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Abstract. We often realize that communicating with other colleagues who are 
studying similar topics helps to identify information relevant to our area of 
study, which otherwise may not have been found. We wish to accelerate acqui-
sition of collective knowledge in a defined area by identifying specific spheres 
of inquiry. Such spheres correspond to groups of people who are experts in a 
field. In this paper we provide a systematic way to gain knowledge from their 
online search activity, and enable them to organize and share their search find-
ings for further analysis.  We have built a prototype system, BioLog, to help 
biomedical researchers share this implicit knowledge among their peers and 
store their access patterns into a central system for reuse. BioLog has been de-
ployed it in two labs within TGen as a pilot study.  The data has been gathered 
and analyzed by preliminary text-mining and collaborative filtering methods. 

1   Introduction 

We often realize that communicating with other colleagues who are studying similar 
topics helps to identify information relevant to our area of study, which otherwise 
may not have been found.  Hence, there have been many organizational efforts and a 
variety of tools produced to support sharing of knowledge, as well as data, within 
communities of shared research areas.  The collective knowledge of sets of experts is 
different from the massive, general, text archives of information that we typically rely 
on since it is limited to a particular realm of findings.  It is further different in that it 
reflects the experts' current models of what that field suggests and it is dynamic, and 
constantly changing as a result of researchers search activity.  While data sharing 
among experts is improving constantly, model sharing has not improved.  We wish to 
accelerate acquisition of collective knowledge in well defined areas by identifying 
specific spheres of inquiry and corresponding groups of people. We also provide a 
systematic way to gain knowledge from their online search activity, and enable them 
to organize and share their findings for further analysis 

One place where experts’ models are evident for further analysis and inferencing is 
their interaction logs with archived information sources. For example, PubMed [1] is 



a well-known repository of biological literature and serves as an invaluable biological 
repository.  It is frequently used as a first stage tool in creating and refining new hy-
potheses.  An expert's prior understanding of the biological relationships and their 
emerging models will be implicit in their search patterns of PubMed and other such 
biomedical resources.  
 
Biologists go to PubMed when they have a model with some supporting evidence but 
want to seek further support.  It is also sought when they have a incomplete model 
with some missing elements or a fragmented model with missing relationships.  They 
type in keywords and PubMed retrieves a list of keyword matching abstracts.  Re-
searchers scan through the list and identify a subset of abstracts that might be relevant 
to their model -- most likely based on the titles and the authors of articles.  Once they 

identify the subset of articles, they 
follow-up on those articles and read 
the corresponding abstracts.  Some-
times, they home in on their by itera-
tively narrowing down their keyword 
searches.  However, they find it more 
informative to talk to their expert 
colleagues, who are studying similar 
subjects, to obtain recommendations 
and leads about other relevant arti-
cles that might contain missing links, 
as illustrated in Figure 1. 
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Communication and Collaboration

Figure 1: Communication and collaboration among biologists to combine knowledge 
of missing links. 

One problem is that researchers often do not know whom to talk to.  It could be 
someone in their lab or someone at another institute.  A precursor to collaboration is 
to first find whom to work with or ask for help. 
 
In most cases a biologist has some ‘handles’ (such as a set of nucleotide sequences or 
gene names) and he or she searches the repositories using those handles. For example, 
a biologist trying to figure out (parts of) a pathway that explains a particular phenom-
ena may start with a list of gene and protein names as handles. Starting with one of 
those names, when one searches a repository like PubMed, it is likely that a large 
number of matches will be found. For example, the search term `g-protein' leads to 
51,286 matches in PubMed. The researcher is then faced with the problem of narrow-
ing down the articles that are relevant to his topic of investigation by adding addi-
tional keywords or trying alternative keywords. The time it takes to find the right 
matches plays a huge role in the overall timely success of the quest. A biomedical 
researcher would benefit tremendously if the various resources would rank the links 
in a way that matches her own priority. The situation here is closer to recommender 
systems such as the ones used in Netflix.com or Amazon.com where the system rec-
ommends movies and books respectively based on the users’ past interaction with the 
system, the users’ feedback (in terms of ratings in case of Netflix.com) and the global 



knowledge extracted from the web log of all the users as well as the corresponding 
web content.  
 
We have built a helper application, named BioLog, to archive scientists’ access pat-
tern of PubMed of NIH/NCBI as well as the client software that allows users to 
browse through group specific archives. The system logs the user identity, search 
keywords used, list of matching articles, set of followed articles, and the amount of 
time spent on each abstract.  We also extract list of gene names using a state-of-the 
art gene/protein extractor, the Abner [17] system, from each abstract. We developed 
preliminary recommender algorithms based on gene-to-gene, abstract-to-abstract and 
user-to-user relevance networks by using a combination of collaborative filtering and 
content-based filtering techniques. BioLog system automatically recommends alterna-
tive lists of genes, articles and other researchers upon each keyword search.  
 
In this paper we propose a recommendation algorithm based upon a clustering tech-
nique. Clustering is a technique to group items or data points that are similar in a 
given context.  It has been widely used for many quantitative studies, including gene 
expression data analysis [9,10].  This is a natural choice of approach to find relevant 
or similar set of articles or genes given co-observations of genes and articles.  A simi-
lar set of articles may represent a specific research subject, and a similar set of genes 
may indicate members of a regulatory network.  However, in the context of high 
dimensional datasets such as those relating PubMed articles, genes, and users, where 
the datasets are wide and sparse, with many irrelevant dimensions, it is difficult to 
find relationships that exist in subspace of the dataset. Subspace clustering [11] is a 
form of unsupervised machine learning that seeks to uncover groups of objects that 
are related in terms of only a subset of the attributes (dimensions) in the dataset. In 
our effort to identify similar articles or genes, when the number of genes runs over 
tens of thousands, the number of users in tens of thousands and the number of articles 
in millions, but the number of users in a group who access articles being relatively 
rather small, we demonstrate that subspace clustering is useful and effective.  

 
The rest of the paper is structured as follows. Section 2 presents the related work. 
Section 3 is the system flow. Section 4 is the system design. Section 5 presents rele-
vance networks. Section 6 presents the BioLog’s recommendation algorithm. Finally, 
Section 7 presents our preliminary pilot studies. 

2.   RELATED WORK 

Collaborative filtering (or recommender systems) predicts products or topics a new 
user might like by using a database about other users past preferences. These systems 
are popular for their use on e-commerce web sites, where the systems use input about 
a customer's interests to generate a list of recommended items.  

 
In Memory Based Algorithms [2] the task of collaborative filtering is to predict the 
votes/interests of the active user from a database of user votes from a sample or popu-
lation of other users. The strategies mentioned in the memory based algorithms can be 
used in our current problem of recommending abstracts and users.  The user database, 



which is the log of browsing history in our case, contains information of the various 
abstracts accessed by the users in the system. We can construct a user-abstract prefer-
ence/access table, which is analogous to the user-item information mentioned earlier. 
Based on this information, we could compute the similarity between pairs of users. 
Based on the similarity, other un-accessed abstracts could be recommended. Using 
either of the similarity based metrics, similar users can be recommended too. The 
user-abstract table/matrix constructed from the log would be very sparse since each 
user would have accessed an insignificant percentage of the total number of abstracts 
(from PubMed). The Pearson’s correlation based or the vector based similarity [3] 
would not yield good measures if there are very few abstracts in common between 
two users. Another major pitfall of this approach is in regard with its scalability. Rec-
ommendations at runtime for the active user would require the system to scan over 
the complete database to compute the similarity metrics between the active user and 
the other set of users and then uses the weights over the common set of abstracts for 
the selected users. 
 
Probabilistic Cluster Models [4] is a model based method, in which the learning phase 
can be done offline. Quick recommendations can be given in real time, thereby mak-
ing the recommendation system scalable.  A crucial pitfall in this approach is the 
Bayesian assumption that the conditional probabilities of the variables given the class 
are independent. This may well not be the case in our domain. The probabilities of the 
occurrence of genes given the class, in a given cluster might not be independent with 
respect to each other. In fact, genes identified in a cluster might be strongly corre-
lated. On the other hand, evaluation results given by the authors for this approach do 
not seem to be impressive. Other approaches based on correlation outperform this 
model on most of the datasets. 

 
Clustering is a technique to group items or data points that are similar in a given con-
text.  It has been widely used for many quantitative studies, including gene expression 
data analysis  [9,10].  This is a natural choice of approach to find relevant or similar 
set of abstracts or genes given co-observations of genes and abstracts.  A similar set 
of abstracts may represent a specific research subject, and a similar set of genes may 
indicate members of a regulatory network.   

 
As datasets become larger and more complex, clustering performance often degrades 
due to the curse of dimensionality [12, 13]. In high dimensional data, clusters often 
exist in subspaces [14], and many of the dimensions are often irrelevant. These irrele-
vant dimensions confuse clustering algorithms by hiding clusters in noisy data. In 
very high dimensions it is common for all of the instances in a dataset to be nearly 
equidistant from each other, completely masking the clusters.  Feature transformation 
and feature selection techniques have been used to address the difficulties in cluster-
ing high dimensional datasets [11]. However, neither of these techniques is suitable 
for finding subspace clusters. Feature transformation such as Principle Components 
Analysis (PCA) attempt to summarize the data by creating new attributes which are 
combinations of the original attributes in the dataset. Since relative distances are 
preserved, the effects of the irrelevant dimension remain. Also, the new attributes can 



be very difficult to interpret. Feature selection techniques attempt to select the most 
relevant attributes over the whole dataset. While successful at removing noisy attrib-
utes [15], feature selection does not allow us to discover clusters that exist in different 
subspaces. Subspace clustering is a form of unsupervised machine learning approach 
that we utilize in this paper to uncover groups of objects that are related in terms of 
only a subset of the attributes (dimensions) in the dataset. In our effort to identify 
similar abstracts or genes, when the number of genes runs over tens of thousands, the 
number of users in tens of thousands and the number of articles in millions, but the 
number of users in a group who access articles being relatively rather small, subspace 
clustering is useful and effective. 
 
Instead of matching the active user to similar customers, item-to-item based approach 
matches each of the user’s purchased and rated items to similar items, and then com-
bines those similar items into a recommendation list. To determine the most-similar 
match for a given item, the algorithm builds a similar-items table by finding items 
that customers tend to purchase together. Unlike the traditional collaborative filtering 
techniques, this algorithm’s online computation scales independently of the number 
of customers and number of items in the product catalog. The above mentioned algo-
rithm can be modified, replacing items with abstracts. This way, we can build up a 
similar-abstracts table by finding abstracts that users tend to look together. As more 
users tend to access a set of related articles, their pair wise similarity scores go up. 
Using the similar-abstracts table, related articles can be recommended. As mentioned 
earlier, this method’s online computation scales independently to the number of ab-
stracts and the set the genes, since we would be computing the similarity tables off-
line. Unlike traditional collaborative filtering techniques, the algorithm also report-
edly performs well with limited user data, producing high-quality user data, produc-
ing high-quality recommendations.  The offline computation of the similarity tables is 
extremely time intensive, with O(N2M) as worst case, where N is the number of ab-
stracts/genes and M is the number of users/abstracts respectively for the two above 
mentioned adaptations to the domain.  

 

3.   SYSTEM FLOW 

As shown in Figure 5, a biologist initially goes to PubMed types in a keyword search 
query and PubMed will fetch a list of articles matching the keyword. The biologist 
scans through the list and identifies a subset of articles that might be relevant to their 
inquiry, most likely based on the titles and the authors of articles.  Once they find the 
articles of high relevance, they will click on one of the articles and read the abstract to 
make sure if it is really useful to what they are looking for. Biolog tracks these Web 
pages in a database log and archives them in a central cache repository with all rele-
vant meta information. Currently we are using a MySQL backend but the module has 
been built to be database independent. The cached documents are also indexed using 
a high performance text search engine in order to support keyword searching in the 
cached documents. Next, gene-to-gene and abstract-to-abstract relevance networks 
are computed and the recommendation system uses these models. 



4. BIOLOG SYSTEM DESIGN 

We have built a helper application for Internet Explorer® (IE) to archive scientist’s 
accessing pattern of vast archive of biomedical literatures at PubMed of NIH/NCBI. 
The archival process consists of a logger, which is responsible for capturing web 
pages during browsing based on domains which are to be tracked. The capturing of 
data is in terms of logging Meta information in the database as well as caching of web 
pages in a central repository. 

 
In Figure 2 below the logger uses browser helper objects (BHO) [5] to store html 
pages in the file system cache as well as all relevant meta information such as ma-
chine name, URL, time-stamp etc to the database.  

 
 

 
Figure 2: Logger Architecture 

 
Browser Helper Objects are components — specifically, in-process Component Ob-
ject Model (COM) components — that Internet Explorer will load each time it starts 
up. Such objects run in the same memory context as the browser and can perform any 
action on the available windows and modules. Further, a new instance of the BHO is 
created each time a new browser window is created.  In its simplest form, a BHO is a 
COM in-process server registered under a certain registry's key. Upon start up, Inter-
net Explorer looks up that key and loads all the objects whose CLSID is stored there. 
Logging of dynamic data on the Web has been a problem. By dynamic data we mean 
the data input by the user at run time during filling of form elements. We planted our 
logging module into the IE browser and this architecture can be imported to any other 
browser with plug-in support. The problem of trapping the dynamic data  can be 
tackled during the pre-navigation step, which is, as soon as the dynamic data is sub-
mitted and before the response page is loaded. During navigation, we trap the Be-
foreNavigation event and at that precise moment we capture a snapshot of the current 
dynamic page DOM and inspect its form elements for dynamic attribute-value pairs. 

 
The logger, a plug-in program to IE, is activated only when scientists go to PubMed 
and type in keywords to search through the archive.  Then, it records the keywords 
used, the set of articles displayed, and the set of articles that scientists try to read by 
clicking on the link to its abstract.  It also records the time spent on an abstract as well 
as other relevant information described above. All the archived information is stored 
in MySQL database for easy access across many clients. 



5. ENTITY-TO-ENTITY RELEVANCE NETWORKS  

First, gene-abstract occurrence matrix (GA matrix, GA) is constructed for the entries 
in the log.  GA matrix is a matrix where its element, gaij, is 1 if a gene i appears in an 
abstract j.  Otherwise, it is zero.  Similarly, we build user-abstract matrix (UA matrix, 
UA).  uaij is 1 if user i read an abstract j.  Otherwise, it is zero.  Based on these matri-
ces, we find gene-gene, abstract-abstract and user-user relevance networks as follows. 

5.1 Gene-Gene Relevance Networks 

Once GA matrix is constructed, we then compute gene-gene relevance matrix, GG 
matrix (GG), by multiplying GA by the transpose of GA, and normalizing it by di-
viding each row of GG by the number of abstracts.  ggij is 0 if genes i and j never 
appear in an abstract at the same time.  ggij is 1 if genes i and j appear in all of the 
abstracts looked at.  The value obtained will be in the normalized range of [0,1] , 1 
indicating that the two genes co-occur all the time and 0 indicating that the two genes 
never co-occur together. The idea is to assume if two genes are relevant either posi-
tively or negatively, they would tend to appear often in same abstract. Often this 
assumption may not be true; it is not rare to find an abstract to claim two genes are 
irrelevant in particular context.  However, we found that, even with this crude as-
sumption, some of the genes with high relevance could be identified. 

5.2 Abstract-Abstract Relevance Networks 

Abstract-abstract relevance, AAG matrix (AAG), can be built, by multiplying the 
transpose of GA by GA, and normalizing it by dividing each row of AAG by the 
number of genes appeared in either abstracts.  aaij is 0 if abstracts i and j do not have 
any gene in common.  aaij is 1 if any gene appeared in one abstract appears in the 
other.   This AAG matrix corresponds to content-based relevance since the more genes 
are shared between these two abstracts, the more relevant they are to each other. An-
other way to define an abstract-abstract relevance matrix is by using the user-abstract 
access matrix, UA. The access matrix UA can be multiplied to its transpose to con-
struct another access-based relevance matrix, AAU. In this preliminary work, we 
relied on a definition of the abstract-abstract relevance, AA, by using a weighted sum 
of these two different similarity measures AAG and AAU.  Similarly User-User rele-
vance matrix can be defined as a weighted sum of commonly accessed gene and ab-
stract based relevance matrices. 

6. BIOLOG RECOMMENDATION SYSTEM 

Our hybrid recommendation system utilizes a combination of the above relevance 
networks and a collaborative filtering based approach. 
 
Content based clustering (of genes and abstracts): The log gives us information 
about the abstracts accessed so far by various users. One can extract the list of 
genes/proteins from these abstracts. The intention here is to find co-occurring genes 
based on the abstracts they are present in. Similar logic can be used in finding co-
occurring abstracts based on their composition of genes in each abstract. 



 
Algorithm (in finding co-occurring genes) 
a. Build the gene-gene relevance network  
b. Normalize the obtained GxG matrix using the following formula. 
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=  In this equation, Cxy denotes the un-normalized entries of 

GxG. Each cell in the matrix is normalized according to the equation shown above. 
The value obtained will be in the range of [0,1] , 1 indicating that the two genes co-
occur all the time and 0 indicating that the two genes never co-occur together. 

c. Perform Hierarchical Agglomerative Clustering (HAC) [16] to reach a fixed 
number of clusters or some termination condition. Genes that co-occur together fall 
into one cluster.  

 
This way we can identify similar genes.  A similar approach can be done on cluster-
ing abstracts. Here we build up a normalized AxA matrix from the AxG matrix.  Co-
occurring abstracts (based on the composition of their genes) fall into one cluster.  
Therefore, we could find similar abstracts.   In fact, this method was used in the pre-
liminary analysis of archives from our pilot studies. 

 
Collaborative Filtering based approach: As contrast to content-based filtering, we 
can also define the similarity between two abstracts/genes in terms of number of users 
who have accessed both the abstracts/genes.  To recommend similar abstracts, from 
the log, we build the User by Abstract (UxA) matrix, and compute the AxA normal-
ized co-relational matrix from the UxA matrix.  Given any abstract, we could rank the 
‘k’ most similar abstracts based on the correlation similarity measure.  Alternatively, 
User by Abstract (UxA) matrix can be used to find the closest neighbours (similar 
users), whose preferences can be used to predict the interest/vote on other abstracts. 
Pearson’s correlation co-efficient can be used to find the neighbours, but this strategy 
would fail if the UxA matrix is sparse. 

 
Hybrid approach - combining content and collaborative filtering based ap-
proach: This approach combines a collaborative filtering and a content based mining 
in finding similar abstracts.  Two abstracts are similar:  
i) if they have a good set of genes 

common in them (Content based per-
spective) and 

ii) if many users view both the abstracts 
(Collaborative Filtering based perspec-
tive). In this way, we consider both the 
content and the user browsing pattern 
in associating similarity between ab-
stracts.  An approach, using weights to 
combine two different similarity 
matrices is detailed Figure 3. 

 

Fig 3. Similarity matrix computation           
in the hybrid approach using weights. 



7. SUBSPACE CLUSTERING FOR RECOMMENDATION WITH  
 SPARSE  HIGH DIMENSIONAL DATA 

Finding subspace clusters in the gene-abstract occurrence matrix can reveal relation-
ships between genes and abstracts allowing us to recommend relevant subsets of 
articles for each query.  In search of abstracts with shared genes, we can improve 
efficiency and accuracy by focusing on clusters of abstracts that share relevant genes. 
On one hand, the number of genes can be as many as fifty thousand and the number 
of abstracts can be millions; on the other hand, each abstract usually has a small num-
ber of genes (from 1 to 6 genes). That is, although the Abstract-Gene matrix has an 
extremely high dimensionality, clusters of abstracts can only exist in low dimensional 
subspaces. By finding these low dimensional subspaces, we can achieve the follow-
ing: (1) given a new set of genes, subspaces defined by associated genes can be 
quickly identified; (2) clusters of abstracts in these subspaces can be efficiently lo-
cated; and (3) similar abstracts can then be ranked and recommended as the number 
of abstracts in the subspaces is significantly smaller than the total number of available 
abstracts for search.   
 
Given the Abstract-Gene matrix, abstracts are compared using a similarity measure 
that considers only the positive (non-zero) values in the matrix.  This comparison is 
done first in low dimensional space, revealing those genes that occur frequently to-
gether in abstracts.  Searches in the low dimensional space allow us to eliminate 
genes or gene combinations that are not frequent which helps to reduce the search 
space.  The subspaces represent groups of genes that occur often together in abstracts.  
The clusters represent abstracts that mention many of the same genes.  When ana-
lyzed, the smaller data set yields 10 clusters in 2-dimension (using only two words as 
features), 5 clusters in 3-dimension and 1 cluster in 4-dimension.  The size of clusters 
in 2-D ranges from two to 5 abstracts and the cluster found in 4-dimension is com-
posed of 3 abstracts.  For the larger dataset, the cluster with the largest dimension was 
in 12-dimensions with two abstracts belonging in the cluster.  There were 4 clusters in 
11-D, 9 clusters in 10-D with at least 2 abstracts. In general, more clusters were found 
in lower dimensional subspaces. 
 
Adding the Abstract-User matrix further improves the utility of the tools, as illus-
trated in Fig. 5.  As hypothesized, dynamic communication with other colleagues 
studying similar subjects would help locate relevant information for biologists.  Let 
us consider a user (U1) has accessed many abstracts and accumulated knowledge 
during his/her previous and current querries.  The knowledge acquired through a 
previous query might often be relevant to the current search based on information that 
has not been realized by the user.  If the proposed approach can identify this informa-
tion by pulling together and analyzing knowledge (abstracts) utilized by other scien-
tists with a similar research interest, such guidance will speed up adopting new 
knowledge, such as new pathways.  
 
Also, if two different biologists (U1 & U2) may not have a link (common research 
interest; same gene or transcription factor) to directly connect them even if they might 
indeed benefit from talking to each other due to some indirect links, the tool might be 



able to locate such links by analyzing various links embedded in knowledge access 
patterns, hence, enable their connection.  Synergism resulting from such collaboration 
would yield much faster knowledge discovery.  An illustration similar to Fig. 5, re-
placing one of User1s with User2 can visualize our approach. 

 
The Figure 4 above exhibits how subspace clustering can be applied effectively to 
discover implicit knowledge for a researcher.  Figure 4 (a) shows that two subspaces 
exist for User1 alone where a subspace represents a set of genes occurring together. 
Here, User1 thinks that genes 1,2,3,4 are linked to each other and genes 5,6,7,8 are 
linked with each other independently with no connection between the subspaces. 
Figure 4 (b) shows that there exists a subspace generated from all users where the 
subspace suggests that there is a link between gene3 and gene7.  Notice that User1 
did not realize or was not aware of the connection between the two genes but by us-
ing the knowledge from the community of users, User1 can be given such knowledge. 
This kind of knowledge could be very useful for User1 because if he was working 
independently, it might have taken him a longer period of time or in the worst case 
the user might not have been aware of this knowledge at all. Preliminary experimental 
results of subspace clustering on large Web logs indicate that such knowledge can be 
effectively discovered from the data. 

  
  (a)    (b) 
Figure 4.  Subspace clustering finds closely related genes based on user’s 

access patterns of articles.  Each cluster indicates that the genes grouped to-
gether appeared many times in the set of articles accessed by the user.  The set 
of articles in which the clustered genes appear together can be pulled from 
each cluster as knowledge support.  (a) The knowledge of User1 is fragmented 
due to the lack of relevant knowledge (links) in individual access patterns.  (b) 
Collective knowledge helps User1 realize two pathways are connected. 

8. PILOT STUDY IN TWO TGEN LABS 

Two biology labs at TGen [7] were selected to perform pilot study with BioLog.   
Both labs are part of the Neurogenomics program at TGen.  We set up two central 
servers to archive their access patterns on PubMed separately.   



Figure 5.  BioLog: PubMed Recording, Reasoning and Recommending (R3) 
Navigation Assistant Pilot Study 

 Since both study brain-related diseases, they could share some commonality.  How-
ever, they are two different labs studying different specific diseases; therefore, they 
would differ significantly in accessing literatures in PubMed.  We would like to see if 
the archives show such difference as well as similarity.  During one study 25 abstracts 
accessed, while the other archive returned 253 abstracts accessed. 

 
The gene relevance network from smaller archive is shown in Figure 5.  The net-
works are visualized to emphasize the co-occurrence of two genes; if two genes co-
occur more often than others, they were put close to each other in the visualizations.  
Also, the thickness of edge represents the normalized frequency of co-occurrence of 
the pair; thicker the edge, more often they co-occur.  For example, in Figure 5, genes 
smn, sma, smn1, smn2, and kinase are very close to each other, indicating they 
appear in the same abstract often.  We also found it interesting that these genes were 
found in the second network which is constructed from the archive from the other lab.  
Therefore, this shows that these two labs sometimes study similar genes.  This is 
critical because it might imply that two lab studying similar subjects, brain-related 
disease in this case, share the genes of their interests, and we might be able to use this 
clue to find out other group or people that could study some of the subject common to 
one’s research.  However, since they do have many other genes that are not in the 
other’s.  This could indicate either that one is studying some other subjects that the 



other does not (most likely), or that each one is taking a different route to find an-
swers.  In the latter case, one might be interested in what other genes the other group 
is after. 

 
Figure 5 visualizes abstract-abstract relevance network.  Interestingly, we have identi-
fied a distinct cluster of abstracts in the relevance network from the smaller archive 
shown in Figure 5, it was related to the cluster of genes identified in the previous 
section; all describing smn, sma, smn1, or smn2. Such clusters form the basis of 
BioLog recommendations. 

9. FUTURE WORK 

The components built as a part of the Biolog system (Figure 5) can also be suitable 
for domains other than Biology, where a group of people is searching and interacting 
with a set of entities. Once the recommendation algorithm is embedded into a browser 
component we plan to perform detailed user evaluations in order to determine the 
usefulness and validity of BioLog’s recommendations as compared to other existing 
recommender algorithms. 
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