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Abstract
Image Understanding is fundamental to systems that need to extract contents and infer concepts
from images. In this paper, we develop an architecture for understanding images, through which a
system can recognize the content and the underlying concepts of an image and, reason and answer
questions about both using a visual module, a reasoning module, and a commonsense knowledge
base. In this architecture, visual data combines with background knowledge and; iterates through
visual and reasoning modules to answer questions about an image or to generate a textual descrip-
tion of an image. We first provide motivations of such a Deep Image Understanding architecture
and then, we describe the necessary components it should include. We also introduce our own
preliminary implementation of this architecture and empirically show how this more generic im-
plementation compares with a recent end-to-end Neural approach on specific applications. We
address the knowledge-representation challenge in such an architecture by representing an image
using a directed labeled graph (called Scene Description Graph). Our implementation uses generic
visual recognition techniques and commonsense reasoning1 to extract such graphs from images.
Our experiments show that the extracted graphs capture the syntactic and semantic content of an
image with reasonable accuracy.

1. Introduction and Motivation
In Artificial Intelligence, the word “understanding” has been used in several contexts such as “Nat-
ural Language Understanding”, “Image Understanding” etc. The general notion of “understanding”
is well-studied in the domain of Education. In the Educational Domain, a student’s “understanding”
of a concept is evaluated by asking relevant questions about it. Similarly, “understanding” in an
automated environment can be tested by asking questions and an intelligent system attempting to
“understand” any concept should have the ability to answer them. Natural Language Understanding
systems (Katz et al. (2001),Weston et al. (2015)) have applied such philosophy since its incep-

1. Commonsense reasoning and commonsense knowledge can be of many types (Davis & Marcus (2015)). Common-
sense knowledge can belong to different levels of abstraction (Havasi et al. (2007); Lenat (1995)). In this paper, we
focus on reasoning based on knowledge about natural activities.

c© 2016 Cognitive Systems Foundation. All rights reserved.



S. ADITYA, C. BARAL, Y. YANG, Y. ALOIMONOS, C. FERMULLER

tion and recently, the Computer Vision community (Gao et al. (2015),Antol et al. (2015)) has also
adopted question-answering about images to evaluate systems that intend to understand images.

To achieve a human-level image “understanding” in artificial systems, we should also be able
to measure the level or extent of understanding in such systems. In educational domain, we achieve
this by modulating the difficulty of the questions. Bloom’s taxonomy (Bloom et al. (1956)) classifies
such questions into the categories: Knowledge, Comprehension, Application, Analysis, Synthesis,
and Evaluation; each focusing on testing increasingly difficult levels of cognitive thinking in stu-
dents. In the context of an image such as Figure 1 (a), some example questions corresponding to
the above categories could be: i) (Knowledge - demonstrating recall) list the objects in the image;
ii) (Comprehension - demonstrating understanding) predict what the man will do next; iii) (Appli-
cation - ability to apply the knowledge) illustrate how to cut tofu (or something similar to tofu);
iv) (Analysis - ability to analyze and identify motives, causes) why is the man holding the bowl
with his other hand; v) (Synthesis - ability to synthesize the information gathered and compile dif-
ferently) can you propose how else to cut a tofu; vi) (Evaluation - ability to make judgment about
information) is there a better way to cut a tofu.

The current systems are mainly evaluated using factoid questions (what, where, how many,
is there etc.), belonging to the Knowledge category. These questions primarily tests the systems’
capability to find, locate or collocate objects in the scene. But, these are only the tip of the iceberg
and a large area of questions still remain completely unexplored. The primary reason is as the
difficulty increases, so does the need of reasoning and inference using commonsense (and other
kinds of) knowledge about the world and the current systems do not explicitly model commonsense
knowledge. Consider Figure 1(a). It is often very hard to detect “tofu” in the bowl (Aditya et al.
(2015b)). It will be near impossible if the image were shot from a lower elevation. In such a case,
the system should be able to infer that the knife might be cutting something inside the bowl, not the
bowl itself, i.e. in a QA setting, the answer to the question “Is the knife cutting the bowl?” should
be No. This requires commonsense knowledge about the entities knife, bowl and the action cut.

(a) (b)

Figure 1: (a) An image where there could be objects which are indistinguishable even to the naked eye. (b)
Example Image and an ideal SDG with spatial relations.

Again, for the image in Figure 1(b), one can ask a series of questions that requires commonsense
knowledge about the physical world. Questions can range from the ones that require basic knowl-
edge about the game of basketball (“are the players in red and white belong to the same team?”)
to the questions requiring more deeper knowledge such as the intuition of Physics (“will the player
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in the right be able to block the player holding the ball?” or “in which direction should the player
holding the ball move?”). Current state-of-the-art Image Captioning or QA systems however, is far
from attempting such questions. Even the traditional definition of Image Understanding (Shapiro
(1992)) only concerns itself with the space of systems that “produce descriptions of both the images
and the world scenes that the images represent” given a goal or a reason for looking at a particular
scene. So, henceforth in this work, we use the phrase “Deep Image Understanding” (DeepIU) to
denote the study of architectures or systems better equipped to handle such a variety of questions.

A DeepIU system should facilitate i) generating description of the contents of the image, ii)
answering factoid questions about the objects, regions and the events involved and iii) reasoning
about the events and concepts in the scene using commonsense knowledge; and iv) updating the
agent’s belief about the image or even the global knowledge.

As many other cognitive systems, we look towards human beings to draw inspiration for the
architecture. Human perception is active, selective and exploratory. We interpret visual input by
using our knowledge of activities, events and objects. When we analyze a visual scene, visual
processes continuously interact with our high-level knowledge, some of which is represented in the
form of language. In some sense, perception and language are engaged in an interaction, as they
exchange information that leads to semantics and understanding. Thus, our problem requires at least
two modules for its solution: (a) a vision module and (b) a reasoning module that are interacting with
each other. In this paper we propose to model the architecture that can support such an interaction.

Our architecture (DeepIU) essentially consists of the modules that reflect above intuition. The
vision module detects objects, its visible properties; possible actions involving the objects and prob-
able scenes. Guided by a commonsense knowledge-base and the reasoning module, we can then
produce more semantic information hidden in the facts. Given these facts and inferred details, the
reasoning module either goes back to vision module for more information or generates a knowl-
edge structure that represents the (required) semantic and information content of the image. This
knowledge structure can then be used for other applications such as Sentence Generation (tem-
plate/statistical model based), Question-Answering systems.

One of the fundamental challenge of such a system is to come up with this knowledge structure
that captures the information from the vision and the reasoning modules. This representation should
also facilitate a seamless interaction between the commonsense knowledge, reasoning systems and
QA systems. To this end, we propose Scene Description Graphs (SDG), a graphical representation
of the semantic content and the information in images. In Figure 1, we show a possible SDG
for an example image. SDG is a directed labeled graph2 among entities (nouns), events (verbs)
and traits (properties, superclasses of entities). The event nodes are connected to a dummy node
SCENE by an edge labeled "location". The constituent nodes are separately color-coded to show
inferred-concepts which cannot always be grounded to a region of the image. The spatial relations
are inspired by Elliott & Keller (2013). In this work, we present a preliminary implementation that
abides by the proposed architecture, obtains a Scene Description Graph from an image. This graph
can be used to generate sentences or answer questions about the image.

2. Note that similar structures are also generated by Semantic parsers such as K-parser (kparser.org).
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2. DeepIU: A Deep Image Understanding Architecture

An image is a vast source of information. For example, in an image containing a tree: one might
require the knowledge of leaves (which ones turned yellow), its branches and birds sitting on its
branches. On the other end, we might want to know how many trees are there. All these information
belong to different levels of granularity and focuses our attention to different regions in an image.
In short, it does not seem plausible to gather complete knowledge about an image in one iteration.

Figure 2: A cognitive architecture for Deep Image Understanding.

One way a human refines his own knowledge is to ask relevant questions based on his cur-
rent knowledge and previously answered questions, and keep asking till he reaches a “plausible
answer”/“enough information”. To support such an exploratory behavior, a DeepIU architecture
should support a loop of ..-reasoning-vision-reasoning-vision... In Figure 2, we present our archi-
tecture supporting such a loop of vision and reasoning. The core of the architecture comprises of
the following modules: i) Visual Detection, ii) Knowledge Base and iii) Logical Reasoning system.
A system under this design should provide interfaces to: i) Sentence Generation and iii) Question-
Answering system modules.

Visual Detection: Similar to the anatomic properties of a human body, a “Visual Detection”
module should ideally resemble the functionalities of our eyes i.e. recognition and perception. The
properties are as follows: i) (Objects and Regions) it should be able to detect objects and regions
(such as human, water-body etc.); ii) (Scenes) for a better understanding of the scene, it should
also be equipped to detect properties of the whole scene in view, for example, the scene resembles
a platform; iii) (Properties) it should detect different properties (including spatial ones) of objects
and regions (such as size, height, color of objects; color, shape of region; relative positions of two
objects) etc. In computing terms, such detection generally amounts to different Image Processing
techniques such as segmentation, shape-contour detection etc. Smarter techniques are being de-
veloped to detect relative sizes of objects (Bagherinezhad et al. (2016)); iv) (Attention) a visual
detection module is also expected to interact with a reasoning module and hence, the former should
have a proper interface for controlling “which detector to fire over which region of the image”.
Idealistically, such a Detection module might consist of a large set of Object Detection Classifiers,
Scene Detection Classifiers, and Attribute (color, shape, size) Detection and Image Segmentation
modules.
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Knowledge Base: Different forms of background knowledge is essential to solving intelligent
tasks by artificial intelligent systems and hence, a “Knowledge Base” is integral to any cognitive
architecture. In a DeepIU architecture, we need commonsense knowledge3 to especially answer the
following questions: i) the probable events that the detected objects are participating in; ii) the past
and future events that could be causally connected to such events; iii) ontological information about
the probable scenes detected; iv) and lastly, a holistic background (ontological, spatial, common-
sense etc.) knowledge pertaining to every object of the scene in view. It should be noted that, on
a high level, two kinds of knowledge/beliefs are required i) probabilistic beliefs that are empirical
and updated over time and, ii) hard beliefs that are rarely updated.

Reasoning System: A reasoning system in a DeepIU architecture is expected to “guide, predict
and advise” (similar to the functionalities of “intelligence” defined in MacFarlane (2013)). In cases
where it might need more information to answer a question or find a solution to a given task, it
should be able guide and advise the Visual Detection module to search “what” and “where” in the
image. Essentially, a logical reasoning system should represent the logical knowledge using a set of
rules and should be able to traditionally perform deductive, inductive and abductive reasoning con-
sidering both probabilistic and hard beliefs. Traditional formalisms like Answer Set Programming
are powerful representation languages; though the inference suffers from intractability problems and
the usage of hard rules and facts. Whereas, much of the commonsense knowledge is probabilistic
and in most cases, reasoning is performed with incomplete knowledge. Hence, it is important to use
a Probabilistic adaptation of such logical systems in which rules and facts are not constrained to be
binary and supports the agent’s “imperfect” knowledge about the world. Further implementations
of this architecture might adopt the languages such as Probabilistic Soft Logic (Bach et al. (2013)),
Markov Logic Network (Richardson & Domingos (2006)) etc.

Iterate: Human beings often explore a scene in multiple iterations. In each iteration, our search
for a particular “answer” becomes more targeted and focused. In the same way, a DeepIU architec-
ture should have the capability to ask for more focused and targeted information. We can think of
such a loop as asking the “right” question to the Visual Detection module or asking it to perform
directed Image Processing on restricted regions of images. To achieve this, the reasoning system
can output a possible question that guides the Visual Detection module to perform such processing,
and the loop goes on till we find enough information. Another purpose that the “loop” can serve
is to resolve ambiguity. If the vision module has detected two probable (equally low-confidence)
objects, then reasoning with background knowledge might help us resolve this ambiguity.

In Table 1, we show some of the vision-reasoning-vision loop examples to answer questions of
different levels of difficulty.

3. Current Architectures and Related Works
The effort to have a general architecture to understand and reason about images can be traced back to
Marr (1982), in which D. Marr proposed three different levels: computational theory; representation
and algorithm; and hardware implementation. Here, we focus on Marr’s representation and algo-

3. The type of commonsense needed here can be compared with Semantic Knowledge according to definitions in Psy-
chology. By definition, semantic Knowledge is “general knowledge about the world, including concepts, facts and
beliefs (e.g., that a lemon is normally yellow and sour or that Paris is in France)” (Yee et al. (2013)).
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Knowledge
Questions Loop
List the objects in the image. Vision - detect: objects

Comprehension

What will the man do next?
Vision - detect: objects, events
Reason - infer: higher-level concept (e.g.: A kind of Food preparation)
Reason - output: probable next-event of cutting

Analysis

How will you cut tofu?

Vision - detect: objects (hands, tofu, knife, bowl), events (holding bowl,
holding knife, cutting)

Reason - suggest: detect hand-positions
Vision - detect: hand-position
Reason - Represent knowledge of the activity cutting tofu in terms

of the object’s relative locations and constituent actions.
Reason - describe: the activity cutting tofu.

Application

Why is the man holding the bowl with his other hand?

Vision - detect: objects (hands, tofu, knife, bowl), events (holding bowl,
holding knife, cutting)
Reason - lookup: background knowledge.

search causes of holding a bowl (or holding an object) or
search effects of not holding bowl.

Synthesis

Propose an alternative method to cut a tofu.

Vision - detect: objects (hands, tofu, knife, bowl), events (holding bowl,
holding knife, cutting)

Reason - lookup background knowledge.
search other methods of cutting tofu, or
search for “cutting vegetables” (generalization).

Table 1: A Few Examples of the loop of ..-vision-reasoning-vision-.. to answer different categories of ques-
tions. A few black-box methods have been used to describe the action taken by each module: i) detect
(fire object, action detectors), ii) suggest (guiding visual module to fire a detector), iii) lookup and search
(query the knowledge base), iv) infer (infer (causally related) previous, next events; higher-level concepts),
v) describe (natural language generation).

rithm level, and further extend it into three sub-levels: perception algorithm; image representation;
and reason beyond appearance. A more general thinking of a cognitive architecture was presented
by Langley et al. (2009), in which they argue an unified integration of perception, memory and
reasoning is needed to perform cognitive tasks such as image understanding.

The first popular architecture of image understanding treats the problem as a one way feedfor-
ward process. The systems under this paradigm aim to extract meaningful information from images
and videos. As Karpathy & Li (2014) suggests, some of the categories that these systems belong to
are 1) dense image annotations, 2) generating textual descriptions, 3) grounding natural language
in images, 4) neural networks in visual and language domains. A part of our work has some com-
monalities with the works of generating textual descriptions. This includes the works that retrieves
and ranks sentences from training sets given an image such as Farhadi et al. (2010); Ordonez et al.
(2011); Socher et al. (2014). Kulkarni et al. (2011), Yang et al. (2011)are some of the works that
have generated descriptions by stitching together annotations or applying templates on detected im-
age content. The main drawback of these image understanding architecture is the lack of a module
to represent, organize and utilize the information extracted from images and videos.

The second architecture of image understanding goes one bit further, in which there have been
works to represent the information content in images explicitly (Lan et al. (2012); Elliott & Keller
(2013)). Recently, Johnson et al. (2015) introduced scene graphs to describe scenes and Schus-
ter et al. (2015) creates scene graphs from descriptions, and Yang et al. (2014) proposed action
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grammar to create activity trees to represent human manipulation actions. However, these rep-
resentations of the image or video content is not designed for being utilized to do image based
reasoning. In this work, our representation (SDGs) is automatically constructed from an image, and
due to the event-entity-attribute based representation and meaningful edge-labels (borrowed from
KM-ontology (Clark et al. (2004))), SDGs are more equipped to facilitate symbolic-level reasoning.

The third and very new architecture of image understanding goes even further to think about
utilizing the extracted representation for image question answering. At reason beyond appearance
level, several works have shown promising efforts to acquire and apply commonsense in different
aspects of Scene Analysis. Zitnick & Parikh (2013) use abstraction to discover semantically similar
images and Santofimia et al. (2012) uses common-sense to learn actions. In the field of Visual
Question Answering, very recently researchers spent efforts on both creating challenging datasets
and proposing new models (Antol et al. (2015); Malinowski et al. (2015); Gao et al. (2015); Ma
et al. (2015a)). Both Malinowski et al. (2015) and Gao et al. (2015) use recurrent networks to
encode the sentence and output the answer. The work from Ren et al. (2015) formulated the task
as a classification problem and the work from Yang et al. (2015) approached image understanding
as a continuous questioning and answering process. More recently, Xiong et al. (2016) proposed
to use the architecture of Dynamic Memory Networks to model the episodic memory required for
answering visual questions. The main drawback of these architectures are the missing of explicit
representation of the knowledge. When the system produces wrong results, it is almost impossible
to trace back the system and analyze the failure case.

The most related work to our architecture is Aloimonos & Fermüller (2015)) (and Summers-
Stay (2013)) in which authors lay down the foundations of the “cognitive dialogue” (the loop) and
proposes systems where vision is an active part of a reasoning system.

4. Our Preliminary Implementation
In this work, we provide a preliminary implementation4 of the above architecture accompanied by
experimental results on three popular Image Datasets (Flickr 8k, Flickr 30k and MS-COCO).

To understand images, we map the space of images to the space of text through SDGs. To do
that, we first robustly define such mappings between regions of images to (meaningful) segments of
text5. Let us assume that the fundamental units of an image (say F) are the objects6 and its visible
properties (location, shape, size, color, contour etc.), regions and its visible properties, and actions.
To avoid further complexity, we consider only those images, in which at least one fundamental unit
(f ∈ F) can be detected (by an ideal detector). Now, these units can be roughly mapped to words
with the following parts-of-speech (POS) tags: nouns, verbs, adjectives, adverbs and prepositions.
Next, we define some mappings explicitly to express the relations between the composition of these
units in the space of images and phrases in the space of text.

4. For a more detailed description of this system, please check out the arXiv version Aditya et al. (2015a).
5. Karpathy & Li (2014)’s work (and other Neural approaches) essentially uses the neural networks to learn a similar

mapping between any region of an image to phrases. But this method does not utilize the richness of the structure
of text and images, and the mapping is also independent of commonsense knowledge (which should prevent an
intelligent system to learn wrong mappings in adverserial situations).

6. Objects can consist of visible, partly visible or occluded objects. If the object person is detected, occluded objects
like organs in a body, can be inferred to be present using commonsense Knowledge Bases such as ConceptNet.
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Observed Scene Constituents (OSC) are phrases or words that represent what we actually see
in the image7. In a phrase, the individual words can identify an object, group of objects, their visible
properties, regions or actions. For example: person wearing shorts, person skateboarding, young
person, kid smiling, people playing etc. are all scene constituents.

Inferred Scene Constituents (ISC) are phrases or words that cannot be directly seen in the
image, but can be inferred. For example waiting room, open space, dark corners are ISCs.

A Scene represents one (or more) actions, involving (one or more) objects; and spatial relation-
ships among objects and regions. The action(s) together make up a natural event, such as: a person
is lying on a bench, in a park; a person is being evicted; a bank is being robbed.

4.1 Visual Detection and Recognition
We use deep Object recognition, deep Scene (category) recognition and deep Observed Scene Con-
stituent recognition as part of the Visual Detection module.

- For deep object recognition, we use the trained bottom-up region proposals and convolutional
neural networks (CNN) object detection method from Girshick et al. (2014). It considers 200 com-
mon object classes (denoted as N ) and it is trained on ILSVRC 2013 dataset.

- For deep scene (category) recognition, we use the trained CNN scene classification method
from Zhou et al. (2014). The classification model is trained on 205 scene categories (denoted as S).

- For deep constituent (OSC) recognition, we further augment the Flickr 8K image dataset with
human annotation of constituents using Amazon Mechanical Turks. We specifically ask the anno-
tators to annotate not only objects, but what objects are doing or properties of objects. We allow
the labelers to use free-form text for describing constituents to reduce annotation effort. We obtain
a standardized set of constituents by performing stop-words removal, parts-of-speech processing to
retain nouns, adjectives and verbs.We use the top 1000 frequent phrases (denoted as C). Some of the
top phrases are dog run, dog play, kid play, person wear short etc. We post-process the annotations
for each training image in a similar manner, and consider the phrases as labels if they are among the
1000 top constituents. For each image, we then use the pre-trained CNN model from Krizhevsky
et al. (2013) to extract a 4096 dimensional feature vector (using Donahue et al. (2014)). We then
trained a multi-label SVM to do constituents recognition using these deep features.

The output from the detection system consists of object (Pr(n|I)), scene (Pr(s|I)) and con-
stituent (Pr(c|I)) detection scores for top 5 objects and scene categories, and top 10 constituents.

4.2 Constructing SDGs from Visual Detections
Our Reasoning framework has three phases: i) the pre-processing phase, ii) the knowledge extrac-
tion and storage phase and iii) the reasoning module to infer a knowledge structure.
4.2.1 Pre-processing Phase
In this phase, we collect Ontological information (synonyms, hyponyms and hypernyms) about
object classes in Object Meta-data table (OT ) and scene categories in Scene Meta-data (SM ). For
scene categories, alongwith synonyms, hypernyms and hyponyms, we also collect correspondence

7. To determine if a word or a phrase is a scene constituent or not, it will be helpful to ask ourselves the question: “can
we mark a region or set of regions in the image that represents the meaning of this word or phrase completely?”. If
we can and the word or phrase is not an object, action or region; then the word or phrase is a scene constituent. Here,
we can assume that bounding box for an action will be union of the bounding boxes of its constituent objects.
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between each scene category and ISC. We hand-annotated all the ISCs for each scene category and
learnt (by counting) a prior belief for each ISC in a scene from human annotations. For example, for
the scene class airport_terminal, we add {waiting room, big glass view, people} as the list of ISCs
and air terminal as the synonym; and learn the priors 0.7, 0.6 and 0.9 respectively for ISCs. We
also use scene category detection tuples (ST ) and human annotations (Ad) for all training images.
For detections, we use the deep Scene (category) Recognition module from the previous section to
detect top 5 scene categories from each training image.
4.2.2 Knowledge Extraction and Storage
To capture the commonsense and probabilistic knowledge about the domain, we created a Knowl-
edge Base Kb and a Bayesian Network Bn using the pre-processed data.

Knowledge Base: We used K-parser (kparser.org) for knowledge extraction from each
sentence of the Image Annotations. Mainly, for a sentence such as “a man, laying on a bench,
is eating cookies” K-parser extracts the events eat, lay and their participants as person, cookie
and person, bench respectively, as a set of entity and event-nodes connected by meaningful labels.
Internally, K-parser uses Stanford Parser to get the syntactic dependency graph. The K-parser then
maps these dependency relations to the set of KM-Relations (Clark et al. (2004)) and some more
newly created ones (see http://bit.ly/1Wd8nGa). The resulting graph is further augmented
using ontological and semantic information from different sources (more details in Algorithm 1 in
Sharma et al. (2015)). This K-parser output graph is then generalized i.e. entities are replaced by
their superclasses (this creates consistency with the classifiers in N ). Then the graphs are merged
incrementally based on overlapping entities and events, to create a single knowledge-graph (Kb =
〈G, C〉). G = 〈V,E〉 denoting set of labeled vertices V , set of labeled edges E. Each vertex can be
of three types: events, entities and traits. Events correspond to verbs, entities correspond to nouns
that directly interact with events and traits represent all other nouns or adjectives. Edge labels in
theKb are exactly the same as in the K-parser. C is a set of scenes which corresponds to generalized
(nouns replaced by super-classes) K-parser graphs of sentences and is essentially a sub-graph of G.

The Bayesian Network (Bn): To capture the knowledge of naturally co-occurring entities (N )
and ISCs (CIs), we learn a Bayesian Network that represents the dependencies among them. We
create the training dataD which is a collection of tuples T (where T = [ti]

N
i=1 andN = |N |+|CIs|).

Each term ti is binary and denotes 1 if the ith entity (or ISC) occurs in the tuple. We use the Tabu
Search algorithm to learn the structure and then we populate the Conditional Probability Tables
using the R-bnlearn package (Scutari (2010)).

To create D, we process the annotations for each training image to automatically detect entities
and ISCs. We parse the sentences using K-parser and extract entities. We match these entities with
entities in (N ) based on base-forms and synonyms of the words. Some of the ISCs are detected
using rule-based techniques, for e.g., we detect the edges edge(wear,agent,person) and edge(wear,
recipient, shorts) in the K-parser semantic graph for ISC “people wearing shorts”. To detect ISCs
seldom mentioned in annotations, we use the scene detection tuples ST and we look-up all ISCs of
the scene category with the highest score (Pr(s|Itr)), from SM .
4.2.3 Inference Through Knowledge and Reasoning
Equipped with the model 〈Kb,Bn,SM ,OT 〉, we use 〈Pr(n|img), Pr(s|img), Pr(c|img)〉 for an
image (img ∈ I) to construct an SDG in the following way.
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I. Observed Scene Constituents: We extract entities (nouns) and events (verbs) from top 10
constituents (based on Pr(c|img)) and add to the set of detections. For example, the constituent
person wearing sweatshirt results in an event wear with two edges: one labeled agent joining the
entity person and another labeled recipient joining the entity sweatshirt.

II. Inferred Scene Constituents: We look-up the ISCs for top 5 detected scenes (based on
Pr(s|img)) from SM , and construct Cfreq. Initially, Cinf = φ, andOimg = {n|Pr(n|img) > αh}.
We calculate Smax ← argmaxs∈Cfreq

P (s|Cinf ,Oimg) and add Smax to Cinf . We iterate while
the entropy (

∑
s∈Cfreq

{−P (s|Cinf ,Oimg) ∗ logP (s|Cinf ,Oimg)}) keeps decreasing (or while
number-of-iterations is less than T 8).

III. Noisy Objects: Next, we rectify the low-scoring entities based onOimg and Cinf . For each
low-scoring entity, we get all its siblings i.e. we get all the children of its hypernyms from WordNet.
For example, if bathing cap is assigned a low score, the assigned superclass is cap and its children
are baseball cap, ski cap etc. We calculate the following omax = argmaxo∈siblings P (o|Cinf ,Oimg)
and then add omax to the high-scoring entities list (Oimg).

IV. Inferring Scenes: Given the inferred ISCs (Cinf ) and entities (Oimg), we find scenes that
the image describes.

First, we find a co-occurring event for a pair of entities in Oimg by considering the event-nodes
on the path from one entity to another in the graph G. For example, consider the entities person and
swimming trunks (corresponds to the vertex trunk in Kb). We get events such as sniff, climb, wear
etc., i.e., some corresponding to tree-trunk and others to swimming-trunks. We denote the set of
connected entities by Oev and set of events by Ev.

For filtering spurious events, we introduce the notion of Edge-Compatible Events. An event (ev)
is edge-compatible with respect to two entities (e1 and e2) if they are connected to the event using
edges with compatible labels (l1 and l2). Written more formally in horn-clause semantics9:

edgeCompatible(ev, e1, e2)← edge(ev, l1, e1, cimg) ∧ edge(ev, l2, e2, cimg) ∧
labelCompatible(l1, l2)

The labels in K-parser (and in turn our Kb) are interpreted based on definitions from KM-
ontology and the label-compatibility is understood based on such interpretations. For example,
(agent, recipient) is a compatible pair and only an animate entity can be an agent. Thus, the event
wear is edge-compatible with respect to entities person and trunk.

To filter events such as climb etc, we consult the knowledge in OT and the set of Scenes C and
we retain only those events (ev) that are connected to an entity (e1) which is of the same superclass
(cl1), in some Scene (c1) in C. Expressed in a formal way:
valid(ev)← edge(e1, instanceOf, cl1, c1)∧edge(ev, l1, e1, c1)∧edge(e1, instanceOf, cl1, query)
Given the filtered events and entities (Oev), we consider a Scene in C as candidate if all edges from
a detected valid event, are present in it. Next, we weight each candidate Scene using the remaining
entities in (Oimg \Oev) and ISCs; i.e., increase a counter if an entity or ISC occurs in the graph. We
also calculate a joint confidence-score for each scene based on the Pr(n|I), Pr(s|I), Pr(c|I) values

8. The hyper-parameters (T, αh) are set based on performance on validation data.
9. In simplistic terms, the rule A ← B ∧ C implies that A is true if B and C are both true. edge(e1, l, e2, c) denotes

there is an edge between nodes e1 and e2, labeled l2 in Scene c.
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of the object, scene category and constituents (OSC) present in the Scene. Based on the counters
and the joint confidence-score, we rank the Scenes.

V. SDG Construction: If we do not find a suitable Scene in C, we construct an SDG using the
following rules: i) add edge(scene, component, s) for all ISC s in Cinf ; ii) add edge(event, location,
scene) for the top detected events; iii) add all compatible edges related to the events in Ev such as
edge(wear,agent,person) and edge(wear,recipient,trunk); and iv) for all entities oim in (Oimg\Oev):
if it is an animate entity, add edge(oim, location, scene); Otherwise, find the shortest path from oim
to the top detected event in the Kb and add the edges on the path to the SDG.

VI. Template Based Sentence Generation: We generate sentences from the SDG using Sim-
pleNLG (Gatt & Reiter (2009)). For example, for the edges edge(wear, agent, person) and edge(wear,
recipient, shorts), we will generate “a person is wearing shorts”. Based on the edge-labels (labels
from KM-ontology) we populate the verb, subject, object, prepositions and adjectives (including
quantitative10) of sentences using simple rules.

5. Preliminary Experiments and Results
In this paper, we use three image data sets, popularly referred to as Flickr 8k, Flickr 30k and MS-
COCO datasets Hodosh et al. (2013). These three datasets have 8,092, 31,783 and more than 160K
images respectively. All the images from these datasets are accompanied with 5 annotated sentences
that describe the image. For all datasets, we used the train-test splits from Karpathy & Li (2014)
and the 4000 testing images (1000 each from Flickr 8k and 30k; 2000 from MS-COCO validation
set) serve as the testing bed for our experiments. On these datasets, we adopted two experiments to
evaluate the generated SDGs: i) qualitative evaluation of generated sentences and ii) image-sentence
alignment evaluation. We compare our results with Karpathy & Li (2014) as it was one of the recent
(and among the first) neural approaches which produced best results over all the previous works.

Amazon Mechanical Turk (AMT) Evaluation of Generated Sentences: Since image de-
scription generation is innately a creative process, a good metric is to ask humans to evaluate these
sentences. The evaluation metrics: Relevance and Thoroughness, are therefore proposed as empir-
ical measures of how much the description conveys the image content (relevance) and how much
of the image content is conveyed by the description (thoroughness). We engaged the services of
AMT to judge the generated descriptions based on a discrete scale ranging from 1–5 (low rele-
vance/thoroughness to high relevance/thoroughness). The average of the scores and their deviation
are summarized in Table 2. For comparison, we asked the AMTs to also judge one gold-standard
description and the output from Karpathy & Li (2014).

Image-Sentence Alignment Evaluation: We evaluate the image-sentence alignment quality
using ranking experiments. We withhold the testing images and use the generated sentences as
queries. We process the textual query and construct Gq = (Vq, Eq) using the same procedure by
which we construct Kb. For each image, we take the SDG Gimg = (Vi, Ei) and calculate similarity
between the SDG and the query using the formula:

Sim(Gq,Gimg) = (
∑

vq∈Vq

maxvi∈Vi
(sim(vq, vi)))/|Vq|

sim(vq, vi) = (wnsim(label(vq), label(vi)) + Jaccard(neighbors(vq), neighbors(vi)))/2.

10. For high-scoring detections, we consider the spatial information from the bounding-boxes. For N such detections of
an object obj, we generate sentences like N obj’s are in the scene.
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Experiment Karpathy & Li (2014) Our Method Gold Standard
R ± D(8k) 2.08± 1.35 2.82 ± 1.56 4.69± 0.78
T ± D(8k) 2.24± 1.33 2.62 ± 1.42 4.32± 0.99

R ± D(30k) 1.93± 1.32 2.43 ± 1.42 4.78± 0.61
T ± D(30k) 2.17± 1.34 2.49 ± 1.42 4.52± 0.93

R±D(COCO) 2.69 ± 1.49 2.14± 1.29 4.71± 0.67
T±D(COCO) 2.55 ± 1.41 2.06± 1.24 4.37± 0.92

Table 2: Sentence generation relevance (R) and thoroughness (T) human evaluation results with gold standard
and Karpathy & Li (2014) on Flickr 8k, 30k test images and COCO validation images. D: Standard Deviation.

Vertex-similarity is calculated based on their word-meaning similarity and neighbor similarity.
Here wnsim(., .) is WordNet-Lin Similarity Lin (1998) between two words and Jaccard(., .) is
the standard Jaccard coefficient similarity. Based on the above measure, we give the image retrieval
results compared with results from Karpathy & Li (2014) in Table 3.

Flickr8k
Model R@1 R@5 R@10 Med r
Karpathy & Li (2014) BRNN 11.8 32.1 44.7 12.4
Our Method-SDG 18.1 39.0 50.0 10.5

Flickr30k
Karpathy & Li (2014) BRNN 15.2 37.7 50.5 9.2
Our Method-SDG 26.5 48.7 59.4 6.0

MS-COCO
Karpathy & Li (2014) BRNN (1k) 20.9 52.8 69.2 4.0
Our Method-SDG (1k) 19.3 35.5 49.0 11.0
Our Method-SDG (2k) 15.4 32.5 42.2 17.0

Table 3: Image-Search Results: We report the recall@K (for K = 1, 5 and 10) and Med r (Median Rank)
metric for Flickr8k, 30k and COCO datasets. For COCO, we experimented on first 1000 (1k) and random
2000 (2k) validation images.

(a) (b) (c) (d)

(e) (f)

Figure 3: The SDGs in (b), (d) and (f) corresponds to images (a), (c) and (e) respectively. More examples:
http://bit.ly/1NJycKO.

Analysis: There are other works in Image Retrieval (Ma et al. (2015b)) and Caption Generation
(Devlin et al. (2015)) which achieve better results than shown in Table 1 and 2. We believe that from
motivational standpoint, our work is not directly comparable with such systems. To the best of our
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knowledge, there are only two works Lan et al. (2012); Elliott & Keller (2013) which proposes au-
tomatic construction of semantic representation of images. The results of Karpathy & Li (2014) are
better than these approaches and this is why we take one of the neural approaches for comparison.

5.1 Question-Answering (QA) Case Studies
In this section, we give a brief overview of the QA system that is currently under development. In
this paper, we only provide the intuitions behind the system using some example images.

Figure 4: Two example Images from Flickr 8k. Note that for both the images, the state-of-the-art detections
are quite noisy. Still, the current framework is able to detect “explainable” stories which can be queried upon.

For the image in Figure 4(a), the Scene Description Graph is represented as a set of has-tuples.
Relying on the advantage of using meaningful relations from KM-ontology, we can use these as
inputs to an Answer Set Program. If we pose the question that “Is someone drinking from the
fountain?” in ASP (as shown in the figure), we can execute the above program in Clingo-3 and we
get the answer as yes_fountain(person1).

For the second image in Figure 4(b), we pose the question “is someone playing tennis”. In this
case, we need additional background knowledge such as “if someone is holding or swinging a tennis
racket, then the game might be tennis” to detect the game of tennis. Though the above question is
written in ASP without any probabilistic weight, one can rewrite the rules in Probabilistic Soft Logic
(Kimmig et al. (2012)) assigning a weight to the rule for “tennis_detector”.

For future work, we plan to extend this top-down preliminary implementation to support the loop
of reasoning and vision, mainly starting with an interface where the visual module can be guided
to detect specific objects (regions, properties) in specific locations in the image. For QA task, it is
also important to guide the visual module from the beginning. For example, for the image in Figure
4(b), if the question is posed “is the woman wearing a headband”, relevant information might not
be directly obtained from a generated caption ( or even an annotated one). Hence, it is important
that vision is guided by the natural language question itself to generate relevant information and the
crux of our QA system is such guidance. The details of this work is out of the scope of this paper.

6. Conclusion
This paper introduced an architecture to facilitate deep understanding of Images. We provide moti-
vation about the necessities of such an architecture, followed by the necessary components it should
include. In this work, we also elaborate on a preliminary implementation of this architecture and
provide empirical results to show that this system is able to perform comparably to one of the recent
Neural approaches. We identify the fundamental challenge of realization of such an architecture
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as the representation of the knowledge in image and automatic derivation of such a representation.
We introduce a novel intermediate semantic representation of scenes, namely the Scene Description
Graph (SDG). The SDG is a representation of the scene that integrates direct visual knowledge (ob-
jects and their locations in the scene) with background commonsense knowledge. In addition, the
SDGs have a structure similar to semantic representations of sentences, thus facilitating the inter-
action between Vision and Natural Language. Here we used the SDG for the automatic creation of
sentences describing the scene; but, equipped with background knowledge, it also allows reasoning
and question/answering about the scene.
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