represented by those nodes; (iv) semantic roles of the enti-
ties present in the text; and (v) accumulation of correct relations between nodes through
the use of Named Entity Tagging and Syntactic Dependency Parsing.

KPARSER takes text as input and parses it as an acyclic semantic graph G =
(VL, EL), such that VL consists of nodes from the union of four sets of nodes, namely
entities (Ven), events (Vev), properties (Vprop) and classes (Vclass). We used KM library
for labeling the relationship edges between the nodes in graph G. There are 118 total
relations available in KM and currently we used some of the important relations such

5 The system is available online at http://kparser.org.



as causes, next-event, agent, recipient etc. We also defined a few new relations to rep-
resent some of the edge labels that were not captured in KM. These relations include
instance of, superclass, participant and related to.

Fig. 2: Semantic Parsing by KPARSER

Figure 2 shows the output of KPARSER on the sentence “Add another blue stack of
the same height.” For illustration, let us write the event-entity, entity-entity, event-class
and entity-class facts of the KPARSER output.

edge(add_1,recipient,stack_4). edge(add_1,instance_of,add).
edge(add,is_subclass_of,change). edge(stack_4,trait,blue_3).
edge(stack_4,is_possessed_by,height_8).edge(blue,is_subclass_of,all).
edge(stack_4,identifier,another_2).edge(stack_4,instance_of,stack).
edge(stack,is_subclass_of,group). edge(height_8,trait,same_7).
edge(blue_3,instance_of,blue). edge(another_2,instance_of,another).
edge(same_7,instance_of,same). edge(same,is_subclass_of,all).
edge(height_8,instance_of,height).edge(height,is_subclass_of,attribute).

In addition to the edges, KPARSER also produces the classification of the nodes
such as event(add 1), entity, etc. To be able to convert such facts into the set of



goal conditions, the robot will need a knowledge base about the block world domain
that provides a context for the sentence. From this knowledge base, given the commu-
nication, the robot should be able to infer the following:

– the event add 1, an instance of add, indicates the action that the robot should do;
– stack 4, an instance of stack, is the objective of the action of the robot;
– blue 3, an instance of blue, is an attribute of the objective of the robot’s action;
– height 8, an instance of height, is an attribute of the objective of robot’s action

which has again an attribute same; and
– another 2, an instance of another, is an attribute of the objective of the robot’s

action.

Ideally, the robot should be able to use the above information, together with its
knowledge base, to come up with the goal conditions or an equivalent formula that will
trigger its planning module to generate a plan for responding to the human. To the best
of our knowledge, there exists no such system that can complete this task. We observe
that an ad-hoc solution could be developed by making use of the nodes classification and
the graph. For example, by observing that attribute nodes are instance of some entities,
the facts such as add(stack), attribute(blue), attribute(same, height),
and attribute(another) could be derived using the graph and the classification of
the nodes. Such facts can then be translated into the aforementioned goal conditions.
We observe that several reasonable instructions within the block world domain seem
to have this structure. Although this works, this ad-hoc solution is certainly not the
best solution as it does not account for all possible scenarios. Since a system that can
understand all possible communications is yet to be developed, this ad-hoc solution
might still be a viable option for restricted applications.

A formal solution to the above problem is to develop a system that translates the
output of KPARSER to ASP code. One of the systems that could potentially be used for
this purpose is the system NL2KR (available at http://bioai.lab.asu.edu/
nl2kr/) that has been used in translating puzzles into ASP programs [1]. For NL2KR
to be useable in this type of applications, we need an initial lexicon of word meanings
in terms of λ-expressions and a set of training sentences and their translations in a tar-
get language. The NL2KR-Learning component learns the meaning (λ-expressions) of
new words from these examples and the NL2KR-Testing component uses the enhanced
lexicon to translate new sentences. The λ notation can be used to express ambiguities
than can be resolved with contextual information and is useful in composition. It can
also be used in generating a response such as “I do not have enough blue blocks” for the
robot. Improving NL2KR to obtain a system that can address this need is a challenge
that we would like to investigate in the near future.

6 Conclusions and Future Work
In this paper, we describe three challenging problems that need to be addressed for
an effective collaboration between an intelligent system and human when communi-
cation via natural language is necessary. We show that ASP based approaches can be
employed to deal with two problems, the descriptive planning problem and plan failure
analysis problem. We discuss the difficulties and possible options for addressing the



third problem that is related to the bidirectional translation between natural language
and ASP.

Our discussion shows that ASP can play an important role in the development of
intelligent systems that can interact with human via natural language. It highlights the
need of a tight integration between ASP and NLP processing tools with advanced fea-
tures for translating natural language sentences into ASP. Our future goal is to develop
further applications that integrate various aspects of AI including NLP, Ontologies and
Reasoning. We believe that our experience in using KPARSER to address the Winograd
Schema Challenge will be important for us to achieve this goal [15].
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