
APPENDIX of “Visual common-sense for scene understanding using
perception, semantic parsing and reasoning”

Somak Aditya†, Yiannis Aloimonos*, Chitta Baral†, Cornelia Fermuller* and Yezhou Yang*
†School of Computing, Informatics and Decision Systems Engineering, Arizona State University

*Department of Computer Science, University of Maryland, College Park

Appendix 1: Kparser output on "hand grasp knife and it cut bowl"

Figure 1: Kparser parsing of the phrases: "hand grasp knife and it cut bowl"

1



Appendix 2: Kparser output on "The left hand was grasping the
ruler."

Figure 2: K-parser parsing of the phrases: "The left hand was grasping the ruler."

2



Appendix 3 - ASP code of Section 4
time(1..3).
fluent(in(X,Y)) :- object(X), object(Y).
object(tofu;knife;bowl).

appears(put,tofu,bowl,1).
appears(cut,knife,bowl,2).

artifact(knife).
artifact(bowl).

occurs(A,S,O,T) :- appears(A,S,O,T),
not ab(A,S,O,T).

ab(cut,S,O,T) :- time(T), artifact(S), artifact(O).

occurs(cut,S,O,T) :- time(T), appears(cut,S,OO,T),
ab(cut,S,OO,T), holds(in(O,OO),T).

holds(in(X,Y),T+1) :- time(T), occurs(put,X,Y,T).

holds(F,T+1) :- fluent(F), time(T), holds(F,T), not nholds(F,T+1).

#hide time(X).
#hide fluent(X).
#hide object(X).
#hide appears(X,Y,Z,T).
#hide artifact(X).
#hide ab(X,Y,Z,T).

% Answer set contains
% occurs(put,tofu,bowl,1) holds(in(tofu,bowl),2) occurs(cut,knife,tofu,2)
% holds(in(tofu,bowl),3) holds(in(tofu,bowl),4)

3



Appendix 4 - ASP code of Section 5
time(1..300).
action(grasp1;grasp2;grasp3;align;draw).

occurs(grasp1,lefthand,plank,50,85).
occurs(grasp2,lefthand,ruler,95,280).
occurs(align,ruler,plank,100,168).
occurs(grasp3,righthand,pen,130,260).
occurs(draw,pen,plank,170,225).

used(X,A1,T1,T2) :- time(T1;T2), action(A1), occurs(A1,X,Y,T1,T2).
used(Y,A1,T1,T2) :- time(T1;T2), action(A2), occurs(A1,X,Y,T1,T2).
used(H,A1,T1,T2) :- time(T1;T2;T3;T4), action(A1;A2),

used(X,A1,T1,T2), used(H,A2,T3,T4),
used(X,A2,T3,T4), T3 < T1, T2 < T4.

% % % Is the ruler aligned when the pen is drawing on the plank?
start(grasping,T1) :- time(T1;T2), occurs(grasp1,X,Y,T1,T2).
end(grasping,T2) :- time(T1;T2), occurs(grasp1,X,Y,T1,T2).
start(grasping,T1) :- time(T1;T2), occurs(grasp2,X,Y,T1,T2).
end(grasping,T2) :- time(T1;T2), occurs(grasp2,X,Y,T1,T2).
start(grasping,T1) :- time(T1;T2), occurs(grasp3,X,Y,T1,T2).
end(grasping,T2) :- time(T1;T2), occurs(grasp3,X,Y,T1,T2).
start(aligning,T1) :- time(T1;T2), occurs(align,X,Y,T1,T2).
end(aligning,T2) :- time(T1;T2), occurs(align,X,Y,T1,T2).
start(drawing,T1) :- time(T1;T2), occurs(draw,X,Y,T1,T2).
end(drawing,T2) :- time(T1;T2), occurs(draw,X,Y,T1,T2).
holds(aligned,T2+1) :- time(T1;T2), occurs(align,X,Y,T1,T2).
holds(drawn,T2+1) :- time(T1;T2), occurs(draw,X,Y,T1,T2).
holds(F,T+1) :- time(T), holds(F,T), not nholds(F,T+1).
nholds(F,T+1) :- time(T), nholds(F,T), not holds(F,T+1).
no :- time(T1;T2;T), start(drawing,T1), end(drawing,T2),

T1 < T, T < T2, not holds(aligned,T).
yes :- not no.

#show yes/0.
#show used/4.

4



Appendix 5 - ASP code of Section 6.1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%Domain Predicates
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
time(0..300).
event(grasp1;grasp2;align;grasp3;draw).

using(grasper1;grasper2;grasper3;ruler;pen).
dest(plank;ruler;pen).

occurs(grasp1,lefthand,plank,50,85).
occurs(grasp2,lefthand,ruler,95,280).
occurs(align,ruler,plank,100,168).
occurs(grasp3,righthand,pen,130,260).
occurs(draw,pen,plank,170,225).

component(grasp1,grasper1,plank,mark).
component(grasp2,grasper1,ruler,mark).
component(grasp3,grasper2,pen,mark).
component(align,ruler,plank,mark).
component(draw,pen,plank,mark).
before(grasp1,grasp2).
subinterval(align,grasp2).
subinterval(grasp3,grasp2).
subinterval(draw,grasp3).
startsb4ov(align,grasp3).
neq(grasper1,grasper2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% Type Predicates to encode superclass
%%%%% information
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
type(lefthand,grasper1).
type(righthand,grasper1).
type(lefthand,grasper2).
type(righthand,grasper2).
type(lefthand,grasper3).
type(righthand,grasper3).
type(ruler,ruler).
type(pen,pen).

satisfy(activity) :- not donotsatisfy(activity).

donotsatisfy(activity) :- event(X), using(Y), dest(Z),
component(X,Y,Z,A), not occuract(X).

occuract(X) :- event(X), time(U;V),
dest(Z), using(Y1), type(Y,Y1),
occurs(X,Y,Z,U,V).

start(A,X) :- event(A), time(X;Y),
dest(V),using(U1), type(U,U1),
occurs(A,U,V,X,Y).

end(A,Y) :- event(A), time(X;Y),
dest(V),using(U1), type(U,U1),
occurs(A,U,V,X,Y).

donotsatisfy(activity) :- event(A1;A2), time(X;Y),
before(A1,A2),end(A1,X),
start(A2,Y), X >= Y.

5



#show satisfy/1.
#show occuract/1.

6



Appendix 5 - ASP code of Section 6.2
num(1..40).
event(g1;g2;g3;align;draw).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% ENUMERATION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Enumeration over all before, startsb4ov and subinterval predicates
0 { before(A,B) } 1 :- event(A), event(B), A!=B.
0 { startsb4ov(A,B)} 1 :- event(A), event(B), A!=B.
0 { subinterval(A,B)} 1 :- event(A), event(B), A!=B.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% DEFINITONS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Defining pbefore and pstartsb4ov in terms of before and startsb4ov
pbefore(A,B) :- event(A), event(B), before(A,B).
pbefore(A,C) :- event(A), event(B), event(C), bef(A,B), bef(B,C).
pbefore(A,C) :- event(A), event(B), event(C), bef(A,B), subi(C,B).

pstartsb4ov(A,B) :- event(A), event(B), startsb4ov(A,B).

psubinterval(A,B) :- event(A), event(B), subinterval(A,B).
psubinterval(A,C) :- event(A), event(B), event(C), subi(A,B), subi(B,C).

bef(A,B) :- event(A), event(B), before(A,B).
bef(A,B) :- event(A), event(B), pbefore(A,B).
subi(A,B) :- event(A), event(B), subinterval(A,B).
subi(A,B) :- event(A), event(B), psubinterval(A,B).
stb4ov(A,B) :- event(A), event(B), startsb4ov(A,B).
stb4ov(A,B) :- event(A), event(B), pstartsb4ov(A,B).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% CONSTRAINTS(I)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% If A is before B, then it cannot overlap
:- event(A), event(B), pbefore(A,B), pstartsb4ov(A,B).
:- event(A), event(B), pbefore(A,B), pstartsb4ov(B,A).
:- event(A), event(B), pbefore(A,B), psubinterval(A,B).
:- event(A), event(B), pbefore(A,B), psubinterval(B,A).
:- event(A), event(B), psubinterval(A,B), pstartsb4ov(A,B).
:- event(A), event(B), psubinterval(A,B), pstartsb4ov(B,A).

% the relations are asymmetric
:- event(A), event(B), pbefore(A,B), pbefore(B,A).
:- event(A), event(B), pstartsb4ov(B,A), pstartsb4ov(A,B).
:- event(A), event(B), psubinterval(B,A), psubinterval(A,B).

% they are not reflexive
:- event(A), before(A,A).
:- event(A), startsb4ov(A,A).
:- event(A), subinterval(A,A).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% CONSTRAINTS(II)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
:- not pbefore(g1,g2).

7



:- not pbefore(g1,align).
:- not pbefore(g1,g3).
:- not pbefore(g1,draw).
:- not pbefore(align,draw).

:- not psubinterval(align,g2).
:- not psubinterval(g3,g2).
:- not psubinterval(draw,g3).
:- not psubinterval(draw,g2).
:- not pstartsb4ov(align,g3).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% MINIMIZATION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

ecount(N) :- N1 = #count { subinterval(A,B) :
event(A), event(B), subinterval(A,B)},

N2 = #count { before(A,B) :
event(A), event(B), before(A,B)},

N3 = #count { startsb4ov(A,B) :
event(A), event(B), startsb4ov(A,B)},

N = N1+N2+N3.

#minimize { N@1,ecount : ecount(N)}.

#show before/2.
#show startsb4ov/2.
#show subinterval/2.

8


