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Abstract

In this paper, we presentsgate-based regression functifor
planning domains where an agent does not have complete in-
formation and may have sensing actions. We consider binary
domains!, and employ the 0-approximation (Son & Baral
2001) to define the regression function. In binary domains,
the use of 0-approximation means using 3-valued states. Al-
though planning using this approach is incomplete, we adopt
it to have a lower complexity. We prove the soundness and
completeness of our regression formulation with respect to
the definition of progression and develop a conditional plan-
ner that utilizes our regression function.

Introduction and Motivation

An important aspect in reasoning about actions and in char-
acterizing the semantics of action description languages is to
define a transition function encoding the transition between
states due to actions. This transition function is often viewed
as aprogressionfunction in that it denotes the progression
of the world by the execution of actions. The ‘opposite’ or
‘inverse’ of progression is referred to eegression

Even for the simple case where we have only non-sensing
actions and the progression transition function is determin-
istic, there are various formulations of regression. For ex-
ample, consider the following. Leb be the progression
transition function from actions and states to states. l.e., in-
tuitively ®(a, s) = s’ means that if the actioa is executed
in states then the resulting state will bé. One way to de-
fine a regression functiof; is to define it with respect to
states. In that casec ¥ (a, s") will mean that the state is
reached ifa is executed irs. Another way regression is de-
fined is with respect to formulas. In that caBe(a, f) = g,
wheref andg are formulas, means thatdfis executed in a
state satisfying then a state satisfying will be reached.

For planning using heuristic search often a different for-
mulation of regression is given. Since most planning re-
search is about goals that are conjunction of literals, regres-
sion is defined with respect to a set of literals and an ac-
tion. In that case the conjunction of literals (often specify-
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ing the goal) denotes a set of states, one of which needs to
be reached. This regression is slightly different frim as

the intention is to regress to another set of literals (not an
arbitrary formula), denoting a sub-goal.

With respect to the planning language STRIPS, where
each actioru has an add lisdd(a), a delete listDel(a),
and a precondition lisPrec(a), the progression function is
defined asProgress(s,a) = s + Add(a) — Del(a); and
the regression function is defined &sgress(conj,a) =
conj+ Prec(a)— Add(a), whereconj is a set of atoms. The
relation between these two, formally proven in (Pednault
1986), shows the correctness of regression based planners;
which in recent years through use of heuristics (e.g. (Bonet
& Geffner 2001; Nguyen, Kambhampati, & Nigenda 2002))
have done exceedingly well on planning competitions.

In this paper we are concerned with domains where the
agent does not have complete information about the world,
and may have sensing actions, which when executed do not
change the world, but rather give certain information about
the world to the agentAs a result, plans may now no longer
be simply a sequence of (non-sensing) actions but may in-
clude sensing actions and conditionals. Various formalisms
have been developed for such cases (e.g. (Lobo 1998;
Son & Baral 2001)) and progression functions have been
defined. Also, the complexity of planning in such cases has
been analyzed in (Baral, Kreinovich, & Trejo 2000). One
approach to planning in the presence of incomplete infor-
mation is conformant planning where no sensing action is
used, and a plan is a sequence of actions leading to the goal
from every possible initial situation. However, this approach
proves inadequate for many planning problems (Son & Baral
2001), i.e., there are situations where sensing actions are
necessary. In that case, one approach is to use belief states
or Kripke models instead of states. It is shown that the total
number of belief states is double exponential while the total
number of 3-valued states is exponential in the number of
fluents (Baral, Kreinovich, & Trejo 2000). Here, we pursue
a provably less complex formulation with sensing actions
and use 3-valued states. In this approach, we will miss cer-
tain plans, but that is the price we are willing to pay for re-
duced complexity. This is consistent with and similar to the
considerations behind conformant planning. With that trade-
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semantics defined in (Son & Baral 2001) and define regres-



sion with respect to that semantidd/e then formally relate
our definition of regression with the earlier definition of pro-
gression in (Son & Baral 2001) and show that planning using
our regression function will indeed give us correct plans. We
then use our regression function in planning with sensing ac-
tions and show that, even without using any heuristics, our
planner produces good results. To simplify our formulation,
we only consider STRIPS like actions where no conditional
effects are allowed. We also restrict domain of a fluent to a
finite set of discrete values.

In summary the main contributions of our paper are:

A state-based regression function corresponding to the O-
approximation semantics in (Son & Baral 2001);

A formal result relating the regression function with the
progression transition function in (Son & Baral 2001);

An algorithm that uses these regression functions to con-
struct conditional plans with sensing actions;

o Implementation of this algorithm; and

lllustration of the performance of this algorithm with re-
spect to several examples in the literature.

Related Work Our work in this paper is related to dif-

ferent approaches to regression and planning in the pres-

ence of sensing actions and incomplete information. It dif-
fers from earlier formula regression such as (Pednault 1994;
Reiter 2001; Son & Baral 2001) in that it is a state-based
formulation and the other are formula based. Unlike the
conditional planners (Peot & Smith 1992; Cimatti, Roveri,
& Traverso 1998), our planner can deal with sensing actions
similar to the planners in (Etziomt al. 1992; Lobo 1998;
Son, Tu, & Baral 2004; Weld, Anderson, & Smith 1998).
However, it does not deal with nondeterministic and prob-
abilistic actions such as the planners in (Bonet & Geffner
2001; Pryor & Collins 1996; Rintanen 2000; 2002). Itis also
not a conformant planner as in (Cimatti, Roveri, & Traverso
1998; Eiteret al. 2000). For these reasons, we currently
compare our planner with those of (Son, Tu, & Baral 2004;
Weld, Anderson, & Smith 1998).

Background: 0-Approximation Semantics
For A STRIPS-like Language

Action and Plan Representation

We employ a STRIPS-like action representation (Fikes &
Nilson 1971) and represent a planning problem by a tuple
P = (A,0,I,G) whereA is a finite set of fluentsp is a
finite set of actions, and andG encode an initial state and
a goal state, respectively. A fluent literal is either a positive
fluent f € A or its negation (negative fluent)f. In this
paper, we are interested in the planning problem in widich
andG are sets of fluent literals. An actiene O is either
anon-sensing actioor asensing actiorand is specified as
follows:
e A non-sensing actiom is specified by an expression of

the form

action a :Pre Pre, :Add Add, :Del Del,

where Pre, is a set of fluent literals representing the

precondition fora’'s execution,Add, and Del, are two

disjoint sets of positive fluents representing the positive

and negative effects af, respectively; and

e A sensing actioru is specified by an expression of the
form
action «a :Pre Pre, :Sense Sens,

where Pre, is a set of fluent literals anflens, is a set

of positive fluents that do not appearfire,.

To illustrate the action representation and our search algo-
rithm, we will use a small example, a version of the “Getting
to Evanston” from (Weld, Anderson, & Smith 1998). Figure
(1) shows the actions of this domain.

[ Non-sensing action | :Pre | :Add | :Del ]
goto-western-at-belmont at-start on-western | at-start
on-belmont

take-belmont on-belmont, traffic-bad on-ashland | on-western

take-ashland on-ashland at-evanston

take-western —traffic-bad, on-western| at-evanston

[ Sensing action | ‘Pre | :Sense
check-traffic True traffic-bad
check-on-western True on-belmont

Figure 1: Actions of the “Getting to Evanston” domain

The notion of a plan in the presence of incomplete infor-
mation and sensing actions has been discussed in the liter-
ature (Levesque 1996; Son & Baral 2001). In this paper,
we considerconditional plansthat are formally defined as
follows.

Definition 1 (Conditional Plan) .
e An empty sequence of actions, denotefl]bis a condi-
tional plan.
¢ If a is a non-sensing action, thens a conditional plan.

e If a is a sensing action, p1,...,p, are mu-
tual exclusive conjunctions of fluent literals,
and ¢y,...,c, are conditional plans, then so is

_ a; cas.e.(gpl — Cly. ey Pn H-cn).
e if ¢y, co are conditional plans, then so is; cs.
¢ Nothing else is a conditional plan.

0-Approximation

The 0-approximation in (Son & Baral 2001) is defined
by a transition function® that maps pairs of actions and
approximate states into sets of approximate statesapin
proximate statgor a-state) is a paiT’, F') whereT'C A and
FCA are two disjoint sets of fluents. Intuitively, given an
a-stater=(T, F'), T (resp.F), denoted by..T (resp.o.F),
is the set of fluents which are true (resp. falseyinand
feA\(T U F) is unknown inc. Alternatively, we can also
view an a-state as the intersection of all states in a belief-
state. Leto;=(T1, F1) and oo,=(T%, F>) be two a-states.
o1Noe=(T1NT,, F1NF5) is called the intersection ef; and
o2. We sayo; extendss,, denoted by, <oy if 7,CT; and
F,CFy. 01\oy denotes the séff7\T5)U(Fy\ F>). For a set
of fluents X, we write X\ (T, F') to denoteX\(TUF). To
simplify the presentation, for a set of literals by L+ and
L~ we denote the set of fluen{sf | feL, fis a fluent}
and{f | =f€L, fisafluent}.

Given a fluentf and an a-state = (T, F'), we say thaff
is true (resp. false) i if f € T (resp. f € F). f (resp.
=f) holds ing if f is true (resp. false) im. f is known
(resp. unknown) ir if f € (TUF) (resp.f & (T U F)).

A set L of fluent literals holds in an a-state = (T, F') if



every member of. holds ino. A setX of fluents is known
in o if every fluent in X is known ino. An actiona is
executablen o if Pre, holds ino. The transition function
(for progression) is defined next.

Definition 2 (Transition Function) For an a-statec
(T, F) and an action, ®(a, o) is defined as follows:
e if a is not executable ia then®(a,0) = {L}; and
e if a is executable ir
— if a is a non-sensing action®(a, o) = {(T"\ Del, U
Add,, F\ Add, U Del,)};
— if a is a sensing action®(a,0) = {o'|c < ¢’ and
Sens, \ o =0"\ o}

The function® can be extended to define the functidh
that maps each pair of a conditional pjaand a-states into
a set of a-states, denoted ®y(p, o). Intuitively, ®*(p, o)
is the set of final a-states resulting from the executiopmiof
o. ®* is defined similarly tad in (Son & Baral 2001).

Given a planning problen? = (4, O, I, G), the a-state
representing is defined byr; = (ITN A, I~ NA). g =
{o | o¢ = o}, whereog = (G N A,G~ N A), is the
set of a-states satisfying the g@al A progression solution
to the planning problen® is a conditional plam such that
1L & ®*(p,or) and®*(p,o7) C X¢.

Regression and Its Relation with Progression
In this section, we will present our formalization of a re-
gression function, denoted biyegress, and prove its cor-
rectness.Regress is a state-based regression function that
maps a pair of an action and a set of a-states into an a-
state. For this we introduce the notion ofpartial state
(or p-state) as a palfT, F| whereT and F' are two dis-
joint sets of fluents. Intuitively, a p-stade-[T', F'| represents
a collection of a-states which extends the a-stiteF’).
We denote this set byxt(§) and call itthe extension set
of 6. Formally, ext(§) = {(T",F")|]T C T',F C F'}.
o' € ext(d) is called an extension of. Given a p-state
d=I[T, F|, we say a p-stat&=[T", F"'] is a partial extension
ofif TCT' FCF.

The regression function will be defined separately for

Del, N F # 0, and (i) Add, " F = 0, Del, N T = 0,
Pref N F C Del,,andPre; NT C Add,.

The regression on a non-sensing action is defined next.

Definition 4 (Regression - non-sensing action{siven a p-
stated = [T, F] and a non-sensing actian
e if a is not applicable i thenRegress(a,d) = L;
o if ais applicable inj thenRegress(a,d) = [T\ Add, U
Pre},F\ Del, U Pre;].

The regression function Regress for non-sensing
actions with respect to a set of p-states is de-
fined as follows. Regress(a,{d1,...,0n}) =
{Regress(a, 1), ..., Regress(a,d,)} where d0y,...,0,

are p-states andis a non-sensing action.

Example 1 (Getting to Evanston - con’t) The actions

takewestern and takashland are applicable if, = [{at-
evanston, {}]. We have Regress(takeesterng,) = [{on-
westerr}, {traffic-bad }] and Regress(takashland,dy) =
[{on-ashlang, {}]

We will now define Regress for sensing actions. Recall
that the execution of a sensing actienn an a-stater re-
quires that: is executable i and results in a set of a-states
®(a,0) whose member extends by the set of fluents in
sa € Sens, and everyf € Sens, \ s, holds ing. This
leads to the following definitions.

Definition 5 (Properness) Let a be a sensing actiom) =
{61,...,6,} be a set of distinct p-states, afid# X C
Sens, be a set of sensing fluents. We say thais proper
w.r.t X if (i) Sens, is known inA; (i) n = 2IX1; (iii) for
every partition(P, Q) of X, there exists only ong, € A
1<i<n)st 6 TNX =P 6FNX = Q; and
(iv)forevery ( < i # j <mn),d6T\X =6T\X,
0;. F\ X =0;.F\ X. WecallX asensed set &k w.r.t a.

Lemma 1 (Sensed Setonsider a sensing actiomand a
set of p-statea\. If there exists a sensed setdfw.r.t « then
it is unique.

Given a sensing actianand a set of p-states, we denote
p(a, A) as the unique sensed setdfw.r.t a; if there exists

non-sensing actions and sensing actions. Since the applica-ng sensed set w.itandA, we writep(a, A) = L.

tion of a non-sensing action in an a-state results in a single

a-state, the regression of a non-sensing action from a p-stateDefinition 6 (Strong Applicability Condition - sensing action)

should result into a p-state. On the other hand, as application

Let a be a sensing action and = {¢;,...,4,} be a set

of a sensing action in an a-state results in a set of a-states, theof p-states. We say that is strongly applicablein A

regression of a sensing action should start from a set of p- if () p(a,A) # L; and (i) Prej N 6. F

¢ and

states and result into a p-state. Besides the regression should”reg M 6;.1" = 0.

be sound (i.e., plans obtained through regression must be | the above definition, (i) corresponds to the fact that ex-
plans based on the progression) and complete (i.e., for eaChecuting a sensing actiom in an a-states results in a set

plan based on progression,using regression one should ob- ¢ o|»

tain that plan or an equivalent one) with respect to progres-
sion. To simplify the presentation, we define a partition of
a set of fluentsX as a pair(P, Q) such thatP N Q = 0
andP U @ = X. We begin with the applicability condition

of non-sensing actions and then give the definition of their
function Regress.

Definition 3 (Applicability Condition - non-sensing action)
Given a p-state) = [T, F] and a non-sensing actioa.
We say that is applicablein ¢ if (i) Add, N'T # 0 or

(a.8) a-states that are represented2syt*2)! corre-
sponding p-states @k wherep(a, A) denotes the set of flu-
ents that are not yet known, whitens, \ p(a, A) is already
known wheru is executed; (ii) guarantees thamnust be ex-
ecutable prior to its execution.

Although this strong applicability condition guarantees
the soundness of regression over sensing actions, it does
not guarantee the completeness. We now provide a weaker
applicability condition that guarantees both soundness and
completeness of regression.



Definition 7 (Applicability Condition - sensing action)
Leta be a sensing action and = {4;,...,J,} be a set of
p-states. We say thatis applicablein A if (i) there exists
a setA’'={0},...,0.}, whered! is a partial extension of;
(z=1,...,n), such thats is strongly applicable im\’; and
(i) Sens, is known inA.

Lemma 2 (Unique Sensed SetfConsider a sensing action
a and a set of p-stateA such thata is applicable inA.
Let A’={¢1,...,0,}, whered, is a partial extension of;
(G =1,...,n), A"={8",...,58,"}, whereé;,” is a par-
tial extension ofs; (i = 1,...,n). If p(a,A’) # 1 and
pla,A”) # L thenp(a, A') = p(a, A”)
Given a sensing actiom and a set of p-states. If there
exists aA’'={0},...,0.}, whered, is a partial extension of
0; (i = 1,...,n) such thatp(a, A") # L then, by Lemma
2, pla,A") = p(a,A”) for all A = {6",...,6,"},
where§;” is a partial extension of; (i = 1,...,n) and
p(a, A”) # L. We refer to the sei(a, A’) by S, a. If there
exits no suctp(a, A’), we write S, o = L. Note that, from
Definition 7, if a is applicable inA thenS, A is defined. In
that case, we also often say thats applicable inA w.r.t
Sa.a 1o make the applicability condition clearer from the
context.

Definition 8 (Regression - sensing action).eta be a sens-
ing action andA = {d4,...,J,} be a set of p-states.
e if a is not applicable inA, thenRegress(a, A) = L;
e if a is applicable inA, thenRegress(a, A) =
(U 0, 7))\ Saa U Pref, (U 6;.F) \ Sa,a U Pre].

Example 2 (Getting to Evanston - con't) Let A={4y,d2}
where 6; = [{at-start, traffic-bad, {on-western, on-
belmont, on-ashland, at-evanstdhand d, = [{at-start},
{traffic-bad, at-evansto}).

We have that check-traffic is applicable A w.rt
{traffic-bad} and that Regress(check-traffic, A) =
[{at-start)}, {on-western, on-belmont, on-ashland,
evanston|.

We now relate our regression functidtegress with the
progression functio®.

at-

Proposition 1 (Non-sensing action)Let 6 and ¢’ be p-
states, let: be a non-sensing action. Regress(a,§) = ¢’

whered’ # L, then for every” € ext(§’) we have that (i)
1L & ®(a,0”), and (i) ®(a,o”) C ext(d).

Proposition 2 (Sensing action)LetA = {§y,...,d,} bea
set of p-states)’ be a p-state, and be a sensing action. If
Regress(a, A) = § whered’ # L, then for every” €
ext(d"), we have that ()L & ®(a,o”), and (ii) ®(a,c”) C
ext(d1) U... Uext(dy).

We next extendRegress to defineRegress* that allows
us to perform regression with respect to conditional plans.

Definition 9 (Extended Regression Function)Let § and
{61,..
The extended transition functidtegress* is defined as fol-
lows:
e Regress*([],9) =9;
e For a non-sensing actiona,
Regress(a, d);

Regress*(a,d) =

., 0.} be a p-state and a set of p-states, respectively.

e For a conditional plan
p = a;case(pr1—C1, ..., Pn—Cn),
— if Regress*(c;,0)=_L for somei, Regress*(p,6) = L
— if Regress*(c;,0)=[T;, F;]i=1,...,n,then
Regress*(p,0) = Regress(a,{R(c1,6),...,R(cn,)})
whereR(c;,0) = [T; Ui, F; Up; |if o NF, =10
andy; NT; = 0; otherwise,R(c;,§) = L. Here,p;
and p; denote the sets of fluents occurring positively
and negatively inp;, respectively;
e For p = ¢1; ¢, Wherecy, ¢co are conditional plans,
Regress*(p,0) = Regress*(c1, Regress®(cq,9)); and
e Regress*(p, L) =L for every planp.

For a planning problen? = (A, O, I, G), letds be the p-
state[GT N A,G~ N A], andA; be the set of p-states such
that for everyd € Ay, o5 € ext(d). (Recall thato; is the
a-state representingandX. is the set of a-states in which
G holds). Aregression solutiono the planning problen®
is a conditional plare that upon applying from the p-state
d¢ will result to one of the p-states ify;. In other words, if
1 # § = Regress™(c, d¢) thend is a p-state belonging to
I-
We now formalize the soundness of the regression solu-
tion with respect to the progression transition functioh

Theorem 3 (Soundness of Regressiorfor a planning
problemP = (A, O, I, G) and a regression solutiopof P,
thenL & ®*(p,o;) and®*(p, o) C ext(dq).

We now proceed towards a completeness result. Intu-
itively our completeness result states that if a conditional
plan can be found through progression we can also find a
conditional plan through regression. The plan found through
regression may not be the same one though. It will be one
which does not have redundancies, both in terms of extra
actions and extra branches. We now formalize these condi-
tions. First we need the following notions. Given a sensing
actiona, a sub sensing action ef is a sensing action’
wherePre, = Pre, andSens, C Sens,.

Definition 10 (Sub Conditional Plan) Let ¢ be a condi-
tional plan. A conditional plar’ is a sub conditional plan
of cif
e ¢/ can be obtained frona by (i) removing an instance
of a non-sensing action fromy (ii) replacing a sensing
actiona with a sub sensing actiosubSense(a) of a; or
(ii ) removing a branchy; — ¢; from a case plan ir; or
e (' is a sub conditional plan of” wherec” is a sub con-
ditional plan ofec.

Definition 11 (Redundancy) Let ¢ be a conditional plan,
o be an a-state, and be a p-state. We say thatcontains
redundancy w.r.{c, ¢) if

o | £d*(c,0)and®*(c,0) C ext(d); and
e there exists a sub conditional plah of ¢ such thatl ¢

o*(d,0) and®* (', o) C ext(d).

For a non-empty set of fluents = { f1, ..., fx}, a binary
representation of is a formula of the formi; A ... Al
wherel; € {f;,—f;} fori =1,..., k. For a non-empty set
of fluentssS, let us denote3I N (.S) as the set of all different



binary representations ¢f. We say a conjunctiog of lit-
erals is consistent if there exists no fluginguch thatf and
—f appear inp. A set of consistent conjunctions of literals
X = {p1,...,pn} is said to span ovef if there exists a
consistent conjunction of literals ¢ , such that:

1. SN(pTUp™) = 0wherep™ (resp.o~) denote the sets
of fluents occurring positively (resp. negatively)n

2. i =@ Ab; whereBIN(S) = {41, ..., ).

We say that a set = {¢1,..., ¢, } is factorable if it spans
over some non-empty set of fluerfis

Lemma4 Let x = {p1,...,9,} be a non-empty set of
consistent conjunctions of literals. 4f is factorable, then
there exists a unique non-empty set of flughiich thaty
spans overs.

Definition 12 (Possibly Regressable Case Plan Structure)
Given a case plan structurep a; case(pq
Cl,---yon — ¢n). We say thatp is possibly regress-
able if (i) there exists a non-empty gkt S, C Sens,
and {1, ...,¢n} spans ovelS,, and (i) forl1 < i < n
Sensa C (0 Up;).

Definition 13 (Possibly Regressable Conditional PlanA
conditional planc is possibly regressable if every case plan
structure occurring in c is possibly regressable.

We now formulate the completeness result for regressable
conditional plans that have no redundancy.

Theorem 5 (Completeness of Regressior)et

P (A,0,1,G) be a planning problem. It is a
progression solution which is a possibly regressable condi-
tional plan without redundancy w.fb;, i) thenc is also

a regression solution aP.

—

We now present an algorithm that uses these regression func-

tions to construct conditional plans with sensing actions.

Conditional Planing Using Regression

In this section, we present a regression search algorithm
for constructing conditional plans with sensing actions that
makes use of th&egress function described in the previous
section. For a conditional planand a p-state, we call the
pair (¢, 6) andr-state For a set of r-state&’, by X; we de-
note the set of all the p-states occurringin The main idea
of the algorithm is as follows. At any step, we will maintain
a setN of r-states(c,d) such thatt = Regress*(c,dq).
We print a solution if we find a r-statg;, §) € N such that
or € ext(d) sincec would be one solution (Theorem 3).
Otherwise, we regress fromlV, (the set of all the p-states
occurring inN). This process involves the regression using

non-sensing actions and sensing actions which are applica-

ble in N,. The algorithm will stop with failure if (i) we
cannot regress from any p-state (or a set of p-stated)in
or (ii) no new p-state can be addedNg. Below, we list the
main steps of the algorithm:

SolvgP) whereP = (A,0, I, G)
1. LetN = {([],6¢)} (V. = {3c}).
2. Repeat

3. Ifthere exists soméc, §) € N s.t.or € ext(d) then printsc as
a solution.
4. Do one of the following:
4.1 Find a{c, §) € N, anon-sensing actians.t. a is applicable
in § andd’ = Regress(a,d) ¢ Ns. Add (a;c,d’) to N.

4.2 FindasetA = {{c1,61),...,{cn,dn)} C N andasensing
actiona such that is applicable inA; w.r.t somep) # S, C
Sensg, i.€.: (i) Sens, is known inA; and there exists a set
Sa = {f1,..., fx} C Sensq, 2¥ = n; (ii) there exists an
ordering of the set of conjunctions constructed using literals
out of Sa, {®1,...,¢ax}, such thatp; holds inéd; where
d; is a partial extension of; anda is strongly applicable in

= {61,...,0,} W.rt S,. If §’=Regress(a,As)ZNs,
add(a; case(p1—c1, ..., pn—cy), 8’ ) tON.
5. Until N does not change.
6. Return NO SOLUTION.
Below, we demonstrate how our algorithm works.

Example 3 (Getting to Evanston - con’t) We have that
G = { at-evanstoh and the initial condition/ = { at-start,
— on-western;- on-belmont;~ on-ashland~ at-evanston,
}. So,d¢ = [{ at-evanston}, {}]. The algorithm goes
through the iterations (#l) in Figure (2).

# | Action (@) Regressed-from member &f
0 ([, 0a)

1 | a; =take-ashland (0, 9c)

2 | by =take-western ([, 6c)

3 ao =take-belmont {ay,011)

4 =goto-western-at-belmont (b1,021)

5 az =goto-western-at-belmont (as;ar,d1s)

6 | check-traffic (as;az; a1, 613), (b2; b1, 622)
#l | Regress(a,d)/Regress(a, A) New member oV

0

1 611 = [{on-ashland, {}] {a1,011)

2 621 = [{on-western, {traffic-bad}] (b1,621)

3 | 812 = [{on-belmont, traffic-ba}, {}] | (az;a1,dl2)

4 62, = [{at-start}, {traffic-bad}] (ba; b1,022)

5 613 = [{at-start,traffic-bad, {}] (as;as;a1,013)

6 | 614 = [{at-star}, {}] (p, 614)

whereA = {61,...,0,} andp = check-traf fic; case(traf fic-bad —

as;az;ai, ~ traf fic-bad — ba; by).

Figure 2: Algorithm illustration
The following theorem establishes the correctness of our
algorithm.

Theorem 6 For every (c,0) € N where N repre-
sents the search space of the planning algorithm, then
Regress*(c,0a) = 9.

Since the algorithm search through all possible regression
path, we have the following theorem.

Theorem 7 For a planning problemP = (A, 0, I, G),
e if P has a regression solution thé&olve P) will return
a conditional plan; and
e if P has no regression solution th&wlve P) will return
NO SOLUTION.

Experimentation

We have experimentally compared our system with the
two systems (Weld, Anderson, & Smith 1998; Son, Tu, &
Baral 2004) in domains witeensing actions and incomplete
information but did not compare our planner with (Pryor
& Collins 1996) since the planner in (Weld, Anderson, &
Smith 1998) is significantly better than that of (Pryor &
Collins 1996). We also did not compare our system with oth-
ers that deal with nondeterministic or probabilistic actions as
our action representation does not have this capability.
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