
Adding Time and Intervals to Procedural and Hierarchical Control Specifications∗

Tran Cao Son
Computer Science Department
New Mexico State University
Las Cruces, NM 88003, USA

tson@cs.nmsu.edu

Chitta Baral and Le-Chi Tuan
Computer Science and Engineering

Arizona State University
Tempe, AZ 85287, USA

chitta |lctuan@asu.edu

Abstract

In this paper we introduce the language Golog+HTNTI for
specifying control using procedural and HTN-based con-
structs together with deadlines and time restrictions. Our lan-
guage starts with features from GOLOG and HTN and ex-
tends them so that we can deal with actions with duration by
being able to specify time intervals between the start (or end)
of an action (or a program) and the start (or end) of another
action (or program). We then discuss an off-line interpreter
based on the answer set planning paradigm such that the an-
swer sets of the logic program have a one to one correspon-
dence with the traces of the Golog+HTNTI specification.

Introduction and Motivation
GOLOG (Levesqueet al. 1997) is an Algol-like logic pro-
gramming language for agent programming, control, and
execution. It is based on the situation calculus theory of
actions (Reiter 2000). GOLOG has been primarily used
as a programming language for high-level agent control in
dynamical environments (see e.g. (Burgardet al. 1998)).
Some of the ways GOLOG can be extended are: (a) adding
new program constructs (and providing the semantics for
these constructs thereafter); or (b) adapting the language
to an extension of situation calculus; or (c) combining (a)
and (b). The first approach to extending GOLOG has been
taken by (De Giacomo, Lespérance, & Levesque 2000;
Baral & Son 1999) where various new constructs such as
concurrency, interrupts, prioritized interrupts, or partial or-
dering are added to GOLOG. The other approaches can
be seen in (Reiter 2001; Grosskreutz & Lakemeyer 2000;
Boutilier et al. 2000) where continuous changes, durative
actions, or stochastic actions are considered. In these exten-
sions, time instances are introduced for specifying when an
action (or a program) should be executed; in (Grosskreutz
& Lakemeyer 2000), it is argued that the explicit specifica-
tion of time in GOLOG programs – similar to what is used
in (Reiter 2001) (also in (Boutilieret al. 2000)) – is not ad-
equate for specifying event-driven behaviors and cc-Golog
is proposed to address this problem. However, none of the
constructs in cc-Golog allows us to express a simple behav-

∗Supported by NSF grants EIA-0130887, EIA-0220590. NSF
grant 0070463, and NASA grant NCC2-1232.
Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

ior like “actiona should start its execution within 3 units of
time after actionb starts its execution” because the language
forces actions to happen as soon as possible, which – given
that botha andb are executable at the time 0 – will not allow
us to consider “a starts at 0 andb starts at 1” as an acceptable
trajectory even though it satisfies the stated constraint.

In this paper, we investigate the introduction of actions
with duration into the framework proposed in (Son, Baral,
& McIlraith 2001) in which not only GOLOG-constructs
such as sequence, while-loop, if-then-else, etc. but also
HTN-based constructs such as the partial ordering and tem-
poral constraints are allowed. This leads to a language1,
called Golog+HTNTI , that generalizes GOLOG-based and
HTN-based specifications with time intervals. Our language
differs from the extensions of GOLOG in (Reiter 2001;
Grosskreutz & Lakemeyer 2000; Boutilieret al. 2000) in
that it includes different HTN-based constructs such as par-
tial ordering and temporal constraints. Like cc-Golog, it
does not require the explicit specification of time.

To characterize Golog+HTNTI we need an action theory
that allows actions to have durations. For that we chose a
simple extension of the languageA (Gelfond & Lifschitz
1998), which we will refer to asAD. We give the semantics
ofAD using logic programming with answer sets semantics.
This (the semantics ofAD) allows us to define the notion of
a trajectory which we use to define the notion of a trace of a
Golog+HTNTI specification. We will begin with a short re-
view of the answer set semantics of logic programs. We then
present the languageAD and discuss answer set planning
with AD domains. We define the language Golog+HTNTI

and develop a logic programming based interpreter for it. Fi-
nally, we conclude with a brief discussion about future work.

Logic Programs and Answer Set Semantics
A logic program is a collection of rules of the form:

a0 ← a1, . . . , am, not am+1, . . . , not an or (1)

← a1, . . . , am, not am+1, . . . , not an (2)

where each of theai’s is a literal in the sense of classical
logic. not is the negation-as-failureconnective. not a
is called a naf-literal. Intuitively, the first rule means that
if a1, . . . , am are true andam+1, . . . , an can be safely as-
sumed to be false thena0 must be true. The second rule is

1The superscriptTI refers to time and intervals.



a constraint that requires that at least one ofa1, . . . , am is
false or one ofam+1, . . . , an is true.

The body of a rule (1) or (2) is satisfied by a set of literals
X if {a1, . . . , am}⊆X and{am+1, . . . , an}∩X=∅. A rule
of the form (1) is satisfied byX if either its body is not
satisfied byX or a0∈X. A rule of the form (2) is satisfied
by X if its body is not satisfied byX.

For a set of literalsX and a programP , the reduct ofP
with respect toX, denoted byPX , is the program obtained
from the set of all ground instances ofP by deleting (1.)
each rule that has a naf-literalnot l in its body withl ∈ X,
and (2.) all naf-literals in the bodies of the remaining rules.
Answer sets of logic programs are first defined by Gelfond
and Lifschitz in (Gelfond & Lifschitz 1990).S is ananswer
setof P if it satisfies the following conditions.
1. If P does not contain any naf-literal (i.e.m = n in every

rule of P ) thenS is a minimal set of literals that satisfies
all the rules inP .

2. If the programP does contain some naf-literal (m < n
in some rule ofP ), thenS is an answer set ofP if S
is an answer set ofPS . (Note thatPS does not contain
naf-literals, its answer set is defined in the first item.)

In what follows, we will refer to logic programming with
answer set semantics asAnsProlog. Answer sets of propo-
sitional programs can be computed using answer set solvers
such assmodels(Simons, Niemel̈a, & Soininen 2002),dlv
(Eiter et al. 1998), cmodels (Lierler & Maratea 2003),
or ASSAT (Lin & Zhao 2002). Answer set planning
(ASP) (Subrahmanian & Zaniolo 1995; Lifschitz 2002) is
an approach to planning using AnsProlog, an application
of answer set programming (Marek & Truszczyński 1999;
Niemel̈a 1999) to planning. In this approach, a planning
problem is translated into a logic program whose answer
sets correspond one-to-one to the solutions of the original
problem. To make answer set programming easier, several
new types of rules have been introduced. In this paper, we
will often make use ofcardinality constraintsof the form:
l{b1, . . . , bk}u ← a1, . . . , am, not am+1, . . . , not an

whereai and bj are literals andl andu are two integers,
and l ≤ u. Intuitively, such a rule enforces the constraint
that if the body is true then at leastl and at mostu literals
from the head are also true. Answer sets of programs with
cardinality constraints are defined in (Simons, Niemelä, &
Soininen 2002).

Reasoning About Durative Actions Using LP
As we mentioned earlier, to characterize domain constraints,
we need to first describe an action description language. The
action description language that we plan to use is a simple
extension of the languageA (Gelfond & Lifschitz 1998). In
our extension, which we will refer to asAD, we will allow
actions to have duration and this will be sufficient to help us
to justify and illustrate our language for domain constraints
with new connectives.

Syntax ofAD
An action theory consists of two finite, disjoint sets of names
A andF, calledactionsandfluents, respectively, and a set of
propositions of the following form:

(3) causes(a, f) initially (f) (5)
(4) executable(a, {p1, . . . , pn}) duration(a, v) (6)

wheref andpi’s are fluent literals (afluent literal is ei-
ther a fluentg or its negation¬g) anda is an action. (3) is
called adynamic causal lawand represents the effect ofa
while (4) states an executability condition ofa. Intuitively,
a proposition of the form (3) states thatf is guaranteed to
be true after the execution ofa. An executability condition
of a says thata is executable in a state in whichp1, . . . , pn

hold. Propositions of the form (5) are used to describe the
initial state. It states thatf holds in the initial state. Finally,
a proposition of the form (6) is used to say that duration of
actiona is v.

An action theory is a set of propositions of the form (3)-
(6). We will assume that each actiona appears in one and
only one proposition of the form (6) andv is a non-negative
integer expression. We will often conveniently writed(a) to
denote the valuev if duration(a, v) ∈ D and for a set of
actionsA, d(A) = max{d(a) | a ∈ A}.
Example 1 Consider an action theory with the set of fluents
{f, g, h}, the set of actions{a, b, c, d}, and the following
propositions:

causes(a, f) duration(a, 3) executable(a, {g, h})
causes(b, h) duration(b, 2) executable(b, {})
causes(c, g) duration(c, 2) executable(c, {})
causes(d,¬g) duration(d, 1) executable(d, {})
initially (¬f) initially (¬g) initially (¬h)

The propositions abouta (the first three propositions on the
first line) say thata will cause the fluentf to be true after 3
units of time and is executable only ifg andh are true. The
propositions for other actions have similar meaning.

Since the characterization ofAD is not the aim of this pa-
per, we do not present an independent characterization of it.
(Recall that our goal is to useAD to show how to plan using
a proposed domain constraint language Golog+HTNTI .) In-
stead we give a AnsProlog encoding of prediction and plan-
ning usingAD. Moreover, a transition function based se-
mantics forAD can be defined similarly to what has been
done for the languageADC in (Baral, Son, & Tuan 2002).
It is worth noticing that the definitions defined herein can be
easily adapted to more complex action description language
such asADC.

Semantics: Prediction inAD
Given a set of propositionsD we construct a logic program
πD for reasoning about the effects of actions inD. The main
predicates inπD are:
• h(f, t) – fluent literalf holds at the timet;
• exec(a, t) (resp. in exec(a, t)) – actiona is executable

(resp. in its execution) att;
• init(a, t) (resp.ends(a, t)) – actiona starts (resp. ends)

its execution att;
The rules ofπD are given next.
• For each proposition (5) inD, πD contains the following

rule: h(f, 1). (7)
This describes the initial state (which fluents hold at time
point 1) as specified by propositions of the from (5) inD.

• For each proposition (4) inD, πD contains the rules:

exec(a, T ) ← not not exec(a, T ).
not exec(a, T ) ← not h(p1, T ).

. . .
not exec(a, T ) ← not h(pn, T ).

(8)



These rules define whena is executable at a time point
T , based only on the truth of fluents. These rules establish
thata is executable if its executability condition holds.

• For each proposition (6) inD, we add the following rules
to πD,

ends(a, T + v) ← init(a, T ).
in exec(a, T ) ← init(a, T ′), T ′≤T<T+v.

(9)

These rules define when an action ends and when it is
under execution.

• For each actiona and an ef-proposition (3), the following
rules are added toπD,

h(f, T ) ← ends(a, T ).
ab(f, T ) ← in exec(a, T ).

(10)

These rules are used to reason about truth value of fluents
at different time points.

Encoding the frame axiom. πD contains the following
rules that encode the frame axiom. They are slightly dif-
ferent from the normal logic program encoding of the frame
axiom in (Gelfond & Lifschitz 1993). For each fluentf , the
following rules belong toπD:

h(f, T + 1) ← h(f, T ), not ab(¬f, T + 1).
h(¬f, T + 1) ← h(¬f, T ), not ab(f, T + 1).

(11)

If we now want to find out iff would be true at time point
t after starting the execution of actionsa1 at time pointt1,
a2 at time pointt2, . . . andan at timetn all we need to do is
to add the set{init(ai, ti) | i ∈ {t1, . . . , tn}} and the con-
straints←init(ai, ti), not exec(ai, ti) (for i = 1, . . . , n) to
πD, set the limits for the various variables, and ask if the
resulting program entailsh(f, t).

One assumption we made in our characterization is that
the effect of an action takes into account only after its ex-
ecution ends, and the fluents, whose value changes due to
an action execution, are in a unknown state during the ex-
ecution. This of course can be changed by appropriately
modifyingπD, in particular the rules in (10).

Answer Set Planning withAD Action Theories
We now show how the idea of answer set planning can be
extended toAD action theories. Our AnsProlog planner for
an action theoryD, denoted byΠ(D), will consist of the
program representing and reasoning about actions ofD, πD,
the rules representing the goal, and the rules that generate
action occurrences. Besides, we will need to set the limit on
the maximal number of steps (the length) of the plan. We
will call it plan size. From now on, whenever we refer to a
time pointt, we mean that1 ≤ t ≤ plan size.
Representing goal. Assume that we have a goal that is a
conjunction of fluent literalsg1 ∧ . . . ∧ gm. We represent
this by a set of atoms{finally(gi) | i = 1, . . . ,m}. The
following rules encode when the goal – as described by the
finally facts – is satisfied at a time pointT .

not goal(T ) ← finally(X), not h(X, T ).
goal(T ) ← not not goal(T ).

(12)

The following constraint eliminates otherwise possible an-
swer sets where the goal is not satisfied at the time point
plan size.

← not goal(plan size). (13)
We now define the notion of aplan.

Definition 1 Given an action theoryD, a goalG, and a plan
sizeplan size, we say that a sequence of sets of grounded
actionsA1, . . . , An is aplanachievingG if goal(plan size)
is true in every answer set of the programπPV er(D, G)2,
which consists of
• the rules ofπD and the rules representingG (rules (7)-
(13)) in which the time variable is less than or equal
plan size;
• the set of action occurrences

⋃n
i=1{init(a, i) | a ∈ Ai};

• the rules preventing actions with contradictory conclu-
sions to overlap (rules (15), below).

We say that a planp = A1, . . . , An is a concurrent plan
if there exists a pairi and j and an actiona ∈ Ai ∩ Aj

such thati + d(a) > j, i.e., p contains an overlapping of
two instantiations of a same actions.p is said to benon-
concurrentif it is not a concurrent plan.
Generating Action Occurrences.The following rules enu-
merate action initiations. To decrease the number of an-
swer sets we have made the assumption that two action in-
stantiations corresponding to the same action can not over-
lap each other, i.e., we consider only non-concurrent plans.
This need not be the case in general. Our point here is
that AnsProlog allows us to express such restrictions very
easily. For each actiona with the durationv, the rules:

act(a, T )←init(a, T1), T1<T<T1+v.
ninit(a, T )← not init(a, T ). (14)
init(a, T )←exec(a, T ), not act(a, T ), not ninit(a, T ).

can be used to prevent two instantiations ofa to overlap. The
1st rule defines whena is active and the 3rd rule allowsa to
occur only if it has not been initiated and is not active.
For every pair ofa and b such thatcauses(a, f) and
causes(b,¬f) belong toD, the two rules:

overlap(a, b, T )←in exec(a, T ), in exec(b, T ).
←overlap(a, b, T ). (15)

can be used to disallow actions with contradictory effects to
overlap. LetπPGen(D,G) be the set of rules ofΠ(D) with
the goalG andplan size=n and the rules (14)-(15). For an
answer setM of πPGen(D,G), let si(M) = {f | h(f, i) ∈
M} andAi(M) = {a | init(a, i) ∈ M}. We can prove that
there is an one-to-one correspondence between answer sets
of πPGen(D, G) and non-concurrent plans achievingG.

Theorem 1 For a theoryD and a goalG, B1, . . . , Bn is a
non-concurrent plan that achievesG iff there exists an an-
swer setM of πPGen(D, G) s.t.Ai(M)=Bi.

Golog+HTNTI : Using Durations in Procedural
and Hierarchical Domain Constraints

We begin with an informal discussion on the new construct
in Golog+HTNTI . Consider the domain from Example 1. It
is easy to see that the programb; c; a is a program achieving
f from any state and the time needed to execute this plan is
the sum of the actions’s durations (Figure 1, Case (a)). Ob-
serve thatb andc are two actions that achieve the condition
for a to be executable and can be executed in parallel. Hence
it should be obvious that any program that allowsb andc to
execute in parallel will have a shorter execution time. For the

2ThePV er stands forplan verification.



moment, let us represent this by the programp1 = {b, c}; a.
The execution of this program is depicted in Figure 1, Case
(b). Now consider a modification of the domain in Exam-

-p p p p p p p p p p p
0 1 2 3 4 5 6 7 8 9 10 time

(a) r b -r c -r a -

(b)

r b -r c -r a -

Figure 1: A pictorial view of program execution (the dot indicates
when an action starts and the arrow indicates when an action stops)

ple 1, in which the executable propositions ofc changes to
executable(c, {¬g}). A program achievingf would be to ex-
ecuteb andd in parallel, thenc, and lastlya. We cannot
executeb, c, andd in parallel all the time becausec is not
executable until¬g holds, and hence, it might need to wait
for d to finish. It is easy to see, however, that it is better ifc
starts wheneverd finishes. To account for this, we introduce
a new construct that allows programs to start even if the pre-
ceding program has not finished. We write({b, d};s[1,1] c); a
to indicate thatc should start its execution 1 time unit af-
ter {b, d} and thena and denote this program byp2. The
execution of this program can be illustrated as follows.

-p p p p p p p p p p p
0 1 2 3 4 5 6 7 8 9 10 time

r b -rd-r c -r a -

Figure 2:Execution of({b, d};s[1,1] c); a

The above discussion provides a compelling argument for
the need ofspecifying time constraints in GOLOG programs
and its extensions. In the following, we extend the language
proposed in (Son, Baral, & McIlraith 2001) with time con-
straints and define the language Golog+HTNTI .

Definition 2 (Program) For an action theoryD,
1. an actiona is a program;
2. a temporal constraintφ[t1, t2], whereφ is a fluent for-
mula (a formula constructed using fluent literals and the
propositional connectives), is a program;

3. if p1 andp2 are programs and0 ≤ t1 ≤ t2 are two time
non-negative integers then so are(p1|p2), (p1;s[t1,t2]

p2),
and(p1;e[t1,t2]

p2);
4. if p1 andp2 are programs andφ is a fluent formula then
so are “if φ then p1 else p2” and “while φ do p”;

5. if X is a variable andp(X) is a program then
pick(X, p(X)) is a program3;

6. if p1, . . . , pn are programs then a pair(S, C) is a pro-
gram whereS = {p1, . . . , pn} and C is a set of con-
straints overS of the following form: (i) p1 ≺s

[t1,t2]
p2

(or p1 ≺e
[t1,t2]

p2), (ii) (p, φ[t1, t2]), (iii) (φ[t1, t2], p), and
(iv) (p1, φ[t1, t2], p2) wherep, p1, p2 are programs,φ is a
fluent formula and0 ≤ t1 ≤ t2.

The constructs 1-5 in the above definitions are generaliza-
tions of constructs in GOLOG (Levesqueet al. 1997) and

3Roughly speaking, programs are allowed to contain variables
whose domains are pre-defined. A program with variables is con-
sidered as a shorthand for the set of its ground instantiations.

the construct 6 is a generalization of hierarchical task net-
works (HTN) (Sacerdoti 1974). The main difference is
that some of them are attached to a time interval and/or
a directive ‘s’/‘ e’ which are introduced for the specifica-
tion of time constraints between program components. In-
tuitively, φ[t1, t2] says that if it is executed at the time mo-
mentt then the fluent formulaφ must hold during the inter-
val [t+t1, t+t2]. The program(p1;s[t1,t2]

p2) states thatp2

should start its execution at leastt1 and at mostt2 units of
time afterp1 startswhereas(p1;e[t1,t2]

p2) forcesp2 to wait
for t (t1 ≤ t ≤ t2) units of time afterp1 finishes. It is
easy to see that(p1;s[0,0] p2) requires thatp1 andp2 be exe-
cuted in parallel whereas(p1;e[0,0] p2) requires thatp2 starts
its execution at the timep1 finishes. Note that(p1;e[0,0] p2)
corresponds to the original notationp1; p2.

The constraints in item 6 above are similar to truth con-
straints and ordering constraints over tasks in HTN. Intu-
itively, p1 ≺s

[t1,t2]
p2 (resp. p1 ≺e

[t1,t2]
p2) specifies the

order and the time constraint forp2 to start its execution. It
states that ifp1 begins (resp. ends) its execution at a time
momentt thenp2 must start its execution during the interval
[t + t1, t + t2]. Similarly, (p, φ[t1, t2]) (resp.(φ[t1, t2], p))
means thatφ must hold fromt1 to t2 immediately after (resp.
before)p’s execution.(p1, φ[t1, t2], p2) states thatp1 must
start beforep2 andφ must holdt1 units of time afterp1 starts
until t2 units of time beforep2 starts.

We note that there is a subtle difference between the con-
structs;e[t1,t2]

(resp. ;s[t1,t2]
) and≺e

[t1,t2]
(resp. ≺s

[t1,t2]
) in

that the former (inspired by GOLOG) represents a sequen-
tial order and the latter (inspired by HTN) represents a par-
tial order between programs. For example, during the execu-
tion of the program(p1;s[t1,t2]

p2), no other program should
start its execution. On the other hand,(p1 ≺s

[t1,t2]
p2) only

requires thatp2 should start its execution between the inter-
val [t1, t2] afterp1 starts its execution and does not prevent
another program to start during the execution ofp1 andp2.

Example 2 In our notation,p1 andp2 (from the discussion
before Figure 1) are represented by((b;s[0,0] c);

e
[0,0] a) and

(((b;s[0,0] d);s[1,1] c);
e
[0,0] a), respectively.

We will now define the notion ofa trace of a program, which
describes what actions are done when. But first we need to
define the notion of a trajectory. For an action theoryD and
an integern, let πGen(D) be the set of rules (7)-(11) and
(14)-(15) whose time variable belongs to{1, . . . , n}.
Definition 3 (Trajectory) For an action theoryD and an
answer setM of πPGen(D), let si = {f | h(f, i) ∈ M}
andAi = {a | init(a, i) ∈ M}. We say that the sequence
α = s1A1 . . . snAn is atrajectoryof D.

Intuitively, a trajectory is an alternating sequence of states
and action occurrencess1A1, . . . , snAn, wheresi is a state
at time pointi andAi is the set of actions that are supposed
to have started at time pointi. Observe that because of the
assumption that during the execution of an action, value of
fluents affected by the action is unknown, i.e., the statessi

might be incomplete. However,si will be complete if there



exists no action that is active ati. The notion of a trace of a
program will be defined in the next four definitions.

Definition 4 (Trace–Primitive Cases) A trajectory α =
s1A1 . . . snAn is a trace of a programp if
• p=a, n=d(a) andA1={a} andAi=∅ for i > 1; or
• p=φ[t1, t2], n=t2, Ai=∅ for everyi, andφ holds inst

for t1 ≤ t ≤ t2.

The next definition deals with programs that are constructed
using GOLOG-constructs ((Levesqueet al. 1997)).

Definition 5 (Trace–Programs with GOLOG-Constructs)
A trajectoryα = s1A1 . . . snAn is a trace of a programp if
one of the following is satisfied.
• p = p1 | p2, α is a trace ofp1 or α is a trace ofp2,
• p = if φ then p1 else p2, α is a trace ofp1 andφ holds
in s1 or α is a trace ofp2 and¬φ holds ins1,
• p = while φ do p1, n = 1 and¬φ holds in s1 or φ
holds ins1 and there exists somei such thats1A1 . . . Ai

is a trace ofp1 andsi+1Ai+1 . . . An is a trace ofp, or
• p = pick(X, q(X)), then there exists a constantx such
thatα is a trace ofq(x).

The trace of each program is defined based on its structure.
We next deal with the new connectives;s[t1,t2]

and;e[t1,t2]
.

Definition 6 (Trace–Parallel and Overlapping Programs)
A trajectoryα = s1A1 . . . snAn is a trace of a programp if
• p=p1;s[t1,t2]

p2, there exists two numberst3 andt4 such
that t1 + 1 ≤ t3 ≤ t2 + 1 and t4 ≤ n (because the
index of the trace starts from 1) and either (i) there exists
a traces1B1 . . . st4Bt4 of p1 and a tracest3Ct3 . . . snCn

of p2 such thatAi = Bi ∪ Ci for everyi; or (ii) t3 ≤ t4
and there exists a traces1B1 . . . snBn of p1 and a trace
st3Ct3 . . . st4Ct4 of p2 such thatAi = Bi ∪ Ci (we write
Bj = ∅ or Cj = ∅ for indexes that do not belong to the
trace ofp1 or p2); or
• p=p1;e[t1,t2]

p2, there exists two numberst3 andt4 such
thatt1+t3 ≤ t4 ≤ t2+t3 andt4 ≤ n ands1A1 . . . st3At3
is a trace ofp1 and a tracest4At4 . . . snAn is a trace ofp2

andAi = ∅ for everyt3 ≤ i < t4.

This definition is best illustrated using a picture.

-p p p p p p p p p p pr r r r
time

trace ofp1 r rB1 Bt3 Bt4-

trace ofp2 r rCt3 CnCt4 -

A1 At3 At4 An

trace ofp

Figure 3:Ai = Bi ∪ Ci – First Item, Case 1 (Definition 6)

Example 3 • For p1=((b;s[0,0] c);
e
[0,0] a) (wrt. the ac-

tion theory in Example 1), we can easily check that
s11 {b, c} s12 ∅ s13{a} s14 ∅ s15 ∅ s16 ∅ where

s1
1 = {¬f,¬g,¬h} s1

2 = {¬f} s1
3 = {¬f, g, h}

s1
4 = {g, h} s1

5 = {g, h} s1
6 = {f, g, h}

is a trace ofp1. On the other hand, we can see that
s11 {b, c,d} s12 ∅ s13{a} s14 ∅ s15 ∅ s16 ∅ is not a trace ofp1

although it contains a trace ofp1.
• For p2=(((b;s[0,0] d);s[1,1] c);

e
[0,0] a) (wrt. the modified

action theory), let
s2
1 = {¬f,¬g,¬h} s2

2 = {¬f,¬g} s2
3 = {¬f, h}

s2
4 = {¬f, g, h} s2

5 = {g, h} s2
6 = {g, h}

s2
7 = {f, g, h}

we can check thats21 {b,d} s22 {c} s23 ∅ s24{a} s25 ∅ s26 ∅ s27 ∅
is a trace of p2 but it is easy to see that
s21 {b,d} s22 ∅ s22 {c} s23 ∅ s24{a} s25 ∅ s26 ∅ s27 ∅ is not
a trace ofp2 becausec should start at the time moment 2.

We next deal with programs containing HTN-constructs.

Definition 7 (Trace–HTN Programs) A trajectory
α=s1A1 . . . snAn is a trace of a programp=(S, C)
with S={p1, . . . , pk} if there exists two sequences of
numbersb1, . . . , bk ande1, . . . , ek with bj ≤ ej , a permu-
tation (i1, . . . , ik) of (1, . . . , k), and a sequence of traces
αj=sbj

Aj
bj

. . . sej
Aj

ej
that satisfy the following conditions:

• for eachl, 1 ≤ l ≤ k, αl is a trace ofpil
,

• if pt ≺ pl ∈ C thenit<il,
• if pt≺s

[q1,q2]
pl∈C thenit<il andbit+q1≤bil

≤bit+q2,
• if pt≺e

[q1,q2]
pl∈C thenit<il andeit

+q1≤bil
≤eit

+q2,
• if (φ[t1, t2], pl) ∈ C (or (pl, φ[t1, t2]) ∈ C) thenφ holds
in the statessbil

−t2 , . . . , sbil
−t1 (or seil

+t1 , . . . , seil
+t2 ),

and
• if (pt, φ[t1, t2], pl) ∈ C then φ holds in sbit+t1 , . . .,
sbil

−t2 .

• Ai = ∪k
j=1A

j
i for everyi = 1, . . . , n where we assume

thatAj
i = ∅ for i<bj or i > ej .

The intuition of the above definition is as follows. First, each
program starts (bi’s) and ends (ei’s) at some time point and
it cannot finish before it even starts, hence, the requirement
bi ≤ ei. The order of the execution is specified by the or-
dering constraints and not by the program’s number. The
permutation(i1, . . . , ik) andj’s record the starting time of
the programs. The conditions on the trajectories make sure
that the constraints are satisfied (first four items) and they
indeed createA1, . . . , An (last item).

An AnsProlog Interpreter
We have developed an AnsProlog interpreter for programs
defined in Definitions 2. For a programp of an action theory
D, we defineΠ(D, p) as a program consisting ofΠ(D), the
rules describing the programp, the set of rules for gener-
ating action occurrences (14)-(15), the constraint eliminat-
ing answer sets in whichtrans(p, 1, plan size) does not
hold, and a set of rules that realizes the operational seman-
tics of programs (Definitions 4-7). We follow the approach
in (Son, Baral, & McIlraith 2001) and define a predicate
trans(p, t1, t2) which holds in an answer setM of Π iff
st1(M)At1(M) . . . st2(M)At2(M) is a trace ofp4. Space
limitation does not allow a detailed presentation ofΠ. We
therefore will concentrate on describing the ideas behind the
rules and their meaning rather than presenting the rules in
great detail. They can be found on our Web site5.

We will begin with an informal discussion on the ideas be-
hind the rules definingtrans(p, t1, t2). Intuitively, because
of the rules (14)-(15), each answer setM of the programΠ
will contain a sequence of sets of actionsα = A1, . . . , An

whereAi = {a | init(a, i) ∈ M}. The encoding of the
action theory,πD, makes sure that whenever an actiona is

4For an answer setM , si(M) = {f | h(f, i) ∈ M, f is a
fluent literal} andAi(M) = {a | init(a, i) ∈ M}.

5URL: http://www.cs.nmsu.edu/˜tson/ASPlan/Duration



initiated it is executable. Thus, the sequenceα is a trajectory
of D. So, it remains to be verified thatα is indeed a trace of
the programp. We will do this in two steps. First, we check
if α contains a trace ofp, i.e., we make sure that there is a
traces1B1 . . . snBn of p such thatBi ⊆ Ai. Second, we
make sure that no action is initiated when it is not needed
and define two predicates:
• tr(p, t1, t2) - st1At1 . . . At2 contains a trace ofp;
• used in(p, q, t, t1, t2) - a trace ofp starting fromt is
used in constructing a trace ofq from t1 to t2. Intuitively,
this predicate records the actions belonging to the traces
of q. The definition of this predicate will make sure that
for a simple actiona, only actiona is used to construct its
trace, i.e.,used in(a, a, t1, t1, t1 + d(a)) is equivalent to
init(a, t1) andused in(b, a, t1, t1, t1 + d(a)) is false for
everyb 6= a.

We define that trans(p, t1, t2) holds iff tr(p, t1, t2)
holds and for every actiona∈Aj for t1≤j≤t2,
used in(a, p, j, t1, t2) holds. The rules fortr(p, t1, t2) are
similar to the rules of the predicatetrans(p, t1, t2) from
(Son, Baral, & McIlraith 2001) with changes that account
for action duration and the new constructs such as;s[t1,t2]

and;e[t1,t2]
and checking for the condition of new constraint

on a HTN-program. The construction ofΠ(D, p) allows us
to prove the following theorem.

Theorem 2 For a theoryD and a programp, (i) for every
answer setM of Π(D, p), s1(M)A1(M) . . . sn(M)An(M)
is a trace ofp, wheresi(M)={f | h(f, i)∈M, f is a flu-
ent literal} and Ai(M)={a | init(a, i)∈M}; and (ii) if
s1B1s2 . . . snBn is a trace ofp then there exists an answer
setM of Π(D, p) such thatsi = {f | h(f, i) ∈ M} and
Bi = {a | init(a, i) ∈ M}.

Conclusion and Discussion
In this paper we propose a control specification lan-

guage Golog+HTNTI that generalizes procedural (based on
GOLOG) and HTN-based specifications to allow time in-
tervals. In the process we generalize the connective ‘;’ to
two connectives ‘;s[t1,t2]

’ and ‘;e[t1,t2]
’ and make similar gen-

eralizations of the HTN constructs. We then discuss the im-
plementation of an AnsProlog-based interpreter for the lan-
guage Golog+HTNTI . Among the features that distinguish
Golog+HTNTI from previous extensions of GOLOG are:
1. The underlying action language of Golog+HTNTI allows

actions with duration and parallel execution;
2. The program constructs of Golog+HTNTI generalize the

constructs of GOLOG and HTN with time and intervals;
3. It does not require an explicit specification of time.
Finally, we notice that the approach presented in this pa-
per can be extended to allow more complex action lan-
guages that allow continuous fluents and processes such as
ADC in (Baral, Son, & Tuan 2002). Besides its use as a
specification language similar to cc-Golog, Golog+HTNTI

can also be viewed as a language for specifying domain-
dependent knowledge in a planner, a view explored by (Son,
Baral, & McIlraith 2001) with respect to GOLOG. There,
they demonstrated that a simplified version of programs dis-
cussed in this paper can help improving the performance of

planner. To investigate this use of Golog+HTNTI , we have
developed a prototype of a planner for domains with contin-
uous fluents and durative actions that uses Golog+HTNTI

with encouraging results. We will report our experiments
with Golog+HTNTI in planning in a future work.

References
Baral, C., and Son, T. C. 1999. Extending ConGolog to allow
partial ordering. Theories, LNCS 1757, ATAL-99, 188–204.
Baral, C.; Son, T. C.; and Tuan, L.-C. 2002. A transition function
based characterization of actions with delayed and continuous ef-
fects. KR-02, 291–302.
Boutilier, C.; Reiter, R.; Soutchanski, M.; and Thrun, S. 2000.
Decision-theoretic, high-level agent programming in the situation
calculus. AAAI-00, 355–362.
Burgard, W.; Cremers, A. B.; Fox, D.; Ḧahnel, D.; Lakemeyer,
G.; D., S.; Steiner, W.; and Thrun, S. 1998. The interactive
museum tour-guide robot. Artificial AAAI-98, 11–18.
Eiter, T.; Leone, N.; Mateis, C.; Pfeifer, G.; and Scarcello, F.
1998. The KR Systemdlv : Progress Report, Comparisons, and
Benchmarks. KR-98, 406–417.
De Giacomo, G.; Lesṕerance, Y.; and Levesque, H. 2000.Con-
Golog, a concurrent programming language based on the situation
calculus. AIJ 121(1-2):109–169.
Gelfond, M., and Lifschitz, V. 1990. Logic programs with classi-
cal negation, ICLP-90, 579–597.
Gelfond, M., and Lifschitz, V. 1993. Representing actions and
change by logic programs.JLP17(2,3,4):301–323.
Gelfond, M., and Lifschitz, V. 1998. Action languages.ETAI
3(6).
Grosskreutz, H., and Lakemeyer, G. 2000. cc-golog: Towards
more realistic logic-based robot controllers. AAAI-00, 476–482.
Levesque, H.; Reiter, R.; Lesperance, Y.; Lin, F.; and Scherl, R.
1997. GOLOG: A logic programming language for dynamic do-
mains.JLP31(1-3):59–84.
Lierler, Y., and Maratea, M. Cmodels-2: SAT-based Answer Set
Solver Enhanced to Non-tight Programs. LPNMR-03, 346–350.
Lifschitz, V. 2002. Answer set programming and plan generation.
AIJ 138(1–2):39–54.
Lin, F., and Zhao, Y. 2002. ASSAT: Computing Answer Sets of
A Logic Program By SAT Solvers. AAAI-02.
Marek, V., and Truszczýnski, M. 1999. Stable models and an al-
ternative logic programming paradigm.The Logic Programming
Paradigm: a 25-year Perspective, 375–398.
Niemel̈a, I. 1999. Logic programming with stable model seman-
tics as a constraint programming paradigm.AMAI 25, 241–273.
Reiter, R. 2000. On knowledge-based programming with sensing
in the situation calculus.2nd Int. Cog. Rob. Workshop, Berlin.
Reiter, R. KNOWLEDGE IN ACTION: Logical Foundations for
Describing and Implementing Dynamical Systems. MIT Press.
Sacerdoti, E. D. 1974. Planning in a hierarchy of abstraction
spaces.AIJ 5:115–135.
Simons, P.; Niemelä, N.; and Soininen, T. 2002. Extending and
Implementing the Stable Model Semantics. AIJ 138, 181–234.
Son, T. C.; Baral, C.; and McIlraith, S. 2001. Domain depen-
dent knowledge in planning - an answer set planning approach.
LPNMR-01, 226–239.
Subrahmanian, V., and Zaniolo, C. 1995. Relating stable models
and ai planning domains. ICLP, 233–247.


