
Maintenance Goals of Agents in a Dynamic Environment:
Formulation and Policy Construction∗

Chitta Baral†, Thomas Eiter], Marcus Bjäreland‡, and Mutsumi Nakamura†

† Department of Computer Science and Engineering,
Arizona State University, Tempe, AZ 85233, USA.

{chitta,mutsumi}@asu.edu

‡ AstraZeneca R&D
S-43183 Mölndal, Sweden

marcus.bjareland@astrazeneca.com

] Institute of Information Systems,
Vienna University of Technology, A-1040 Vienna, Austria

eiter@kr.tuwien.ac.at

Abstract

The notion of maintenance often appears in the AI literature in the context of agent behavior and
planning. In this paper, we argue that earlier characterizations of the notion of maintenance are not
intuitive to characterize the maintenance behavior of certain agents in a dynamic environment. We
propose a different characterization of maintenance and distinguish it from earlier notions such as
stabilizability. Our notion of maintenance is more sensitive to a good-natured agent which struggles
with an “adversary” environment, which hinders her by unforeseeable events to reach her goals (not
in principle, but in case). It has a parameter k, referring to the length of non-interference (from exoge-
nous events) needed to maintain a goal; we refer to this notion as k-maintainability. We demonstrate
the notion on examples, and address the important but non-trivial issue of efficient construction of
maintainability control functions. We present an algorithm which in polynomial time constructs a
k-maintainable control function, if one exists, or tells that no such control is possible. Our algorithm
is based on SAT Solving, and employs a suitable formulation of the existence of k-maintainable con-
trol in a fragment of SAT which is tractable. For small k (bounded by a constant), our algorithm is
linear time. We then give a logic programming implementation of our algorithm and use it to give a
standard procedural algorithm, and analyze the complexity of constructing k-maintainable controls,
under different assumptions such as k =1, and states described by variables. On the one hand, our
work provides new concepts and algorithms for maintenance in dynamic environment, and on the
other hand, a very fruitful application of computational logic tools. We compare our work with ear-
lier works on control synthesis from temporal logic specification and relate our work to Dijkstra’s
notion of self-stabilization and related notions in distributed computing.

∗A preliminary version of the formulation part, entitled “A formal characterization of maintenance goals,” has been pre-
sented at AAAI’00, and a preliminary version of the algorithm part entitled “A polynomial time algorithm for constructing
k-maintainable policies” has been presented at ICAPS’04. The current version revises and combines both of them with addi-
tional elaborations, examples, results, and proofs. The major part of the algorithms was done when Chitta Baral was visiting
Vienna University of Technology in 2003. Marcus Bjäreland carried out the major part of his work while he was with the
Department of Computer and Information Science of Linkoping University.

Keywords: maintenance goals, k-maintainability, agent control, computational complexity of agent
design, answer set programming, Horn theories, SAT solving, discrete event dynamic systems, self-
stabilization.

2

Contents

1 Introduction and Motivation 1

2 Background: Systems, Goals, Control, Stability and Stabilizability 3

2.1 Stabilizability . 5

3 Example Scenario: Two Finite Buffers 7

4 Limited Interference and k-Maintainability 9

4.1 An alternative characterization of k-maintainability . 13

5 Polynomial Time Methods to Construct k-Maintainable Controls 14

5.1 Deterministic transition function Φ(s, a) . 16

5.1.1 Horn SAT encoding . 18

5.2 Non-deterministic transition function Φ(s, a) . 20

5.2.1 Horn SAT encoding (general case) . 22

5.3 Genuine algorithm . 25

5.4 Generic maintaining controls . 27

6 Encoding k-Maintainability for an Answer Set Solver 27

6.1 Input representation . 28

6.2 Deterministic transition function Φ . 29

6.3 Non-deterministic transition function Φ . 31

6.4 Layered use of negation . 32

6.5 State descriptions by variables . 32

7 Computational Complexity 34

7.1 Problems considered and overview of results . 34

7.2 Enumerative representation . 36

7.3 State variables . 40

8 Discussion and Conclusion 43

8.1 Experimental results . 44

8.2 Relation with earlier work on control synthesis . 47

8.2.1 Relation with Barbeau et al.’s and Kabanza et al.’s work 48

8.2.2 Relation with other work on control synthesis . 49

8.3 Other related work . 51

8.4 Further work and open issues . 53

A Appendix: Self-stabilization and Related Notions in Distributed Computing 58

A.1 Dijkstra’s notion of self-stabilization . 58

A.2 Arora and Gouda’s notion of closure, convergence, and fault-tolerance 59

1 Introduction and Motivation

For an agent situated in a static environment, the goal is often to reach one out of several states where
certain conditions are satisfied. Such a goal is usually expressed by a formula in propositional or first-
order logic. Sometimes the goal requires constraining the path taken to reach one of the states. In that
case, the goal can be expressed by a formula in temporal logic [3, 54, 7].

Our concern in this paper is about agents in a dynamic environment. In that case, things are more complex
since the state of the world can change through both actions of the agent and of the environment. The
agent’s goal in a dynamic environment is then often more than just achieving a desired state, as after
the agent has successfully acted to reach a desired state, the environment may change that state. In such
a case, a common goal of an agent is to ‘maintain’ rather than just ‘achieve’ certain conditions. The
goal of maintaining certain conditions (or a set of states that satisfy these conditions) is referred to as
maintenance goals. Maintenance goals are well-known in the AI literature, e.g., [67, 41, 3, 55, 27], and
have counterparts in other areas such as in stability theory of discrete event dynamic systems [56, 58, 62,
61, 66] and in active databases [17, 51]. However, as we argue in this paper, earlier characterizations of
maintenance goals are not adequate under all circumstances.

To see what is wrong with earlier definition of maintenance goals, suppose an agent’s goal is to maintain
a fluent f , i.e., the proposition f should be true. A straightforward attempt1 to express it using temporal
operators is the formula 2f , where 2 is the temporal operator “Always” and 2f means that f is true
in all the future states of the world. This is too strong a condition, as maintaining inherently means
that things go out of shape and they have to be maintained back to shape. A better temporal logic
representation of this goal is thus the formula 23f , where 3 is the temporal operator “Eventually.”
Intuitively, the formula 23f is satisfied by an infinite trajectory of states of the form s0, s1, s2, . . ., if
at any stage i ≥ 0, there exists some stage j ≥ i such that f is true in sj . An agent’s control is said to
satisfy 23f if all trajectories that characterize the evolution of the world due to the environment and the
agent’s control satisfy 23f . At first glance the formula 23f seems to express the goal of maintaining
f , as it encodes that if f becomes false in any state in the trajectory then it becomes true in a later state.

We consider 23f to be also too strong a specification—in many situations—to express the intuitive
notion of ‘maintaining f ’, if we take on a more refined view of the (sometimes nasty) part which the
environment might play, which we illustrate by some examples. Suppose f denotes the condition that
the Inbox of a customer service department be empty. Here the environment makes f false by adding new
requests to the Inbox while the agent tries to make f true by processing the messages in the Inbox and
removing them from it. If the agent is diligent in processing the message in the Inbox and makes it empty
every chance the agent gets, we would then like to say that agent maintains the Inbox empty. But such
a control does not satisfy the formula 23f under all circumstances, because there will be trajectories
where the agent is overwhelmed by the environment (flooding the Inbox) and f never becomes true.

Another example in support of our intuition behind maintainability is the notion of maintaining the
consistency of a database [17, 51, 68]. When direct updates are made to a database, maintaining the
consistency of the database entails the triggering of additional updates that may bring about additional
changes to the database so that in the final state (after the triggering is done) the database reaches a
consistent state. This does not mean that the database will reach consistency if continuous updates are
made to it and it is not given a chance to recover. In fact, if continuous update requests are made we
may have something similar to denial of service attacks. In this case we can not fault the triggers saying
that they do not maintain the consistency of the database. They do. It is just that they need to be given a

1All through the paper we consider the evaluation of linear temporal formulas with respect to all ‘valid’ trajectories. An
alternative approach would be to use a variation of the branching time quantifier A, such as the operator Aπ from [9], before
the linear temporal formulas. Another alternative approach, referred to as boolean task specification, is used in [69, 28, 27].

1

window of opportunity or a respite from continuous harassment from the environment to bring about the
additional changes which are necessary to restore database consistency. The same holds for maintaining
a room clean; we can not fault the cleaning person if he or she is continually sent away because the room
is being continuously used.

Another example is a mobile robot [15, 47] which is asked to ‘maintain’ a state where there are no
obstacles in front of it. Here, if there is a belligerent adversary that keeps on putting an obstacle in front
of the robot, there is no way for the robot to reach a state with no obstacle in front of it. But often we
will be satisfied if the robot avoids obstacles in its front when it is not continually harassed. Of course,
we would rather have the robot take a path that does not have such an adversary, but in the absence of
such a path, it would be acceptable if it takes an available path and ‘maintains’ states where there are no
obstacles in front.

The inadequacy of the expression 23f in expressing our intuition about ‘maintaining f ’ is because
23f is defined on trajectories which do not distinguish between transitions due to agent actions and
environment actions. Thus we can not distinguish the cases

(i) where the agent does its best to maintain f (and is sometimes thwarted by the environment) and
can indeed make f true in some (say, k) steps if there is no interference from the environment
during those steps; and

(ii) where the agent really does not even try.

We refer to (i) as k-maintainability in this paper. The expression 23f can not express the idea of a
window of opportunity (or window of non-interference) during which an agent can perform the actions
necessary for maintaining. In fact, none of the standard notions of temporal logics [20, 48], which are
defined on trajectories that do not distinguish between the cause behind the transitions (whether they are
due to agent’s actions or due to the environment),2 can express the idea behind k-maintainability.

The main contributions of this paper can be summarized as follows.

1. We introduce and formally define the notion of k-maintainability, and distinguish it from earlier
notions of maintainability, in particular the specification 23f and the similar notion of stabiliz-
ability from discrete event dynamic systems.

2. We provide polynomial time algorithms that can construct k-maintainable control policies, if one
exists. (In the rest of the paper we will refer to ‘control policy’ simply by ‘control’.) Our algorithm
is based on SAT Solving, and employs a suitable formulation of the existence of k-maintainable
control in a tractable fragment of SAT. We then give a logic programming implementation of this
method, and finally distill from it a standard procedural algorithm. We briefly discuss earlier ap-
proaches to controller synthesis [10, 41, 49, 19, 60, 1] with respect to temporal logic specifications
and compare their complexity with that of our algorithms.

3. We analyze the computational complexity of constructing k-maintainable controls, under different
settings of the environment and the windows of opportunity open to the agent, as well as under
different forms of representation. We show that the problem is complete for PTIME in the standard
setting, where the possible states are enumerated, and complete for EXPTIME in a STRIPS-style
setting where states are given by value assignments to fluents. Furthermore, we elucidate the

2If one distinguishes the cause behind transitions, then temporal logic can indeed be used to express maintainability. We
discuss this further in Section 4.1.

2

impact of the different factors and show, by our proofs of the hardness results, that the full problem
complexity is inherent already to certain restricted cases.

Overall, our work not only provides new concepts and algorithms for realizing maintenance of an agent
in dynamic environment, but also illustrates a very fruitful application of computational logic tools.

The rest of this paper is organized as follows. In Section 2 we present the background definitions of a
system with an agent in an environment and define the notions of stability and stabilizability. In Section 3
we describe an example of a system with two buffers. We use this example for illustrating the concepts of
stabilizability and k-maintainability, which is formally defined in Section 4. In Section 5 we present our
algorithms for constructing k-maintaining controls, based on SAT Solving as well as a genuine algorithm
extracted from it. In Section 6 we present an encoding for computing a control function using a logic
programming engine and devote Section 7 to complexity analysis. Finally, in Section 8 we present some
experimental results, discuss related work, and outline some future directions.

2 Background: Systems, Goals, Control, Stability and Stabilizability

In this paper, we are concerned with goal-directed agents in a dynamic world. Such agents can perform
actions that change the state of the world. Because of the dynamic nature of the world, certain changes
can happen to the state of the world beyond the control of an agent. The agent’s job is thus to make the
world evolve in a way coherent with a goal assigned to it. As for the agent control, we adopt here that
an agent follows a Markovian control policy to do its job; that is, its control is a function from the set of
states to the set of actions, detailed as follows.

Definition 1 (System) A system is a quadruple A = (S,A, Φ, poss), where

• S is a finite set of system states;

• A is a finite set of actions, which is the union of the set of agents actions, Aag, and the set of
environmental actions, Aenv;

• Φ : S ×A → 2S is a non-deterministic transition function that specifies how the state of the world
changes in response to actions; and

• poss : S → 2A is a function that describes which actions are possible to take in which states.

The above notion of system is used in the discrete event dynamic systems community, for instance in
[56, 58, 62, 61, 66]. In practice, the functions Φ and poss are required to be effectively (and efficiently)
computable, and they may often be specified in a representation language such as in [34, 32, 63]. The
possibility of an action has different meaning depending on whether it is an agent’s action or whether it
is an environmental action. In case of an agent’s action, it is often dictated by the policy followed by the
agent. For environmental actions, it encodes the various possibilities that are being accounted for in the
model. We tacitly assume here that possible actions lead always to some successor state, i.e., the axiom
that Φ(s, a) 6= ∅ whenever a ∈ poss(s) holds for any state s and action a, is satisfied by any system.

An example of a system A = (S,A, Φ, poss), where S = {b, c, d, f, g, h}, A = { a, a′, e}, and the
transition function Φ is shown in Figure 1, where s′ ∈ Φ(s, a) iff an arc s → s′ labeled with a is present
and poss(s) are all actions that label arcs leaving s. Notice that in this example, Φ(s, a) is deterministic,
i.e., Φ(s, a) is a singleton if nonempty.

3

Figure 1: S = {b, c, d, f, g, h}, A = { a, a′, e}, Aag = { a, a′}, Aenv = { e}, Φ is as shown.

The evolution of the world with respect to a system is characterized by the following definition.

Definition 2 (Trajectory) Given a system A = (S,A, Φ, poss), an alternating infinite sequence of states
and actions s0, a1, s1, a2, . . . , sk, ak+1, sk+1, . . . is said to be a trajectory consistent with A, if sk+1 ∈
Φ(sk, ak+1), and ak+1 ∈ poss(sk). 2

The above notion of trajectory does not require that agent actions and environment actions be interleaved
as is done in formulations of games. It allows one agent action to be followed by multiple environment
actions and vice-versa, as in real worlds we do not have an arbiter who can enforce the alternation of the
agent and environment actions. The notion assumes that the time points are fine enough that at any point
only one action can occur. Thus, it does not allow explicit occurrence of agent and environment actions
at the same time.

A common restriction on how the world evolves is defined using the notion of stability. The following
definition of stability is adapted from [56] and has its origin in control theory and discrete event dynamic
systems [56, 58, 62, 61].

Definition 3 (Stable state 1) Given a system A = (S,A, Φ, poss) and a set of states E, a state s is said
to be stable in A w.r.t. E if all trajectories consistent with A and starting from s visit E infinitely often.
A set of states S is stable with respect to E if all states in S are stable with respect to E.

We say A = (S,A, Φ, poss) is a stable system, if all states in S are stable in A with respect to E. 2

Although the above definition of stability is with respect to a set of states E, it can be easily adapted to
a propositional formula ϕ that can be evaluated at the states of system A. In that case E = {s ∈ S |
A, s |= ϕ}, where A, s |= ϕ denotes that s in A satisfies (in the propositional logic sense) ϕ. Thus, E is
the set of states s at which ϕ is satisfied.

An alternative approach to characterize the evolution of states is through temporal operators. Some of
the important temporal operators talking about the future are (cf. [48, 30]): Next (©), Always (2), Even-
tually (3), and Until (U). Their meaning with respect a trajectory τ = s0, a1, s1, . . . , sk, ak+1, sk+1, . . .
is defined as follows.

Let (τ, j), for j ≥ 0, denote the remainder of τ starting at sj ; then

• (τ, j) |= p iff p is true in sj , for any proposition p;

• (τ, j) |= ©φ iff (τ, j + 1) |= φ;

4

• (τ, j) |= 2φ iff (τ, k) |= φ, for all k ≥ j.

• (τ, j) |= 3φ iff (τ, k) |= φ, for some k ≥ j.

• (τ, j) |= φ1 U φ2 iff there exists k ≥ j such that (τ, k) |= φ2 and for all i, j ≤ i < k, (τ, i) |= φ1.

The standard Boolean connectives ∧, ∨, and ¬ are defined as usual. An alternative definition of stability
can then be given as follows:

Definition 4 (Stable state 2) Given a system A = (S,A, Φ, poss) and an objective formula ϕ (i.e.,
without temporal operators), let Eφ = {s ∈ S | A, s |= φ}. A state s is then said to be stable in A w.r.t.
E if for all trajectories τ of the form τ = s0, a1, s1, . . . , sk, ak+1, sk+1, . . . (where s0 = s) consistent
with A, it holds that (τ, 0) |= 23ϕ. 2

In fact, this definition is equivalent to Definition 3. The advantage of using temporal operators, as in the
above definition, instead of Definition 3 is that the former allows us to specify a larger class of goals and
build on top of the notion of stability. For example, a notion similar to stability, referred to as a response
property [48], is of the form 2(p → 3q).

2.1 Stabilizability

The notion of stability is defined with respect to a system and the evolution of the world consistent
with the system. When we focus on an agent and its ability to make a system stable, we need a notion
of stabilizability which intuitively means that there exists a control policy which the agent can use to
fashion a stable system.

Given a system A = (S,A, Φ, poss), when discussing stabilizability of the system, we need to consider
the following additional aspects:

• the set of actions Aag which the agent is capable of executing in principle (where Aag ⊆ A);

• the set of exogenous actions that may occur in the state s, beyond the agent’s control, modeled by
a function exo : S → 2Aenv , where exo(s) ⊆ poss(s) for each state s (recall that Aenv are the
environmental actions). We call any such exo an exogenous function.

Intuitively, given a system A = (S,A, Φ, poss), Aag, exo, and E, a state s is stabilizable with respect to
E, if we are able to find a policy or control function such that it makes the resulting system stable and the
agent starting from s following that policy will not reach a state where no further actions are possible.

The last condition is referred to as aliveness. It is formally defined by the following two definitions, the
first of which defines the set R(A, s) of states that can be reached from s in the system A.

Definition 5 (Closure) Given a system A = (S,A, Φ, poss) and a state s, R(A, s) ⊆ S is the smallest
set of states that satisfying the following conditions:

1. s ∈ R(A, s),

2. If s′ ∈ R(A, s), and a ∈ poss(s′), then Φ(s′, a) ⊆ R(A, s).

5

For any set of states S ⊆ S, the closure of A w.r.t. S is defined by Closure(S, A) =
⋃

s∈S R(A, s). 2

Example 1 In the system A in Figure 1, we have that R(A, d) = {d, h} and R(A, f) = {f, g, h}, and
therefore Closure({d, f}, A) = {d, f, g, h}. This is illustrated in Figure 2. 2

Figure 2: R(A, d) = {d, h} and R(A, f) = {f, g, h}, and Closure({d, f}, A) = {d, f, g, h}.

Note that Closure(S,A) satisfies the Kuratowski closure axioms [43], that is, Closure(∅, A) = ∅;
S⊆Closure(S, A); Closure(Closure(S, A), A) = Closure(S, A); and, moreover, Closure(S1 ∪
S2, A) = Closure(S1, A) ∪ Closure(S2, A). Furthermore, Φ(s, a) ⊆ Closure(S, A) holds for each
state s ∈ Closure(S,A) and a ∈ poss(s).

Definition 6 (Aliveness) Given a system A=(S,A, Φ, poss) and a state s, we say s is alive if poss(s′) 6=
∅, for all s′ ∈ R(A, s). We say A=(S,A, Φ, poss) is alive if all states in S are alive. 2

The notion of control function is formally defined as follows.

Definition 7 (Control) Given a system A = (S,A, Φ, poss) and a set Aag ⊆ A of agent actions, a
control function for A w.r.t. Aag is a partial function

K : S → Aag,

such that K(s) ∈ poss(s) whenever K(s) is defined.3 2

We are now ready to formally define the notion of stabilizability.

Definition 8 (Stabilizability) Given a system A = (S,A, Φ, poss), a set Aag ⊆ A, a function exo as
above, and a set of states E, we say that s ∈ S is stabilizable with respect to E, if there exists a control
function K : S → Aag for A w.r.t. Aag with the following properties:

1. s is stable with respect to E in the system AK,exo = (S,A, Φ, possK,exo), where, for any state s′,
possK,exo(s′) = {K(s′)} ∪ exo(s′); and

3In the planning literature, in Markov Decision Planning a control function is also called a (control) policy, which is usu-
ally assumed to be a total function [35]; in Model-Based Planning, [18], it is called a deterministic state-action table, and
non-deterministic controls (introduced below) are called (nondeterministic) state-action tables; [35] refers to them also as (non-
deterministic) plans or policies, respectively.

6

2. s is alive in AK,exo .

A set of states S ⊆ S is stabilizable with respect to E, if there is a control function K for A w.r.t. Aag

such that every state s ∈ S is stabilizable with respect to E witnessed by K. 2

Figure 3: Policy K is doing a in states b, c, d and f ; poss(b) = {a, a′}; possK,exo(b) = {a};
Closure({b, c}, A) = {b, c, d, f, g, h}; Closure({b, c}, AK,exo) = {b, c, d, h}

Having provided this definition, we shall illustrate it on an elaborated example in the next section, where
we describe an intuitive control function for the management of two finite buffers.

Before closing this section, we introduce for later use the notion of a non-deterministic control.

Definition 9 (Non-deterministic control) Given a system A = (S,A, Φ, poss) and a set Aag ⊆ A of
agent actions, a partial function K : S → 2Aag such that K(s) ⊆ poss(s) and K(s) 6= ∅ whenever K(s)
is defined, is called non-deterministic control for A w.r.t. Aag. 2

Informally, a non-deterministic control leaves the agent a choice to execute one out of several actions.
It is an envelope for multiple control functions, which result by refining K to some arbitrary action in
K(s) whenever K(s) is defined; the notion of stabilizability is defined similar as for control functions,
with the only change that in AK,exo , we set possK,exo(s′) = K(s′)∪exo(s′) in place of possK,exo(s′) =
{K(s′)} ∪ exo(s′).

The following proposition is immediate.

Proposition 1 Given a system A = (S,A, Φ, poss), a set Aag ⊆ A, and a function exo, a set of states
S ⊆ S is stabilizable w.r.t. a set of states E ⊆ S under a control function K for A w.r.t. Aag iff S is
stabilizable w.r.t. E under a non-deterministic control K+ for A w.r.t. Aag . Furthermore, each such
K is a refinement of some K+ with this property (i.e., for each s, K(s) ∈ K+(s) and K(s) is defined
iff K+(s) is defined), and each refinement K of K+ is a control function witnessing stabilizability of S
w.r.t. E.

3 Example Scenario: Two Finite Buffers

In this section, we introduce an example which we will use in illustrating the notion of stabilizability and
also other concepts in some of the later sections of the paper.

7

We imagine a system with two finite buffers, b1 and b2, where objects are added to b1 in an uncontrollable
way. An agent moves objects from b1 to b2 and processes them there. When an object has been processed,
it is automatically removed from b2. This is a slight modification of a finite buffer example from [58] and
generalizes problems such as ftp agents maintaining a clean ftp area by moving submitted files to other
directories, or robots moving physical objects from one location to another.

In our framework, we shall describe a system Ab which models this scenario. For simplicity, we assume
that the agent has three control actions M12 that moves an object from b1 to b2 (if such an object exists),
the opposite action, M21 that moves an object from b2 to b1, and Proc that processes and removes an
object in b2. There is one exogenous action, Ins , that inserts an object into buffer b1. The capacities of
b1 and b2 are assumed to be equal.

Let us assume that the control goal of this system is to keep b1 empty. Then, the system is not stabilizable,
since objects can be continually inserted before the agent has a chance to empty the buffer. However,
if no insertions are performed for a certain window of non-interference, the agent can always empty
b1. This implies that the system is maintainable but not stabilizable. We now make the above argument
explicit by using a concrete instance of Ab.

Example 2 (Buffer Example) We assume that the maximum capacity of the buffers b1 and b2 is 3. The
components of Ab = (Sb,Ab, Φb, possb) are then as follows.

• We model every state by the current number of objects in b1 and b2. That is, a state s is identified
by a pair of integers 〈i, j〉 where i denotes the number of objects in b1 and j the number of objects
in b2. With the maximum capacity of 3, the set of states, Sb, consists of 4 × 4 = 16 states and is
given by

Sb = {0, 1, 2, 3} × {0, 1, 2, 3}.

• The set of actions is Ab = {M12,M21,Proc, Ins}.

• We assume that the transition function Φb is deterministic, i.e., |Φb(s, a)| ≤ 1, defined as follows,
where we write Φb(s, a) = s′ for Φb(s, a) = {s′}. For every i, j ∈ {0, . . . , 3}, let

Φb(〈i, j〉,M12) = 〈i− 1, j + 1〉
Φb(〈i, j〉,M21) = 〈i + 1, j − 1〉,
Φb(〈i, j〉,Proc) = 〈i, j − 1〉,
Φb(〈i, j〉, Ins) = 〈i + 1, j〉,

where addition and subtraction are modulo 3, and and in all other cases Φb(s, a) = ∅.

• The enabling function, possb, is defined by

M12 ∈ possb(〈i, j〉) iff i ≥ 1 and j ≤ 2
M21 ∈ possb(〈i, j〉) iff i ≤ 2 and j ≥ 1
Proc ∈ possb(〈i, j〉) iff j ≥ 1
Ins ∈ possb(〈i, j〉) iff i ≤ 2

It is easy to see that for S = {〈0, 0〉} (no objects in the buffers) and E = {〈0, 0〉, 〈0, 1〉, 〈0, 2〉, 〈0, 3〉}
(that is, we want to keep b1 empty) S is not stabilizable w.r.t. E, since the exogenous action Ins can

8

〈0,0〉 〈1,0〉 〈2,0〉 〈3,0〉InsInsIns

Proc

〈0,2〉 〈1,2〉 〈2,2〉 〈3,2〉InsIns Ins

Proc Proc Proc

〈0,1〉 〈1,1〉 〈2,1〉 〈3,1〉InsIns Ins

Proc Proc Proc

M21

M21

M12

M21

M12

M21

M12

M21

M12

M21

M12

M21

〈0,3〉 〈1,3〉 〈2,3〉 〈3,3〉InsIns Ins

Proc Proc Proc

M12

M21

M12

M21

M12

M21

Proc

Proc

Figure 4: The transition diagram of the buffer system Ab for the concrete instance (buffer capacity 3).

always interfere in the task of bringing the system back to E. For example, consider the control Kb

defined as follows:

Kb(〈i, j〉) = M12 when i ≥ 1 and j < 3, and

Kb(〈i, j〉) = Proc when (i = 0 and j ≥ 1) or j = 3.

Intuitively, the above control directs the transfer of objects from buffer 1 to 2 whenever possible, and if
that is not possible it directs processing of objects in buffer 2 if that is possible. In Figure 4, which shows
the transition diagram between states, the transitions by the control Kb are marked with M12 and Proc.

Consider the following trajectory consistent with the control system AK,exo = (Sb,Ab, Φb, possbKb,exo
):

τ = 〈0, 0〉, Ins, 〈1, 0〉, Ins, 〈2, 0〉, M12, 〈1, 1〉, Ins, 〈2, 1〉, M12, 〈1, 2〉, Ins, 〈2, 2〉, M12, 〈1, 3〉,Proc.

It consists of a prefix 〈0, 0〉, Ins, . . . , M12 and a cycle 〈1, 2〉, . . . ,Proc. In τ , no state in E is ever
reached after the starting state 〈0, 0〉. Similar trajectories can be found for any control and hence S is not
stabilizable with respect to E.

On the other hand, S = {〈0, 0〉} is stabilizable w.r.t. E′ = {0, 1, 2} × {0, 1, 2, 3} (that is, we want
to have at most two objects in b1 at any time): Following Kb we can go from any of the states in
Sb \E′ = {〈3, 0〉, 〈3, 1〉, 〈3, 2〉, 〈3, 3〉} to E′ with the execution of at most two control actions, while no
exogenous actions are possible for those states. 2

4 Limited Interference and k-Maintainability

As we mentioned in Section 1, our main intuition behind the notion of maintainability is that maintenance
becomes possible only if there is a window of non-interference from the environment during which
maintenance is performed by the agent. In other words, an agent k-maintains a condition c if its control
(or its reaction) is such that if we allow it to make the controlling actions without interference from the
environment for at least k steps, then it gets to a state that satisfies c within those k steps.

Our definition of maintainability has the following parameters:

9

(i) a system A = (S,A, Φ, poss),

(ii) a set of initial states S that the system may be initially in,

(iii) a set of desired states E that we want to maintain,

(iv) a set Aag ⊆ A of agent actions,

(v) a function exo : S → 2Aenv detailing exogenous actions, such that exo(s) ⊆ poss(s), and

(vi) a control function K (mapping a relevant part of S to Aag) such that K(s) ∈ poss(s).

The next step is to formulate when the control K maintains E assuming that the system is initially in
one of the states in S. For that, we require that if in the system AK,exo = (S,A, Φ, possK,exo), where
possK,exo(s) = {K(s)} ∪ exo(s) restricts the agent actions to the control K, the agent is in a state s
that has been reached from any state in S (i.e., s ∈ Closure(S,AK,exo)), then given a window of non-
interference from exogenous actions, it must get into some desired state during that window. One of the
importance of using the notion of closure here is that one can focus only on a possibly smaller set of
states, rather than all the states, thus limiting the possibility of an exponential blow-up - as warned in
[36] - of the number of control rules.

Now a next question might be: Suppose the above condition of maintainability is satisfied, and while
the control is leading the system towards a desired state, an exogenous action happens and takes the
system off that path. What then? The answer is that the state the system will reach after the exogenous
action will be a state from the closure. Thus, if the system is then left alone (without interference from
exogenous actions) it will be again on its way to a desired state. So in our notion of maintainability, the
control is always taking the system towards a desired state, and after any disturbance from an exogenous
action, the control again puts the system back on a path to a desired state.

We define the notion of unfolding a control as follows.

Definition 10 (Unfoldk(s,A, K)) Let A=(S, A, Φ, poss) be a system, let s∈S, and let K be a control
for A. Then Unfoldk(s,A,K) is the set of all sequences σ = s0, s1, . . . , sl where l≤k and s0=s such
that K(sj) is defined for all j<l, sj+1∈Φ(sj ,K(sj)), and if l<k, then K(sl) is undefined. 2

Intuitively, an element of Unfoldk(s,A, K) is a sequence of states of length at most k+1 that the system
may go through if it follows the control K starting from the state s. If the length of the sequence is less
than k + 1, it means that at the last state of the sequence K is undefined and thus the sequence can not
unfold further.

Figure 5 illustrates this.

The above definition of Unfoldk(s,A, K) is easily extended to the case when K is a non-deterministic
control, meaning K(s) is a set of actions instead of a single action. In that case, we overload Φ and for
any set of actions a∗, define Φ(s, a∗) =

⋃
a∈a∗ Φ(s, a).

We now define the notion of k-maintainability, which can be used to verify the correctness of a control.

Definition 11 (k-Maintainability) Given a system A = (S,A,Φ, poss), a set of agents action Aag ⊆
A, and a specification of exogenous action occurrence exo, we say that a control4 K for A w.r.t. Aag

4Note that here only K(s) for s ∈ Closure(S, AK,exo) is of relevance. For all other s, K(s) can be arbitrary or undefined.

10

Figure 5: Let K be the policy of doing action a in states b, c, d and f . Unfold3(b, A,K) =
{〈b, c, d, h〉, 〈b, g〉} and Unfold3(c, A,K) = {〈c, d, h〉}

k-maintains S ⊆ S with respect to E ⊆ S , where k ≥ 0, if for each state s ∈ Closure(S, AK,exo) and
each sequence σ = s0, s1, . . . , sl in Unfoldk(s,A,K) with s0 = s, it holds that {s0, . . . , sl} ∩ E 6= ∅.

We say that a set of states S ⊆ S (resp. A, if S = S) is k-maintainable, k ≥ 0, with respect to a set
of states E ⊆ S , if there exists a control K which k-maintains S w.r.t. E. K is then referred to as the
witnessing control function. Furthermore, S (resp. A) is called maintainable w.r.t E, if S (resp. A) is
k-maintainable w.r.t. E for some k ≥ 0. 2

In the following we will omit explicit mention ofAag, S, and E for control functions and maintainability
if they are clear from the context.

Intuitively, the condition {s0, s1, . . . , sl} ∩ E 6= ∅ above means that we can get from a state s0 outside
E to a state in E within at most k transitions—where each transition is dictated by the control K—if
the world were to unfold as in s0, s1, . . . , sl, where s0 = s. In particular, 0-maintainability means that
the agent has nothing to do: after any exogenous action happening, the system will be in a state from E.
Therefore, a trivial control K will do which is undefined on every state.

Note that in the above definition we no longer require aliveness. If a non-alive state is reached while
unfolding, the unfolding stops there and the definition of k-maintainability requires that a goal state
(from E) is reached by then.

Example 3 Reconsider the system A in Figure 1. Let us assume that Aag = { a, a′ }, that exo(s) =
{ e } iff s = f and that exo(s) = ∅ otherwise. Suppose now that we want a 3-maintainable control
policy for S = {b} w.r.t. E = {h}. Clearly, such a control policy K is to take a in b, c, and d.
Indeed, Closure({b}, AK,exo) = {b, c, d, h} and Unfold3(b, A, K) = {〈b, c, d, h〉}, Unfold3(c, A, K)
= {〈c, d, h〉}, and Unfold3(d,A, K) = {〈d, h〉}; furthermore, each sequence contains h. See Figure 6
below.

Suppose now, as shown in Figure 7, there is an exogenous action e that can take from c to f . Then,
no k-maintainable control policy for S = {b} w.r.t. E = {h} exists for any k ≥ 0. Indeed, the agent
can always end up in the dead-end g. If, however, in addition Φ(g,a′) = {f, h} and a′ ∈ poss(g), a
3-maintainable control policy K is K(s) = a for s ∈ {b, c, d, f} and K(g)= a′. 2

11

Figure 6: Let S = {b} and E = {h}. A 3-maintainable policy with respect to them will be to do a in
states b, c and d.

Figure 7: Let S = {b} and E = {h}. No 3-maintainable policy with respect to them exists.

Example 4 Buffer Example (cont’d)
Earlier we showed that in Ab, S = {〈0, 0〉} is not stabilizable w.r.t. E = {〈0, 0〉, 〈0, 1〉, 〈0, 2〉, 〈0, 3〉}.
Thus, we might ask whether S is at least maintainable w.r.t. E? The answer is positive: For the worst
case system state, 〈3, 3〉, a control can move the system to 〈3, 0〉 (by three transitions executing Proc)
without interfering occurrences of exogenous actions. If there then are three further transitions without
interference, the control can apply M12 three times and effect the state 〈0, 3〉. This implies that S is
6-maintainable w.r.t. E. We can, with a similar argument show that A is 9-maintainable w.r.t. {〈0, 0〉}.
A similar argument can be made with respect to the control Kb of Example 2.

However, we have that A is not maintainable w.r.t., for example, {〈0, 3〉} (Since we cannot go from, for
example, {〈0, 0〉}, to {〈0, 3〉} with control actions only). 2

As the above example points out, it is possible that S is maintainable but not stabilizable with respect to
E. The converse is also possible. In other words, in certain cases we may have a system where a given S
is stabilizable with respect to a set E, but yet is not maintainable. This happens when every path between
a state in S and a state in E involves at least one exogenous action. In that case the agent, who does
not have control over the exogenous actions, can not on its own make the transition from a state in S to
a state in E. However, often for each exogenous action there are equivalent (in terms of effects) agent
actions. In that case, any stabilizable system is also maintainable.

We note the following monotonicity property of k-maintainability, which is an easy consequence of the
definition:

Proposition 2 Suppose that for a system A = (S,A,Φ, poss), a set of agents action Aag ⊆ A, and
a specification of exogenous action occurrence exo, the control function K k-maintains S ⊆ S w.r.t.
E ⊆ S. Then, K also k-maintains any set S′ ⊆ Closure(S,AK,exo) with respect to any set E′ ⊇ E. 2

12

4.1 An alternative characterization of k-maintainability

The characterization of stability and stabilizability in Section 2 is based on imposing conditions on
trajectories obtained from the transition graph of a system. Such a characterization has the advantage
that it is amenable to developing temporal operators that can express more general conditions.

In contrast, the definition of maintainability in Definition 11 is not based on trajectories. Nonetheless,
one can give an alternative characterization based on trajectories, which we do next. To bridge from
finite trajectories (which are relevant with respect to maintainability), to infinite ones as in Definition 2,
we consider for each system A = (S,A, Φ, poss) an extension, A∞, which results by adding a fresh
environmental action anop such that in A∞, for each state s we have Φ(s, anop) = {s} and anop ∈
poss(s) if poss(s) = ∅ in A. Informally, A∞ adds infinite loops to halting states of A.

Proposition 3 Given a system A = (S,A, Φ, poss), a set of agents action Aag ⊆ A, a specification of
exogenous action occurrence exo, and a set of states E, a set of states S is k-maintainable with respect
to E, k ≥ 0, if and only if there exists a control K for A w.r.t. Aag such that for each state s in S and
every trajectory of form τ = s0, a1, s1, a2, . . . , aj , sj , aj+1, . . . consistent with A∞K,exo and s0 = s, it
holds that {ai+1, . . . , ai+k} ⊆ Aag or ai+k = anop for some i ≥ 0 implies that {si, . . . , si+k} ∩E 6= ∅.
2

Proof. For the only if direction, suppose that S is k-maintainable w.r.t. E, witnessed by the control func-
tion K. Let s ∈ S and τ = s0, a1, s1, a2, . . . , aj , sj , aj+1, . . . be consistent with A ∞

K,exo such that s0 = s
and {ai+1, . . . , ai+k} ⊆ Aag or ai+k = anop, for some i ≥ 0. Then, we have si ∈ Closure(S, A ∞

K,exo).
If k = 0, then since K is a witnessing control, we have si ∈ E, and thus {si, si+1, . . . , si+k} ∩ E 6= ∅
holds. Consider thus k > 0. If ai+k ∈ Aag (which implies {ai+1, . . . , ai+k} ⊆ Aag), then the sequence
si, si+1, . . . , si+k belongs to Unfoldk(si, A,K). Since K is a witnessing control function, we again
have {si, si+1, . . . , si+k} ∩ E 6= ∅. Otherwise, if ai+k = anop, let l ≥ 1 be the least index such that
al = anop. By definition of A ∞

K,exo , we have that K(sl−1) is undefined. Hence, the sequence σ = sl−1

belongs to Unfoldk(sl−1, A,K). Since K is a control, it follows that sl−1 ∈ E. Since sj = sl−1 for
each j ≥ l, and in particular si+k = sl−1, it follows again that {si, si+1, . . . , si+k}∩E 6= ∅. This proves
the only if direction.

Conversely, suppose K is a control for A w.r.t. Aag such that for each s ∈ S and trajectory τ =
s0, a1, s1, a2, . . . , aj , sj , aj+1, . . . consistent with A ∞

K,exo and s0 = s, it holds that {ai+1, . . . , ai+k} ⊆
Aag or ai+k = anop for some i ≥ 0 implies that {si, si+1, . . . , si+k}∩E 6= ∅. We claim that K witnesses
k-maintainability of S w.r.t. E. Towards a contradiction, suppose the contrary. Hence, it follows from the
definition of A ∞

K,exo , that there is some state s ∈ S and trajectory τ = s0, a1, s1, a2, . . . , aj , sj , aj+1, . . .
consistent with A ∞

K,exo and s0 = s, such that for some j ≥ 0 we have sj ∈ Closure(S,A ∞
K,exo) and

sj , sj+1, . . . , sj+l is in Unfoldk(sj , A, K), where l ≤ k, but E ∩ {sj , . . . , sj+l} = ∅.

By definition of Unfoldk(sj , A, K), we have that {aj+1, . . . , aj+l−1} ⊆ Aag and that aj+l = aj+l+1

= · · · = aj+k = anop. By hypothesis, E ∩ {sj , . . . , sj+k} 6= ∅ holds. Thus, we conclude that E ∩
{sj+l+1, . . . , sj+k} 6= ∅ must hold, and hence l < k. However, by definition of Φ(s, anop) we have sj+l

= sj+l+1 = · · · = sj+k. This implies that E ∩ {sj , . . . , sj+l} 6= ∅, which is a contradiction. This proves
that K witnesses k-maintainability of S w.r.t. E. 2

While this result shows that we could equally well have developed our notion of k-maintainability on
the basis of trajectories, in the rest of this paper we shall stick to the setting which uses closure and
unfolding. We find the latter more intuitive, as well as more convenient for designing algorithms and

13

for proofs. Furthermore, this setting requires no special handling of possible finite trajectories, which
complicates matters as becomes apparent from Proposition 3.

This alternative characterization suggests how to express the notion of k-maintainability using existing
temporal logics when a distinction can be made5 between states that are reached through an agent’s
actions and states that are reached by an exogenous action. To make this distinction, let us assume
that the latter kind of states have the fluent interfered as true and the former have it as false. Now, let
Step[k](φ) be a shorthand for the formula φ ∨ ©φ ∨ © © φ ∨ . . . ∨ © . . .©︸ ︷︷ ︸

k

φ where the last

subformula involves k consecutive©’s. Intuitively, the formula Step[k](φ) means that φ is true within k
steps. Now the last part of Proposition 3, ignoring the issue of anop actions (for simplicity), is as follows:

for each state s in S and every trajectory of form τ = s0, a1, s1, a2, . . . , aj , sj , aj+1, . . .
consistent with A∞K,exo and s0 = s, {ai+1, . . . , ai+k} ⊆ Aag for some i ≥ 0 implies that
{si, . . . , si+k} ∩ E 6= ∅.

This can be expressed in LTL as φS ⇒ 2(¬Step[k](interfered) ⇒ Step[k](φE)), or equivalently
φS ⇒ 2(Step[k](interfered ∨ φE)), where φS and φE are propositional formulas which described the
states in S and E, respectively.

Using the above formula, k-maintainability can be written as follows:

There exists a control K for A w.r.t. Aag such that for each state s in S and every trajectory
of form τ = s0, a1, s1, a2, . . . , aj , sj , aj+1, . . . consistent with A ∞

K,exo and s0 = s, the
trajectory satisfies the temporal formula φS ⇒ (2 Step[k](interfered ∨ φE)).

To capture the complete definition by a temporal formula, one needs branching time temporal operators
akin to A, like the operator Aπ in [9] meaning that “for all paths following the policy under considera-
tion”. In that case, the specification would be Aπ(2(φS ⇒ 2(Step[k](interfered ∨ φE)))). Note that
here we need 2 in between Aπ and φS to indirectly account for the phrase “for each state s in S”.

In upcoming sections, we discuss the above characterization in the context of general control generation
algorithms that work with arbitrary temporal specifications. However, we use the characterization of k-
maintainability in Definition 11 as it matches more closely with our algorithms, and does not necessitate
defining a compilation that eliminates exogenous actions and introduces the new fluent interfered and
proving the equivalence of that compilation.

5 Polynomial Time Methods to Construct k-Maintainable Controls

Now that we have defined the notion of k-maintainability, our next step is to show how some k-
maintainable control can be constructed in an automated way. We start with some historical back-
ground. In the program specification and synthesis literature, there have been a number of works, e.g.,
[49, 19, 60, 59] to automatically synthesize programs similar to our control policies from given temporal
logic specifications. Although these algorithms can accept richer goals, they all either allude to worst
case exponential nature of their algorithms or prove that the complexity is exponential or even higher.

5Such distinctions can be made by compiling a system, a set of agent actions, a specification of exogenous action occurrence,
a set of goal states and a set of initial states to an automata that eliminates transitions due to exogenous actions but records their
presence through the fluent interfered . We discuss such a compilation in Section 8.2.1.

14

None of them study special classes of specifications with lower complexity of constructing control. We
discuss these papers and their complexity results in Section 8.2.

There has been extensive use of situation control rules [26] and reactive control in the AI literature.
But there have been less efforts in the AI literature to define correctness of such control rules [8],6 and
to automatically construct correct control rules for general goals [10, 41, 37].7 In [42], it is suggested
that in a control rule of the form: “if condition c is satisfied then do action a”, the action a is the action
that leads to the goal from any state where the condition c is satisfied. In [8] a formal meaning of “leads
to” is given as: for all states s that satisfy c, a is the first action of a minimal cost plan from s to the
goal. Using this definition, an algorithm is presented in [52] to construct k-maintainable controls. This
algorithm is sound but not complete, in the sense that it generates correct controls only, but there is no
guarantee that it will find always a control if one exists.

In [10, 41], an algorithm to construct control with respect to linear temporal logic goals is given. This
algorithm is based on progressing linear temporal formulas. The worst case complexity of the algorithm
is given as double exponential with respect to the number of subformulas of the goal specification f ,
assuming a fixed number of states. Note that the temporal representation of k-maintainability will have
subformulas with k nested operators ©. However, no studies regarding the complexity of specific goal
specifications were done earlier. With the help of one of the authors of [10, 41] we explored how well
the algorithms in [10, 41] will do with respect to our goal and found that by the using the algorithm as
given in [10, 41] the complexity will be exponential in the size of k. In Section 8.2.1 we will discuss this
in more detail.

In the following, we overcome the problems one faces in the above mentioned approaches and give
a sound and complete polynomial time algorithm for constructing k-maintainable control policies. In
fact, the algorithm works in linear time for k bounded by a constant, and can be adapted to a linear time
algorithm for maintainability, i.e., where k is arbitrary but finite.

We provide it in two steps: First we consider the case when the transition function Φ is deterministic,
and then we generalize to the case where Φ may be non-deterministic. In each case, we present different
methods, which illustrates our discovery process and also gives a better grasp of the final algorithm.
We first present an encoding of our problem as a propositional theory and appeal to propositional SAT
solvers to construct the control. As it turns out, this encoding is in a tractable fragment of SAT, for which
specialized solvers (in particular, Horn SAT solvers) can be used easily. Finally, we present a direct
algorithm distilled from the previous methods.

The reasoning behind this line of presentation is the following:

(i) It illustrates the methodology of using SAT and Horn SAT encodings to solve problems;

(ii) the encodings allow us to quickly implement and test algorithms;

(iii) the proof of correctness mimics the encodings; and

(iv) we can exploit known complexity results for Horn SAT to determine the complexity of our algo-
rithm, and in particularly to establish tractability.

6Here we exclude the works related to MDPs as it is not known how to express the kind of goal we are interested in – such
as k-maintenance goals – using reward functions.

7In recent years, some planning algorithms and systems have been developed [18, 39, 40, 44, 14, 13] that generate control
rules for particular classes of goals.

15

As for (ii), we can make use of answer set solvers such as DLV [29, 45] or Smodels [53, 65] which
extend Horn logic programs by nonmonotonic negation. These solvers allow efficient computation of
the least model and some maximal models of a Horn theory, and can be exploited to construct robust or
“small” controls, respectively.

Just for clarification, our approach of going from a SAT encoding to a Horn SAT encoding to a procedural
algorithm is not to suggest that one is better or more efficient. Rather, it shows the usefulness of the
general methodology to go from a logical specification (i.e., a SAT encoding in this case) to a procedural
algorithm via transformations (Horn SAT encoding) that help us to prove the polynomial nature of the
algorithm.

The problem we want to solve, which we refer to as k-MAINTAIN, has the following input and output:

Input: An input I is a system A = (S, A, Φ, poss), sets of states E ⊆ S and S ⊆ S, a set Aag ⊆ A, a
function exo, and an integer k ≥ 0.

Output: A control K such that S is k-maintainable with respect to E (using the control K), if such a
control exists. Otherwise the output is the answer that no such control exists.

We assume here that the functions poss(s) and exo(s) can be efficiently evaluated; e.g., when both
functions are given by their graphs (i.e., in a table).

5.1 Deterministic transition function Φ(s, a)

We start with the case of deterministic transitions, i.e., Φ(s, a) is a singleton set {s′}whenever nonempty.
In abuse of notation, we simply will write Φ(s, a) = s′ in this case.

Our first algorithm to solve k-MAINTAIN will be based on a reduction to propositional SAT solving.
Given an input I for k-MAINTAIN, we construct a SAT instance sat(I) in polynomial time such that
sat(I) is satisfiable if and only if the input I allows for a k-maintainable control, and that the satisfying
assignments for sat(I) encode possible such controls.

In our encoding, we shall use for each state s ∈ S propositional variables s0, s1, . . . , sk. Intuitively, si

will denote that there is a path from state s to some state in E using only agent actions and at most i of
them, to which we refer as “there is an a-path from s to E of length at most i.”

The encoding sat(I) contains the following formulas:

(0) For all s ∈ S, and for all j, 0 ≤ j < k:

sj ⇒ sj+1

(1) For all s ∈ E ∩ S:

s0

(2) For any two states s, s′ ∈ S such that Φ(a, s) = s′ for some action a ∈ exo(s):

sk ⇒ s′k

(3) For any state s ∈ S \E and all i, 1 ≤ i ≤ k:

si ⇒
∨

s′∈PS(s) s′i−1,

where PS(s) = {s′ ∈ S | ∃a ∈ Aag ∩ poss(s) : s′ = Φ(a, s)};

16

(4) For all s ∈ S \E:

sk

(5) For all s ∈ S \ E:

¬s0

The intuition behind the above encoding is as follows. The clauses in (0) state that if there is an a-path
from s to E of length at most j then, logically, there is also an a-path of length at most j+1. The clauses
in (1) say that for states s in S∩E, there is an a-path of length 0 from s to E. Next, (4) states that for any
starting state s in S outside E, there is an a-path from s to E of length at most k, and (5) states that for any
state s outside E, there is no a-path from s to E of length 0. The clauses in (3) state that if, for any state
s, there is an a-path from s to E of length at most i, then for some possible agent action a and successor
state s′ = Φ(a, s), there is an a-path from s′ to E of length at most i-1. When looking for k-maintainable
controls the clauses in (2) take into account the possibility that s may be in the closure. If indeed s is
in the closure and there is an a-path from s to E of length at most k, then the same must be true with
respect to the states s′ reachable from s using exogenous actions. When looking for non-deterministic
control they play a role in computing maximal non-deterministic controls. The role of each of the above
clauses become more clear when relating the models of sat(I) with controls that k-maintain.

Given any model M of sat(I), we can extract a desired control K from it by defining K(s) = a for all
s outside E with sk true in M , where a is a possible agent action in s such that s′ = Φ(s, a) and s′ is
closer to E than s is. In case of multiple possible a and s′, one a can be arbitrarily picked. Otherwise,
K(s) is left undefined.

In particular, for k = 0, only the clauses from (1), (2), (4) and (5) do exist. As easily seen, sat(I) is
satisfiable in this case if and only if S ⊆ E and no exogenous action leads outside E, i.e., the closure of
S under exogenous actions is contained in E. This means that no actions of the agent are required at any
point in time, and we thus obtain the trivial 0-control K which is undefined on all states, as desired.

The next result states that the SAT encoding works properly in general.

Proposition 4 Let I consist of a system A = (S, A, Φ, poss) where Φ is deterministic, a set Aag ⊆ A,
sets of states E ⊆ S and S ⊆ S, an exogenous function exo, and an integer k. For any model M of
sat(I), let CM = {s ∈ S | M |= sk}, and for any state s ∈ CM let `M (s) denote the smallest index j
such that M |= sj (i.e., s0, s1,. . . , sj−1 are false and sj is true), which we call the level of s w.r.t. M .
Then,

(i) S is k-maintainable w.r.t. E iff sat(I) is satisfiable.

(ii) Given any model M of sat(I), the partial function K+
M : S → 2Aag defined on CM \ E such that

K+
M (s) = {a ∈ Aag ∩ poss(s) | Φ(s, a) = s′, s′ ∈ CM , `M (s′) < `M (s)},

is a valid non-deterministic control for A w.r.t. Aag;

(iii) any control K which refines K+
M for some model M of sat(I) k-maintains S w.r.t. E. 2

The proof of this proposition can be easily obtained by adapting the proof of Proposition 6.

17

5.1.1 Horn SAT encoding

While sat(I) is constructible in polynomial time from I , we can not automatically infer that solving
k-MAINTAIN is polynomial, since SAT is a canonical NP-hard problem. However, a closer look at the
structure of the clauses in sat(I) reveals that this instance is solvable in polynomial time. Indeed, it is a
reverse Horn theory; i.e., by reversing the propositions, we obtain a Horn theory. Let us use propositions
si whose intuitive meaning is converse of the meaning of si. Then the Horn theory corresponding to
sat(I), denoted sat(I), is as follows:

(0) For all s ∈ S and j, 0≤j<k:

sj+1 ⇒ sj .

(1) For all s ∈ E ∩ S:

s0 ⇒ ⊥.

(2) For any states s, s′ ∈ S such that s′=Φ(a, s) for some action a∈exo(s):

s′k ⇒ sk.

(3) For any state s ∈ S \E, and for all i, 1 ≤ i ≤ k:
(∧

s′∈PS(s) s′i−1

)
⇒ si,

where PS(s)={s′∈S | ∃a∈Aag∩poss(s): s′=Φ(a, s)}.

(4) For all s ∈ S \E:

sk ⇒ ⊥.

(5) For all s ∈ S \ E:

s0.

Here, ⊥ denotes falsity. We then obtain a result similar to Proposition 4, and the models M of sat(I)
lead to k-maintainable controls, which we can construct similarly; just replace in part (ii) CM with
CM = {s ∈ S | M 6|= sk}. Notice that CM coincides with the set of states CM for the model M of
sat(I) such that M |= p iff M 6|= p, for each atom p.

We now illustrate the above Horn encoding with respect to an example.

Example 5 Consider the system A = (S,A,Φ, poss), where S = {b, c, d, f, g, h}, A = { a, a′, e}, and
the (deterministic) transition function Φ was shown in Figure 1, where Φ(s, a) = s′ iff an arc s → s′

labeled with a is present and poss(s) are all actions that label arcs leaving s.

For A = { a, a′ } and exo(s) = { e } iff s = f and exo(s) = ∅ otherwise, this leads for S = {b},
E = {h}, and k = 3 to the following Horn encoding sat(I):

(From 0)

b1 ⇒ b0. b2 ⇒ b1. b3 ⇒ b2. c1 ⇒ c0. c2 ⇒ c1. c3 ⇒ c2.
d1 ⇒ d0. d2 ⇒ d1. d3 ⇒ d2. f1 ⇒ f0. f2 ⇒ f1. f3 ⇒ f2.
g1 ⇒ g0. g2 ⇒ g1. g3 ⇒ g2. h1 ⇒ h0. h2 ⇒ h1. h3 ⇒ h2.

18

(From 1)

(From 2)

g3 ⇒ f3.

(From 3)

c0 ∧ f0 ⇒ b1. c1 ∧ f1 ⇒ b2. c2 ∧ f2 ⇒ b3.
d0 ⇒ c1. d1 ⇒ c2. d2 ⇒ c3.
h0 ⇒ d1. h1 ⇒ d2. h2 ⇒ d3.
h0 ⇒ f1. h1 ⇒ f2. h2 ⇒ f3.

g1. g2. g3.

(From 4)

b3 ⇒ ⊥.

(From 5)

b0. c0. d0. f0. g0.

This theory has the least model

M = {g3, g2, g1, g0, f3, f2, f1, f0, b2, b1, b0, c1, c0, d0};

Figure 8: Computing the least model:[6] From 5 we get b0, c0, d0, f0, g0; [7] From 3 we get g1, g2, g3;
[8] From 6 and 3 we get b1, c1; [9] From 7 and 2 we get f3; [10] From 0 and 9 we get f2; [11] From 0
and 10 we get f1; [12] From 3, 8 and 11 we get b2.

Hence, CM = {b, c, d, h}, which gives rise to the non-deterministic control K+ such that K+(s) = {a}
for s ∈ {b, c, d} and K+(s) is undefined for s ∈ {f, g, h}. In this case, there is a single control K
refining K+, which has K(s) = a for s ∈ {b, c, d} and is undefined otherwise. This is intuitive: The
agent must reach h, and has to avoid taking a′ in b since then it might arrive at the no-good state g. Thus,
she has to take a in b and, as the only choice, in the subsequent states c and d. Also, we might not add any
state apart from b, c, and d without losing 3-maintainability. In this particular case, M is also maximal
on the propositions s3, where s ∈ S \ E = {b, c, d, f, g}: By (4), we can not add b3, and by (0) and the
clauses c2 ∧ f2 ⇒ b3 and d1 ⇒ c2 in (3) then also neither c3 nor d3. Thus, the above control K is also
smallest and, in fact, the only one possible for 3-maintainability. 2

As computing a model of a Horn theory is a well-known polynomial problem [25], we thus obtain the
following result.

19

Theorem 5 Under deterministic state transitions, problem k-MAINTAIN is solvable in polynomial
time. 2

An interesting aspect of the above is that, as well-known, each satisfiable Horn theory T has the least
model, MT , which is given by the intersection of all its models. Moreover, the least model is computable
in linear time, cf. [25, 50]. This model not only leads to a k-maintainable control, but also leads to
a maximal control, in the sense that the control is defined on a greatest set of states outside E among
all possible k-maintainable controls for S′ w.r.t. E such that S ⊆ S′. This gives a clear picture of
which other states may be added to S while k-maintainability is preserved; namely, any states in CMT

.
Furthermore, any control K computed from MT applying the method in Proposition 4 (using CMT

)
works for such an extension of S as well.

On the other hand, intuitively a k-maintainable control constructed from some maximal model of sat(I)
with respect to the propositions sk is undefined to a largest extent, and works merely for a smallest
extension. We may generate, starting from MT , such a maximal model of T by trying to flip first, step
by step all propositions sk which are false to true, as well as other propositions entailed. In this way,
we can generate a maximal model of T on {sk | s ∈ S \ E} in polynomial time, from which a “lean”
control can also be computed in polynomial time.

5.2 Non-deterministic transition function Φ(s, a)

We now generalize our method for constructing k-maintainable controls to the case in which transitions
due to Φ may be non-deterministic. As before, we first present a general propositional SAT encoding,
and then rewrite to a propositional Horn SAT encoding. To explain some of the notations, we need the
following definition, which generalizes the notion of an a-path to the non-deterministic setting.

Definition 12 (a-path) We say that there exists an a-path of length at most k ≥ 0 from a state s to a set
of states S′, if either s ∈ S′, or s /∈ S′, k > 0 and there is some action a ∈ Aag ∩ poss(s) such that for
every s′ ∈ Φ(s, a) there exists an a-path of length at most k − 1 from s′ to S′. 2

In the following encoding of an instance I of problem k-MAINTAIN to SAT, referred to as sat′(I), si

will again intuitively denote that there is an a-path from s to E of length at most i. The proposition s ai,
i > 0, will denote that for such s there is an a-path from s to E of length at most i starting with action a
(∈ poss(s)). The encoding sat′(I) has again groups (0)–(5) of clauses as follows:

(0), (1), (4) and (5) are the same as in sat(I).

(2) For any state s ∈ S and s′ such that s′ ∈ Φ(a, s) for some action a ∈ exo(s):

sk ⇒ s′k

(3) For every state s ∈ S \ E and for all i, 1 ≤ i ≤ k:

(3.1) si ⇒
∨

a∈Aag∩poss(s) s ai;

(3.2) for every a ∈ Aag∩poss(s) and s′∈Φ(s, a):

s ai ⇒ s′i−1;

(3.3) for every a ∈ Aag ∩ poss(s), if i < k:

s ai ⇒ s ai+1.

20

Group (2) above is very similar to group (2) of sat(I) in the previous subsection. The only change is
that we now have s′ ∈ Φ(a, s) instead of s′ = Φ(a, s). The main difference is in group (3). We now
explain those clauses. The clauses in (3.1) and (3.2) together state that if there is an a-path from s to
E of length at most i, then there is some possible action a for the agent, such that for each state s′ that
potentially results by taking a in s, there must be an a-path from s′ to E of length at most i-1. The clauses
s ai ⇒ s ai+1 in (3.3) say that on a longer a-path from s the agent must be able to pick a also. Notice
that there are no formulas in sat′(I) which forbid to pick different actions a and a′ in the same state s,
and thus we have a non-deterministic control; however, we can always refine it easily to a control.

Proposition 6 Let I consist of a system A = (S, A, Φ, poss), a set Aag ⊆ A, sets of states E,S ⊆ S,
an exogenous function exo, and an integer k. For any model M of sat′(I), let CM = {s ∈ S | M |= sk},
and for any state s ∈ CM \E let `M (s) denote the smallest index j such that M |= s aj for some action
a ∈ Aag ∩ poss(s), which we call the a-level of s w.r.t. M . Then,

(i) S is k-maintainable w.r.t. E iff sat′(I) is satisfiable;

(ii) given any model M of sat′(I), the partial function K+
M : S → 2Aag which is defined on CM \E by

K+
M (s) = {a | M |= s a`M (s)}

is a valid non-deterministic control; and

(iii) any control K which refines K+
M for some model M of sat′(I) k-maintains S w.r.t. E.

Proof. Since the if direction of (i) follows from (ii) and (iii), it is sufficient to show the only if direction
of (i) and both (ii) and (iii).

As for the only if direction of (i), suppose S is k-maintainable w.r.t. E. Then there exists a control
K such that for each state s ∈ Closure(S, AK,exo), and for each sequence σ = s(0), s(1), . . . , s(l) in
Unfoldk(s,A, K) where s(0) = s, {s(0), . . . , s(l)} ∩ E 6= ∅. We now construct an interpretation M for
sat′(I) as follows.

For each s ∈ Closure(S, AK,exo), and each sequence σ = s(0), s(1), . . ., s(l) in Unfoldk(s,A, K) with
s = s(0), let iσ (≥ 0) be the smallest index i such that s(i) ∈ E, and let i∗ be the maximum over all iσ
for s. Intuitively, i∗ is the length of the longest path in the tree with root s where each node n not in E
is sprouted by taking the control action K(n) and adding each state in Φ(n,K(n)) as a child. Then, we
assign true to si∗ , si∗+1,. . . , sk and, if i∗ > 0, to s ai∗ , s ai∗+1,s ak, where K(s) = a. All other
propositions are assigned false in M . We now argue that M is a model of sat(I).

It is straightforward to see that M satisfies the formulas generated by (0), (1), (4) and (5). Now consider
the formulas sk ⇒ s′k generated in (2). If sk is true, then s ∈ Closure(S, AK,exo) by construction. In
this case, for any s′ ∈ Φ(a, s) of an exogenous action a, we have s′ ∈ Closure(S, AK,exo), and since K
k-maintains S w.r.t. E, s′i is true in M for some i ≤ k which implies, by construction, that s′k is assigned
true in M . Let us finally consider the formulas generated in (3). If si, where s ∈ S \E, is assigned true
in M for some i ∈ {1 ≤ i ≤ k}, then s ∈ Closure(S, A,Kexo) holds by construction of M . Since K is
a k-maintaining control and s /∈ E, we must have K(s) defined and thus, by construction of M , we have
s K(s)i assigned true in M . Since K(s) ∈ Aag∩poss(s), the clause (3.1) is thus satisfied. Furthermore,
each clause in (3.2) is satisfied when a 6= K(s), since then sai is assigned false in M . For a = K(s),
proposition sai is true in M and thus, by construction, also si. Since K is k-maintaining control, every
state s′ ∈ Φ(s, a) belongs to Closure(S, A,Kexo). Let, for each sequence σ′ = s(0), s(1), . . ., s(l) in

21

Unfoldk(s,A, K) such that s(0) = s′, the sequence P (σ) = s(0), s(1), . . . , s(i) be the shortest prefix of
σ such that s(i) ∈ E (notice that i < k). Then, the sequence s, P (σ) is a prefix of some sequence in
Unfold(s,A, K). Hence, it follows that in the construction of M , the number i∗ for s is larger than the
one for s′. Thus, by construction of M , it follows that s′i−1 is assigned true in M . This means that the
formulas in (3.2) are satisfied in M . Finally, the clauses (3.3) are clearly satisfied in M by construction
of M . Thus, M is a model of sat′(I), which means that sat′(I) is satisfiable.

To show (ii), let us assume that sat′(I) has a model M , and consider the partial function K+
M : S →

2Aag which is defined on CM \ E by K+
M (s) = {a | M |= s a`M (s)}. We thus have to show that

K+
M (s) ⊆ poss(s) and K+

M (s) 6= ∅ when K+
M (s) is defined. By clause (3.1), and the definition of CM ,

`M , and K+
M this is immediate.

To show (iii), let K be any control which refines K+
M for some model M of sat′(I). Let the distance

dK(s, S) of a state s from the set of states S be as in the proof of Proposition 4. i.e., the minimum
number of transitions – through exogenous actions and/or control actions dictated by the control K –
needed to reach s from any state in S.

We will show, by using induction on d(s, S) ≥ 0, that for every state s ∈ Closure(S,AK,exo) and every
sequence σ = s(0), s(1), . . . , s(l) with s = s(0) in Unfoldk(s,A, K), the set {s(0), . . . , s(l)} intersects
with E and that M |= sk (i.e., s ∈ CM). This proves that K k-maintains S w.r.t. E.

The base case, d(s, S) = 0, is about states s ∈ S. From the formulas in (0), (1), and (4) we have
M |= sk for every such state s. Consider any sequence σ = s(0), s(1), . . . , s(l) in Unfoldk(s,A, K) such
that s = s(0). If s ∈ E, then we must have l = 0, and {s(0), . . . , s(l)} ∩ E 6= ∅. Otherwise, M |= sak

where a = K(s). We then have s(1) ∈ Φ(s, a), and thus by our construction of K and the clauses in
(3.2) we have that M |= s

(1)
k−1. Repeating this argument, we can infer that s

(0)
k , s

(1)
k−1, . . . , s

(l)
k−l are all

assigned true in M . If k = l, it follows from the clauses in (5) that s(l) ∈ E. Otherwise, if l < k, then K
must be undefined on s(l); by the clauses (1), this again means s(l) ∈ E. Hence, {s(0), . . . , s(l)}∩E 6= ∅.

Thus the statement holds in the base case. Now for the induction step, let us assume that it holds for
every state s ∈ Closure(S, AK,exo) at distance d(s, S) = d ≥ 0 from S. Let us now consider a state
s ∈ Closure(S, AK,exo) at distance d(s′, S) = d + 1 from S. Then there is a state s′ at distance
d(s, S) = d from S such that s ∈ Φ(a, s′) and either (i) a ∈ exo(s′) or (ii) a ∈ K(s′). In both cases,
we have by the induction hypothesis that M |= s′k, and we can conclude M |= sk from the clauses in (2)
in case (i) and from our construction of K and the clauses in (3.2), (1), and (0) in case (ii), respectively.
Furthermore, by similar argumentation as in the case d = 0 above, we obtain that for each sequence
σ = s(0), s(1), . . . , s(l) in Unfoldk(s, A,K) with s = s(0) it holds that {s(0), . . . , s(l)} ∩ E 6= ∅. This
concludes the induction and the proof of (iii). 2

One advantage of the encoding sat′(I) over the encoding sat(I) for deterministic transition function Φ
above is that it directly gives us the possibility to read off a suitable control from the s ai propositions,
a ∈ poss(s), which are true in any model M that we have computed, without looking at the transition
function Φ(s, a) again. On the other hand, the encoding is more involved, and uses a larger set of
propositions. Nonetheless, the structure of the formulas in sat′(I) is benign for computation and allows
us to compute a model, and from it a k-maintainable control in polynomial time.

5.2.1 Horn SAT encoding (general case)

The encoding sat′(I) is, like sat(I), a reverse Horn theory. We thus can rewrite sat′(I) similarly to
a Horn theory, sat

′(I) by reversing the propositions, where the intuitive meaning of si and s ai is the

22

converse of the meaning of si and s ai respectively. The encoding sat
′(I) is as follows:

(0), (1), (4) and (5) are as in sat(I)

(2) For every states s, s′ ∈ S such that s′ ∈ Φ(a, s) for some action a ∈ exo(s):

s′k ⇒ sk.

(3) For every state s ∈ S \ E and for all i, 1 ≤ i ≤ k:

(3.1)
(∧

a∈Aag∩poss(s) s ai

)
⇒ si;

(3.2) for every a ∈ Aag∩poss(s) and s′∈Φ(s, a):

s′i−1 ⇒ s ai;

(3.3) for every a ∈ Aag ∩ poss(s), if i < k:

s ai+1 ⇒ s ai.

We obtain from Proposition 6 easily the following result, which is the main result of this section so far.

Theorem 7 Let I consist of a system A = (S, A, Φ, poss), a set Aag ⊆ A, sets of states E, S ⊆ S, an
exogenous function exo, and an integer k. Let, for any model M of sat

′(I), CM = {s | M 6|= sk}, and
let `M (s) = min{j | M 6|= s aj , a ∈ Aag ∩ poss(s)} for every s ∈ S. Then,

(i) S is k-maintainable w.r.t. E iff the Horn SAT instance sat
′(I) is satisfiable;

(ii) Given any model M of sat
′(I), every control K such that K(s) is defined iff s ∈ CM \E and

K(s) ∈ {a ∈ Aag ∩ poss(s) | M 6|= s aj , j = `M (s)},

k-maintains S w.r.t. E. 2

Corollary 8 Problem k-MAINTAIN is solvable in polynomial time. More precisely, it is solvable in time
O(k‖I‖), where ‖I‖ denotes the size of input I . 2

Proof. A straightforward analysis yields that the size of sat
′(I), measured by the number of atoms in

it, is O(k(|S| + |Φ| + |poss|)), if Aag, S, E, Φ, poss and exo are stored in a standard way as bitmaps,
i.e., a (multi-dimensional) array with value range {0,1} (thus, ‖I‖ = O(|S|2|A|+ log k)). Furthermore,
the clauses in sat

′(I) can be easily generated within the same time bound. Since the least model of any
Horn theory T is computable in time O(|T |) where |T | is the number of atoms in it [25, 50], deciding
satisfiability and computing some model M of sat

′(I) is feasible in O(k‖I‖) time. Furthermore, CM

and {(s, `M (s)) | s ∈ S} are computable from M in linear time in the number of atoms, using suitable
data structures, and from this a control K as in Theorem 7.(ii) in the same time. Hence, a k-maintaining
control for S w.r.t. E is computable in O(k‖I‖) time.

Note that a more economic representation stores S, E, Aag as sets (i.e., lists) and Φ, poss , and exo by
their graphs in tables, i.e., sets of tuples {〈s, a,Φ(s, a)〉 | s ∈ S, a ∈ A}, {〈s, poss(s)〉 | s ∈ S},
and {〈s, exo(s)〉 | s ∈ S}. Also under this representation, and if moreover tuples where Φ(s, a)=∅
(resp., poss(s)=∅ and exo(s)=∅) are not stored (which is of the same order as storing the sets of tuples
{〈s, a, s′〉 | s′ ∈ Φ(a, s)}, {〈s, a〉 | a ∈ poss(s)}, {〈s, a〉 | a ∈ exo(s)}), the O(k‖I‖) time bound

23

holds. Indeed, arrays storing S, E, and Aag for lookup in O(1) time are constructible in time O(|S| +
|A|). Then, possag = {〈s, a〉 ∈ poss | a ∈ Aag} storing Aag ∩ poss(s) for all s is constructible in
O(|poss|) time. From this, all clauses of sat

′(I) except (2) and (3.2) can be readily generated in time
O(k(|S| + |possag|)). The clauses (2) and (3.2) can be easily constructed from Φexo = {〈s, a, s′〉 ∈
Φ | a ∈ exo(s)} and Φposs = {〈s, a, s′〉 ∈ Φ | a ∈ poss(s)} in time O(|Φexo |) and O(k|Φposs |),
respectively. The sets Φexo and Φposs can be generated from Φ and exo in time O(|Φ|+ |exo|+ poss|),
using an auxiliary array aux[A,S] to enable random access to Φ(a, s); notice that aux[a, s] needs not
be defined if Φ(a, s) = ∅. In total, sat

′(I) is constructible in O(|A|+ |exo|+ k(|S|+ |Φ|+ |poss|)) =
O(k‖I‖) time. 2

Thus in particular, finding a maintaining control under a small window of opportunity for maintenance,
i.e., a k-maintaining control for k bounded by a constant, is feasible in linear time in the size of the input.

Similar as in Section 5.1.1, the least model of the theory given by sat
′(I), M

sat
′
(I)

, leads to a max-
imal control in the sense that the pre-image of K outside E, i.e., the states outside E in which K is
defined, is greatest among all possible k-maintaining controls which include S. Furthermore, a smallest
k-maintaining control can be similarly computed from any maximal model of sat

′(I) with respect to the
propositions sk where s is outside E, which can be generated from M

sat
′
(I)

by stepwise maximization.
Again, both maximal and smallest controls can be computed in polynomial time.

Example 6 Reconsider the system A = (S,A, Φ, poss) from Example 5. Let us modify the transition
function Φ such that Φ(c,a) = {d, f} instead of Φ(c,a) = {d}. Then, for the respective modified
instance I of 3-MAINTAIN, denoted I1, the encoding sat

′(I1) looks as follows.

(0), (1), (2), (4), and (5) are as in sat(I1) in Example 5;

(3.1): b a1 ∧ b a′1 ⇒ b1. b a2 ∧ b a′2 ⇒ b2. b a3 ∧ b a′3 ⇒ b3.
c a1 ⇒ c1. c a2 ⇒ c2. c a3 ⇒ c3.
d a1 ⇒ d1. d a2 ⇒ d2. d a3 ⇒ d3.
f a1 ⇒ f1. f a2 ⇒ f2. f a3 ⇒ f3.

g1. g2. g3.

(3.2): h0 ⇒ d a1. h1 ⇒ d a2. h2 ⇒ d a3. h0 ⇒ f a1. h1 ⇒ f a2. h2 ⇒ f a3.
d0 ⇒ c a1. d1 ⇒ c a2. d2 ⇒ c a3. f0 ⇒ c a1. f1 ⇒ c a2. f2 ⇒ c a3.
c0 ⇒ b a1. c1 ⇒ b a2. c2 ⇒ b a3. f0 ⇒ b a′1. f1 ⇒ b a′2. f2 ⇒ b a′3.

(3.3): d a2 ⇒ d a1. d a3 ⇒ d a2. f a2 ⇒ f a1. f a3 ⇒ f a2. c a2 ⇒ c a1.
c a3 ⇒ c a2. b a2 ⇒ b a1. b a3 ⇒ b a2. b′ a2 ⇒ b′ a1. b′ a3 ⇒ b′ a2.

It turns out that sat
′(I) has no models: From g3, the clause g3 ⇒ f3 in (2), and clauses in (0), we obtain

that fi, i ∈ {0, . . . , 3}, is true in every model M of sat
′(I1). Hence, by the clause f2 ⇒ b a3 in (3.2),

also b a′3 is true in M . On the other hand, from the formula f1 ⇒ c a2 in (3.2), we obtain that c a2 must
be true in M , and thus by the clauses c a2 ⇒ c2 in (3.1) and c2 ⇒ b a3 in (3.2) that b a3 is true in M .
The clause b a3 ∧ b a′3 ⇒ b3 thus implies that b3 is true in M . However, by the formula b3 ⇒ ⊥ in (4),
b3 must be false in M . Thus, no model M of sat

′(I1) can exist, which by Theorem 7 means that there
is no 3-maintaining control for S = {b} w.r.t E = {h}. Indeed, regardless of whether a control function
K selects a or a′ in state b, within at most 2 steps from b the state f might be reached, from which the
exogenous function might move the system to the no-good state g.

Suppose now again that Φ(c,a) = {d, f} and that the agent can take a′ in g, which results in either h or
f (i.e., Φ(g,a′) = {f, h} and a′ ∈ poss(g)). Then the Horn encoding sat

′(I1) changes as follows:

24

In (3.1), the facts gi, i ∈ {1, 2, 3}, are replaced by g ai ⇒ gi;

In (3.2.), the clauses for a′ and f, h are added, i ∈ {1, 2, 3}:

f0 ⇒ g a′1. f1 ⇒ g a′2. f2 ⇒ g a′3. h0 ⇒ g a′1. h1 ⇒ g a′2. h2 ⇒ g a′3.

In (3.3), the clauses for a′ and g are added:

g a′2 ⇒ g a′1. g a′3 ⇒ g a′2.

In this encoding sat
′(I2) of the modified instance I2, we no longer have a fact g3 in (3.1) and thus the

above derivation of a contradiction for the truth value of b3 in any model of sat
′(I2) is not applicable. In

fact, sat
′(I2) is satisfiable, and its least model is

M = {b0, c0, d0 f0, g0, b a1, c a1, b a′1, g a′1, b1, c1, g1, b a2}.

Then, we have CM = {b, c, d, f, g, h}, `M (b) = `M (c) = `M (g) = 2 and `M (d) = `M (f) = 1, which
leads to a single 3-maintaining control K such that K(s) = a for s ∈ {b, c, d, f} and K(g)= a′. Note that
since K is defined on every state except h, it 3-maintains every set S w.r.t. every E which includes h. As
for S = {b}, K(c) and K(d) could remain undefined, since they are not in the closure of b (which can
be easily detected) at the price of losing robustness with respect to enlarging S. There is an alternative
solution in which K(b) = a′ instead of K(b) = a. Here K(s) can not be made undefined on any s 6= h.2

5.3 Genuine algorithm

From the encoding to Horn SAT above, we can distill a direct algorithm to construct a k-maintainable
control, if one exists. The algorithm mimics the steps which a SAT solver might take in order to solve
sat′(I). It uses counters c[s] and c[s a] for each state s ∈ S and possible agent action a in state s,
which range over {−1, 0, . . . , k} and {0, 1, . . . , k}, respectively. Intuitively, value i of counter c[s] (at
a particular step in the computation) represents that so far s0, . . . , si are assigned true, and that at least
i + 1 steps are needed from s to reach E; in particular, i = −1 represents that no si is assigned true yet.
Similarly, value i for c[s a] (at a particular step in the computation) represents that so far s a1, . . . , s ai

are assigned true (in particular, i = 0 that no s ai is assigned true yet), and that at least i + 1 steps are
needed from s to reach E starting with a.

Starting from an initialization, the algorithm updates by demand of the clauses in sat
′(I) the counters

(i.e., sets propositions true) using a command upd(c, i) which is short for “if c < i then c := i,” towards
a fixpoint. If a counter violation is detected, corresponding to violation of a clause s0 → ⊥ for s ∈ S∩E
in (1) or sk → ⊥ for s ∈ S \ E in (4), then no control is possible. Otherwise, a control is constructed
from the counters.

The detailed algorithm is shown in Figure 9.

It can be easily adjusted if we simply want to output a non-deterministic control such that each of its
refinements is a k-maintainable control, leaving a choice about the refinement to the user. Alternatively,
we can implement in Step 4 such a choice based on preference information. The following proposition
states that the algorithm works correctly and runs in polynomial time.

Proposition 9 Algorithm k-CONTROL solves problem k-MAINTAIN, and terminates for any input I in
polynomial time. Furthermore, it can be implemented to run in O(k‖I‖) time.

25

Algorithm k-CONTROL

Input: A system A = (S,A, Φ, poss), a set Aag ⊆ A of agent actions, sets of states E, S ⊆ S , an exogenous
function exo, and an integer k ≥ 0.

Output: A control K which k-maintains S with respect to E, if any such control exists. Otherwise, output that
no such control exists.

(Step 1) Initialization

(i) Set Φexo = {〈s, a, s′〉 | s ∈ S, a ∈ exo(s), s′ ∈ Φ(s, a)}, ΦE
poss = {〈s, a, s′〉 | s ∈ S \ E, a ∈

poss(s), s′ ∈ Φ(s, a)}, and for every s ∈ S , possag(s) = Aag ∩ poss(s).

(ii) For every s in E, set c[s] := −1.

(iii) For every s in S \ E, set c[s] := k if possag(s) = ∅; otherwise, set c[s] := 0.

(iv) For every s in S \ E and a ∈ possag(s), set c[s a] := 0.

(Step 2) Repeat the following steps until there is no change or c[s]=k for some s ∈ S \ E or c[s]≥0 for some
s ∈ S ∩ E:

(i) For any 〈s, a, s′〉 ∈ Φexo such that c[s′]=k do upd(c[s], k).

(ii) For any 〈s, a, s′〉 ∈ ΦE
poss such that c[s′]=i:

if 0 ≤ i < k then do upd(c[s a], i + 1), elseif i = k then do upd(c[s a], k).

(iii) For any state s ∈ S \E such that possag(s) 6= ∅ and i= min(c[s a] | a ∈ possag(s)) do upd(c[s], i).

(Step 3) If c[s]=k for some s ∈ S \ E or c[s]≥0 for some s ∈ S ∩ E, then output that S is not k-maintainable
w.r.t. E and halt.

(Step 4) Output any control K : S \ E → Aag defined on all states s ∈ S \ E with c[s] < k and such that
K(s) ∈ {a ∈ possag(s) | c[s a] = minb∈possag(s) c[s b] < k}. 2

Figure 9: Algorithm for problem k-MAINTAIN

Proof. The correctness of the algorithm follows from Theorem 7 and the fact that k-CONTROL mimics,
starting from facts in (5) and (3.1), the computation of the least model of sat

′(I) by a standard fix-point
computation. As for the polynomial time complexity, since counters are only increased, and the loop in
Step 2 is reentered only if at least one counter has increased in the latest run, it follows that the number
of iterations is polynomially bounded. Since the body of Step 2 and each other step is polynomial, it
follows that k-CONTROL runs in polynomial time.

For the more detailed account, note that bitmaps for S, E and A (if not available in the input) can be
generated in time O(|S| + |A|). In (i) of Step 1, the sets Φexo and ΦE

poss can be constructed in time
O(|Φ| + |exo|) and O(|Φ| + |poss| + |S|), respectively, using an auxiliary array for random access
to Φ(a, s) in case if the functions are given by their graphs (cf. proof of Corollary 8). Constructing
possag(s) for all s∈S takes O(|poss|) time, and (ii)–(iv) of Step 1 is feasible in time O(|S|+ |poss|).
Using flags to signal changes to counters c[s], c[sa], and auxiliary counters for min(c[s a] | a ∈
possag(s)), the number of calls of upd in Step 2 is O(k(|Φexo | + |Φposs| + |S|)), and each call takes
O(1) time. The loop condition can be checked in O(m) time where m is the number of changes in the
loop. Hence, the total time for Step 2 is O(k‖I‖). Step 3 is O(1) if a flag is set in Step 2 indicating the
reason for the loop exit. Finally, in Step 4, a control K can be easily output in time O(|poss|). In total,
the time is O(k‖I‖). 2

26

Thus, for k bounded by a constant, k-CONTROL can be implemented to run in linear time. We remark
that further improvements are possible. For example, states may be eliminated beforehand which will
not be reachable from any state in S under any control that is eventually constructed. This can be done
efficiently by computing an upper bound of Closure(S, KA,exo) in which all possible actions at any state
are merged into a single action. Similarly, we can efficiently prune all states which can not reach E
within k steps in linear time. This can e.g. be achieved by a slight extension of algorithm K-CONTROL,
in which flags final [s] and final [s a] for the states s and actions a ∈ possag(s) signal whether the
counters c[s] and c[s a] correspond to the shortest distance to E, and in Step 2 (ii) and (iii) we chose next
always some s a (respectively s) such that its final flag can be switched from false to true and c[s a]
(resp. c[s]) is smaller than k. We leave further discussion and refinements for future work.

5.4 Generic maintaining controls

By the results in the previous subsections, we can solve problem MAINTAIN, which is analogous to k-
MAINTAIN but k is not in the input and can be arbitrarily chosen, in time O(|S|‖I‖), that is, in time
quadratic in the size of the input. This follows from the fact that k-maintainability of S w.r.t. E for some
arbitrary but finite k ≥ 0 is equivalent to k-maintainability of S w.r.t. E where k = |S| is the number of
states.

However, we can take advantage of the property that the exact number of steps to reach E does not
matter (as long as it is finite), and design a more efficient (linear time) algorithm, which proceeds in
two phases. In the first phase, those states s are determined from which E is reachable by an a-path of
arbitrary length, and all other states are pruned. In the second phase, those states are iteratively pruned
which are taken by some exogenous action to a state without such an a-path, or where each action a leads
to a pruned state.

We can obtain a genuine linear-time algorithm for solving problem MAINTAIN by adapting the algorithm
k-CONTROL such that it implements the two phases, where the counters c[s] and c[s a] only range over
a fixed domain independent of k. However, we skip the discovery process and go straight to a simple
algorithm, which is shown in Figure 10. We refer to this algorithm as ω-control or ω-maintaining control.
It implements the phases 1 and 2 in the steps 2 and 3, respectively. If in Step 4 a maintaining control
is found to exist, Step 5 extracts such a control from the data structures. Like for k-maintainability, this
requires some care since a naı̈ve extraction does not work (in particular, cycles may cause problems).
The following result, whose proof is omitted, states that the algorithm works properly.

Proposition 10 Algorithm ω-CONTROL solves problem MAINTAIN, and terminates for any input I in
polynomial time. Furthermore, it can be implemented to run in time O(‖I‖), i.e., in linear time.

6 Encoding k-Maintainability for an Answer Set Solver

In this section, we use the results of the previous section to show how computing a k-maintainable
control can be encoded as finding answer sets of a non-monotonic logic program. More precisely, we
describe an encoding to non-monotonic logic programs under the Answer Set Semantics [33], which can
be executed on one of the available answer set solvers such as DLV [29, 45] or Smodels [53, 65]. These
solvers support the computation of answer sets (models) of a given program, from which solutions (in
our case, k-maintaining controls) can be extracted.

27

Algorithm ω-CONTROL

Input: A system A = (S,A, Φ, poss), a set Aag ⊆ A of agent actions, sets of states E, S ⊆ S , an exogenous
function exo.

Output: A control K which maintains S with respect to E, if any such control exists. Otherwise, output that no
such control exists.

(Step 1) X := E.

(Step 2) Repeat until there is no change to X:
X := X ∪ {s | ∃a ∈ Aag : ∀s′, s′ ∈ Φ(s, a), s′ ∈ X}.

(Step 3) Repeat until there is no change to X:
X := X \ {s | ∃a ∈ exo(s) : ∃s′, s′ ∈ Φ(s, a), s′ 6∈ X};
X := X \ {s | ∀a ∈ Aag : ∃s′, s′ ∈ Φ(s, a), s′ 6∈ X}.

(Step 4) If S \X 6= ∅ then output that S is not maintainable w.r.t. E and halt.

(Step 5) Construct the control going backwards from the goal states in the following manner.

(i) Initialize counters: for all s ∈ X and a ∈ Aag do c[s a] := |Φ(s, a)|.
(ii) For every state s ∈ E do put (s, nop) in a queue Q.

(iii) While Q is not empty do

Pop an element (s, x) from Q;
if s /∈ E then K(s) := x;
for all transitions (s′, a, s) such that s ∈ Φ(s′a) and s′ ∈ X do

c[s′ a] := c[s′ a]− 1;
if c[s′ a] = 0 and K(s′) is undefined then put (s′, a) in Q.

Figure 10: Algorithm for problem MAINTAIN

The encoding is generic, i.e., given by a fixed program which is evaluated over the instance I represented
by input facts F (I). It makes use of the fact that non-monotonic logic programs can have multiple
models, which correspond to different solutions, i.e., different k-maintainable controls.

In the following, we first describe how a system is represented in a logic program, and then we develop
the logic programs for both deterministic and general, non-deterministic domains. We shall follow here
the syntax of the DLV system; the changes needed to adapt the programs to other answer set solvers such
as Smodels are minor.

6.1 Input representation

The input I of problem k-MAINTAIN, can be represented by facts F (I) as follows.

• The system A = (S,A, Φ, poss) can be represented using predicates state, transition, and
poss by the following facts:

– state(s), for each s ∈ S;

– action(a), for each a ∈ A;

– transition(s,a,s′), for each s, s′ ∈ S and a ∈ A such that s′ ∈ Φ(s, a);

28

– poss(s,a), for each s ∈ S and a ∈ A such that a ∈ poss(s).

• the set Aag⊆A of agent actions is represented using a predicate agent by facts agent(a), for
each a∈Aag;

• the set of states S is represented by using a predicate start by facts start(s), for each s ∈ S;

• the set of states E is represented by using a predicate goals by facts goal(s), for each s ∈ E;

• the exogenous function exo is represented by using a predicate exo by facts exo(s,a) for each
s∈S and a∈exo(s);

The integer k is represented as constant k.

Example 7 Coming back to Example 3, the input I is represented as follows:

state(b). state(c). state(d). state(f). state(g). state(h).

action(a). action(a1). action(e).

trans(b,a,c). trans(b,a1,f). trans(c,a,d). trans(d,a,h).
trans(f,a,h). trans(f,e,g).

poss(b,a). poss(b,a1). poss(f,a). poss(f,e).
poss(c,a). poss(d,a).

agent(a). agent(a1).

start(b). goal(h).

exo(f,e).

const k=3. 2

6.2 Deterministic transition function Φ

The following is a program, executable on the DLV engine, for deciding the existence of a k-control.
In addition to the predicates for the input facts F (I), it employs a predicate n path(X,I), which
intuitively corresponds to XI , and further auxiliary predicates.

% Define range of 0,1,...,k for stages.
range(0..k).

% Rule for (0).
n_path(X,I) :- state(X), range(I), I < k, n_path(X,J), J = I+1.

% Rule for (1).
:- n_path(X,0), goal(X), start(X).

% Rule for (2)
n_path(X,k) :- trans(X,A,Y), exo(X,A), n_path(Y,k).

% Rules for (3)
n_path(X,I) :- state(X), not goal(X), range(I),

I>0, not some_pass(X,I).

some_pass(X,I) :- range(I), I>0, trans(X,A,Y), agent(A),

29

poss(X,A), not n_path(Y,J), I=J+1.

% Rule for (4)
:- n_path(X,k), start(X), not goal(X).

% Rule for (5)
n_path(X,0) :- state(X), not goal(X).

The predicate range(I) specifies the index range from 0 to k, given by the input limit(k). The
rules encoding the clause groups (0) – (2) and (4), (5) are straightforward and self explanatory. For
(3), we need to encode rules with bodies of different size depending on the transition function Φ, which
itself is part of the input. We use that the antecedent of any implication (3) is true if it is not falsified,
where falsification means that some atom s′i−1, s′ ∈ PS(s), is false; to assess this, we use the auxiliary
predicate some pass(X,I).

To compute the non-deterministic control K+, we may add the rule:

% Define C M
cbar(X) :- state(X), not n_path(X,k).

%Define state level L
level(X,I) :- cbar(X), not n_path(X,I), I > 0, n_path(X,J), I=J+1.
level(X,0) :- cbar(X), not n_path(X,0).

% Define non-deterministic control k_plus
k_plus(X,A) :- agent(A), trans(X,A,Y), poss(X,A), level(X,I),

level(Y,J), J<I, not goal(X).

In cbar(X), we compute the states in CM , and in level(X,I) the level `M (s) of each state s ∈ CM

(=CM for the corresponding model M of sat(I)). The non-deterministic control K+
M is then computed

in k plus(X,A).

Finally, by the following rules we can non-deterministically generate any control which refines K+
M :

% Selecting a control from k_plus.
control(X,Y) :- k_plus(X,Y), not exclude_k_plus(X,Y).

exclude_k_plus(X,Y) :- k_plus(X,Y), control(X,Z), Y<>Z.

The first rule enforces that any possible choice for K(s) must be taken unless it is excluded, which by
the second rule is the case if some other choice has been made. In combination the two rules effect that
one and only one element from K+

M (s) is chosen for K(s).

Example 8 If the input representation of Example 5 is in a file exa3.dlv and the above program,
denoted by Πdet, in a file det.dlv, the DLV engine can be invoked e.g. by

dlv exa3.dlv det.dlv -N=3 -filter=control

which outputs the controls; here -N=3 sets the range of integers dynamically supported by the engine to
3, and -filter=control effects that the answer sets are clipped to the predicate control. In the particular
case, the output on the call is (apart from system version information)

30

{control(b,a), control(c,a), control(d,a)}

yielding the unique control which exists in this case. If we would add a further agent action a2 to the
action set, and extend the transition function by Φ(b,a2) = c, then a call of DLV for the respective
representation would yield

{control(b,a2), control(c,a), control(d,a)}
{control(b,a), control(c,a), control(d,a)}

corresponding to the two alternative controls which emerge, since the agent can take either action a or
action a2 in state a.

6.3 Non-deterministic transition function Φ

As for deciding the existence of a k-maintaining control, the only change in the code for the deterministic
case affects Step (3). The modified code is as follows, where n apath(X,A,I) intuitively corresponds
to X AI .

% Rules for (3); different from above

% (3.1)
n_path(X,I) :- state(X), not goal(X), range(I), I>0, not some_apass(X,I).

some_apass(X,I) :- range(I), I>0, agent(A), poss(X,A), not n_apath(X,A,I),
not goal(X).

% (3.2)
n_apath(X,A,I) :- agent(A), trans(X,A,Y), poss(X,A), range(I), I>0,

n_path(Y,J), I=J+1, not goal(X).
% (3.3)
n_apath(X,A,I) :- agent(A), poss(X,A), range(I), I>0, I<k,

n_apath(X,A,J), J=I+1, not goal(X).

Here, some apass(X,A,I) plays for encoding (3.1) a similar role as some pass(X,I) for encod-
ing (3) in the deterministic encoding.

To compute the non-deterministic control K+
M , we may then add the following rules:

% Define C M
cbar(X) :- state(X), not n_path(X,K), limit(K).

% Define state action level, alevel (>=1)
alevel(X,I) :- alevel_leq(X,I), I=J+1, range(J), not level_leq(X,J).

alevel_leq(X,I) :- cbar(X), not goal(X), poss(X,A), agent(A), I>0,
range(I), not n_apath(X,A,I).

% Define non-deterministic control k_plus
k_plus(X,A) :- agent(A), alevel(X,I), poss(X,A), not n_apath(X,A,I).

Here, the value of `M (s) is computed in alevel(X,I), using the auxiliary predicate
alevel leq(X,I) which intuitively means that `M (X) ≤ I .

31

For computing the controls refining K+
M , we can add the two rules for selecting a control from k plus

from the program for the deterministic case.

Example 9 Let us revisit the instance I1 in Example 6. We get the DLV representation of I1 by adding
the fact trans(c,a,f). to the representation for I . Assuming that it is in a file exa4.dlv and the
program Πndet in a file ndet.dlv, a call

dlv exa4.dlv ndet.dlv -N=3 -filter=control

yields no output (apart from some system version print), which is correct. On the other hand, if we
consider the input I2 for the variant of Example 6 (with agent action a′ possible in g and Φ(g,a′) =
{f, h}), then the output is

{control(b,a1), control(c,a), control(d,a), control(f,a), control(g,a1)}

(where a1 encodes a′). Again, this is a correct result.

6.4 Layered use of negation

An important note at this point is that the programs Πdet and Πndet do not necessarily have models which
correspond to the least models of the Horn theories sat(I) and sat

′(I), respectively. The reason is that
the use of negation not some pass(X,I) and resp. not some apass(X,I) may lead through
cycles in recursion. Thus, not each control computed is necessarily maximal (even though the maximal
controls will be computed in some models). Furthermore, because of cyclic negation it is not a priori
clear that the part of the program deciding the existence of a control is evaluated by DLV in polynomial
time. However, consistency (i.e., existence of an answer set) is guaranteed whenever sat(I) resp. sat

′(I)
has a model.

It is possible to modify Πdet such that the use of negation in recursion cycles is eliminated, by using
standard coding methods to evaluate the body of the rule in (3). Namely, introduce for Πdet a predicate
all true and replace not some pass(X,I) in the code for (3) with all true(X,I), which is
defined such that all true(s, i) represents that every s′i−1 ∈ PS(s) is assigned true, which can be
checked using a linear ordering ≤ on PS(s). However, we refrain from this here.

Notice that in the case where PS(s) has size bounded by a constant c, we can use a predicate ps of arity
c + 1 to represent PS(s) = {s(1), . . . , s(l)} by a single fact ps(s, s(1), . . . , s(l), . . . , s(l)) where s(l) is
reduplicated if l < c. It is then easy to express the clause (3).

We can similarly modify Πndet such that the use of negation in recursion cycles is eliminated, where we
use a linear ordering onAag∩poss(s) (or simply onAag, assuming that there are not many agent actions
overall). Finally, we can also use for the program Πdet simply an ordering ofAag, since the deterministic
transformation Φ(s, a) is a (partial) surjective mapping of A onto PS(s), which guarantees that via
A ∩ poss(s) each s′ ∈ PS(s) can be accessed through Φ.

The modified programs use negation only in a stratified manner, and thus will be evaluated by DLV in
guaranteed polynomial time in the size of the DLV representation of sat(I) and sat

′(I), respectively.

6.5 State descriptions by variables

In many cases, states of a system are described by a vector of values for parameters which are variable
over time. It is easy to incorporate such state descriptions into the LP encoding from above, and to

32

evaluate them on answer set solvers provided that the variables range over finite domains. In fact, if any
state s is given by a (unique) vector s = 〈s1, . . . , sm〉 m > 0, of values si, 1 ≤ i ≤ m, for variables Xi

ranging over nonempty domains, then we can represent s as fact state(vi
1,...,vi

ri
) and use a vector

X1,...,Xm of state variables in the DLV code, in place of a single variable, X. No further change of
the programs from above is needed.

Similarly, we can easily accommodate actions a(P1, P2, . . . , Pm) with parameters P1, . . . , Pm (which
is important) from a finite set if desired. However, here the rule defining exclude k plus(X,Y)
should be replaced by all rules emerging if the atom Y <> Z in the body is replaced by Yi <> Zi, i
∈ {1,...,m} (assuming that Y and Z are replaced by Y1,...,Ym and Z1,...,Zm, respectively).

Another possibility to handle state descriptions by variables would be to implement a coding
scheme, which maps each vector s = 〈s1, . . . , sm〉 into an integer i(s), represented by fact
code(i(s), s1, . . . , sm).

Furthermore, we point out that the input need not consist merely of facts, but may also involve rules to
define the predicates of the input representation more compactly. Finally, the facts for action can be
dropped, since they are not referenced by any rule in programs Πdet and Πndet.

For illustration, we consider the buffer example from Section 3.

Example 10 Recall that states in the buffer example are given by pairs of integers 〈i,j〉 where i and j
are the numbers of objects in buffer b1 and b2, respectively. We thus use variables X1,X2 and Y1,Y2 in
place of X and Y, respectively.

For buffer capacity of 3, S = {〈0, 0〉}, E = {〈0, j〉 | 1 ≤ j ≤ 3}, and k = 6, the input can be
represented as follows:

state(X1,X2) :- #int(X1), #int(X2), X1 <= 3, X2 <= 3.

start(0,0).

goal(0,X2) :- state(0,X2).

trans(X1,X2,m_12,Y1,Y2) :- state(X1,X2), state(Y1,Y2), X1=Y1+1, Y2=X2+1.
trans(X1,X2,m_21,Y1,Y2) :- state(X1,X2), state(Y1,Y2), Y1=X1+1, X2=Y2+1.
trans(X,X2,proc,X,Y2) :- state(X,X2), state(X,Y2), X2=Y2+1.
trans(X1,X,ins,Y1,X) :- state(X1,X), state(Y1,X), Y1=X1+1.

poss(X1,X2,m_12) :- state(X1,X2), 1 <= X1, X2 <= 2.
poss(X1,X2,m_21) :- state(X1,X2), 1 <= X2, X1 <= 2.
poss(X1,X2,proc) :- state(X1,X2), 1 <= X2.
poss(X1,X2,ins) :- state(X1,X2), X1 <= 2.

agent(m_12). agent(m_21). agent(proc). exo(ins).

const k = 6.

Here, equalities X1=0 for X1,X2 in the rule defining goal and X1=Y1 in the definition of
trans(X,X2,proc,X,Y2) etc are pushed through.

Invoking DLV, assuming the representation is stored in file exa-buffer.dlv and the expanded ver-
sion of Πdet in a file det2.dlv, with

dlv exa-buffer.dlv det2.dlv -N=6 -filter=control

33

yields 13 models, of which encode different controls. Among the maximal controls is

{control(1,0,m_12), control(1,1,m_12), control(1,2,m_12), control(1,3,proc),
control(2,0,m_12), control(2,1,m_12), control(2,2,proc), control(2,3,proc),
control(3,0,m_12), control(3,1,proc), control(3,2,proc), control(3,3,proc)}

which is defined on all states outside E, and thus constitutes a 6-maintaining control for the whole
system.

7 Computational Complexity

In this section, we consider the complexity of constructing k-maintainable controls under various as-
sumptions. To this end, we first describe the problems analyzed and give an overview of the complexity
results. After that, the results are established in a separate subsection; the reader who is not interested in
the technical proofs might safely skip it.

7.1 Problems considered and overview of results

Following the common practice, we consider here the decision problem associated with k-MAINTAIN,
which we refer to as k-MAINTAINABILITY: Given a system A = (S,A,Φ, poss), a set Aag ⊆ A of
agent actions, sets of states E, S ⊆ S , an exogenous function exo, and an integer k ≥ 0, decide whether
S is k-maintainable with respect to E in A. Furthermore, we also consider MAINTAINABILITY, which
has the same input except k and asks whether S is maintainable with respect to E in A.

We consider the problems in two different input settings, in line with the previous sections:

Enumerative representation: The constituents of an instance I are explicitly given, i.e., the sets
(A,S,Aag, S, and E) in enumerative form and the functions (Φ(a, s), poss(s), and exo) by their
graphs in tables.

State variables representation: A system state s is represented by a vector s = (v1, . . . , vm) of values
for variables f1,. . . ,fm ranging over given finite domains D1, . . . , Dm, whileA andAag are given
in enumerative form. We assume that polynomial-time procedures for evaluating the following
predicates are available:

• in Phi(s, a, s′), in poss(s, a), and in exo(s, a) for deciding s′ ∈Φ(s, a), a∈ poss(s), and
a∈ exo(s), respectively.

• in S (s) and in E (s) for deciding whether s∈S and s∈E, respectively.

Orthogonal to this, we also consider (1) general k versus constant k, in order to highlight the complexity
of small windows of opportunity for maintenance; (2) absence of exogenous actions, to see what cost
intuitively is caused by an adversary; and (3) non-deterministic versus deterministic actions.

The results of the complexity analysis are compactly summarized in Tables 1 and 2, in which unless
stated otherwise, the entries stand for completeness results under logspace reductions. We assume that
the reader is familiar with the classes P (polynomial time), EXP (exponential time), L (logarithmic
workspace), NL (non-deterministic logarithmic work space), co-NP (co-non-deterministic polynomial
time), and PSPACE (polynomial space) appearing in the tables, and refer to [57] and references therein

34

+/- exogenous actions k-MAINTAINABILITY MAINTAINABILITY

given k constant k ≥ 1

deterministic P / NL (Th.11/15) P / in LH (⊂ L) (Th.11/16) P / NL (Co.12/Th.15)

non-deterministic P (Th.11/13) P / in LH (⊂ L) (Th.11/16) P (Co.12/Th.13)

Table 1: Complexity of deciding (k-)MAINTAINABILITY under enumerative representation (logspace
completeness)

+/- exogenous actions k-MAINTAINABILITY MAINTAINABILITY

given k constant k ≥ 1

deterministic EXP / PSPACE (Th.18/21) EXP / co-NP (Th.18/22) EXP / PSPACE (Co.19/Th.21)

non-deterministic EXP (Th.18/20) EXP / co-NP (Th.18/22) EXP (Co.19/Th.20)

Table 2: Complexity of deciding (k-)MAINTAINABILITY under state variables representation (logspace
completeness)

for further background on complexity. By LH we denote the logarithmic time hierarchy [11, 38], which
is given by LH =

⋃
i≥0 Σlog

i , where Σlog
i denotes the decision problems solvable on an alternating Turing

machine in logarithmic time with at most i−1 alternations between existential and universal states, start-
ing in an existential state. Note that LH is strictly included in L. A more refined complexity assessment
is given in Section 7.2. However, we refrain here from providing a sharp complexity characterization of
the problems classified within LH in terms of completeness under a suitable notion of reduction, since
they are not central to the maintainability issue under an “adversarial” environment.

Under enumerative representation (Table 1), (k-)MAINTAINABILITY has the same complexity as Horn
SAT, which is P-complete [57]. In fact, this holds also for the case of constant k =1 and the restriction
that all actions are deterministic and that there is a single exogenous action. Thus, even in the sim-
plest setting with an adversary according to the dimensions above, the problem already harbors its full
complexity; excluding non-deterministic actions and/or fixing k does not make the problems simpler.
Intuitively, this is because with the help of exogenous actions, one can simulate nondeterminism and
split sequences of agent maintenance actions into small segments.

On the other hand, when exogenous actions are excluded (listed under “-”), (k-)MAINTAINABILITY is
always easier when the actions are deterministic or the maintenance window is small (k is constant).
In summary, the results show that exogenous actions can not be compiled efficiently away (with rea-
sonable complexity) to an instance of maintainability under a small maintenance window, and that non-
deterministic actions are indispensable for such a compilation.

The reason is that in absence of exogenous actions, k-MAINTAINABILITY is akin to a graph reach-
ability resp. planning problem (for the latter, see Section 8.3). Indeed, define for a fixed system
A=(S,A,Φ, poss), a set of agent action Aag ⊆ A, and sets E, S ⊆ S of states the predicates ri(s),
i ≥ 0, on s ∈ S inductively by

r0(s) = s ∈ E,

ri+1(s) = s ∈ E ∨ ∃a ∈ Aag ∩ poss(s)
∀s′ ∈ S(s′ ∈ Φ(s, a) ⇒ ri(s′)), for i ≥ 0. (1)

Informally, ri(s) expresses that some state in E can be reached from s within i agent actions, and it

35

holds that S is k-maintainable with respect to E, exactly if rk(s) holds for every s in S (as proved in
Lemma 1 below). The predicate rk(s) is definable in first-order predicate logic with a suitable relational
vocabulary (using the predicates given for enumerative representation). As well-known, the first-order
definable properties are those which can be decided in LH [11, 38]. Since LH is considered to contain
problems which have much lower complexity than hard problems in P, the effect of exogenous actions
is drastic in complexity terms.

Under state variables representation (Table 2), the complexity of the problems, with few exceptions
increases by an exponential. This increase is intuitively explained by the fact that state variables permit in
general an exponentially smaller input representation, which must be unpacked for solving the problem.
The exception for constant k in absence of exogenous functions, where the complexity increases from
within LH to co-NP, is intuitively explained by the fact that the quantifier “∃a ∈ Aag ∩ poss(s)” in
equation (1), as opposed to “∀s′ ∈ S”, ranges over a polynomial set of values (in the input size), and
thus can be deterministically eliminated. Exogenous actions cannot be compiled efficiently away in the
same cases as under enumerative representation.

For practical concerns, we can draw from the results above the following conclusions. While k-
MAINTAINABILITY is tractable under enumerative representation, it is because of its P-completeness
not amenable to efficient parallel computation and not solvable within poly-logarithmic workspace under
widely believed complexity hypotheses. However, if exogenous actions are absent and the maintenance
window has size bounded by a constant, the problem can be solved in constant time using a polynomial
number of processors as follows from membership in LH (see [38]).

The EXP-completeness results for state variables representation imply that the problems are prov-
ably intractable, and that exponential time and, by current methods, also exponential workspace is
needed to solve them. Thus, a polynomial-time reduction to popular propositional logic engines such
as SAT/UNSAT or QBF solvers (see http://www.satcompetition.org/, http://www.
qbflib.org/ for state-of-the-art systems) is infeasible in general. Only in the “cheapest” cases
(where the size of the maintenance window is bounded by a constant and exogenous actions are absent),
a polynomial-time reduction of k-MAINTAINABILITY to SAT/UNSAT solvers is feasible; a polynomial-
time reduction of (k-)MAINTAINABILITY to QBF solvers is only feasible in deterministic domains and
in absence of exogenous actions. When exogenous actions are possible, the full complexity shows up
and one has to resort to more expressive engines such as answer set solvers (as discussed in Section 6.5)
for instance. We remind, however, that the results in Table 2 are worst-case complexity results, and that
under further constraints the problems may be solvable with polynomial resources. A detailed study of
this issue remains for future work.

7.2 Enumerative representation

We start with the case of enumerative representation. Our first result is the following.

Theorem 11 Problem k-MAINTAINABILITY is P-complete (under logspace reductions). The P-
hardness holds under the restriction that k = f(A,S, E) is any function of A, S, and E such that
f(A,S, E)≥ 1 (in particular, for fixed k ≥ 1), even if in addition all actions are deterministic and
there is only one exogenous action.

Proof. The membership of k-MAINTAINABILITY in P follows from Corollary 8.

We prove P-hardness under the stated restriction by a reduction from deciding logical entailment π |= q
of a propositional atom q from a propositional Horn logic program (PHLP) π, which is a set of rules of

36

b3

c3

a3 r3
1

r3
3

r3
2

c2

a2

b2

r2
3

r2
2

r2
1

c1

b1

a1 r1
1

r1
2

r1
3

a0

b0

c0

(b, c)2 (b, c)1 (b, c)0

a r1

a r2

a r3

e

a r2

a r3

e

a r2

a r3

a r2 a r2
S

E

e

eee

a r1 a r1

Figure 11: Transition diagram of the system for π = {a ← b, c; b ← ; c ←} and q = a (S and E
encircled).

the form
b0 ← b1, . . . , bn, n ≥ 0, (2)

and each bi is a propositional atom from an underlying atom set At; b0 is the head and b1, . . . , bn is the
body of the rule.

As well-known, π |= q holds iff there is a sequence of rules r1, r2, . . . , rm, m ≥ 1, from π where ri

is of form bi0 ← bi1 , . . . , bin , such that {bi1 , . . . , bin} ⊆ {b10 , . . . , bi−10}, for all i ∈ {1, . . . , m} (thus
in particular, 1n = 0) and bm0 = q, called a proof of q from π. Informally, q is derived by successive
application of the rules r1, . . . , rm, where ri “fires” after all previous rules r1, . . . , ri−1 have fired.

A natural idea is to represent backward rule application rm, rm−1, . . . , r1 through agent actions; for a
rule r of form (2), there is an agent action a r which applied to a state sb0 representing b0, brings the
agent non-deterministically to any state sbi representing bi, i ∈ {1, . . . , n}. Given a state sq encoding
q, S = {sq} is maintainable w.r.t. a set of states E encoding the facts in π if q has a proof from π.
However, this does not account for the restriction that k = f(A,S, E) for any such f . The key for this is
to establish the result for the extremal case where k =1 is constant (i.e., for 1-MAINTAINABILITY) and
then to extend it to the general case.

Using a constrained rule format in π and an exogenous action, we can emulate non-deterministic agent
actions and sequences of agent actions with some coding tricks by alternating sequences of deterministic
agent and exogenous actions, such that provability of q from π corresponds to 1-maintainability of S
w.r.t. a set E in a system A constructible in logarithmic workspace from q and π.

Without loss of generality, we assume that each rule has either zero or two atoms in the body (i.e., n = 0
or n = 2 in (2)). We construct from π and q a system A = (S,A, Φ, poss), sets of states S and E, a set
Aag ⊆ A, and a function exo as follows:

1. S: For each atom f in π and rule r ∈ π, f0, . . . fm and r1, . . . , rm are states in S. Furthermore, if
the body of r is u, v then (u, v)0, . . . , (u, v)m−1 are states in S.

2. A = {a r | r ∈ π} ∪ {e}.

3. Φ: For any rule r ∈ π with head f , Φ(a r, f i) = {ri} for i ∈ {1, . . . ,m} and Φ(a r, (f, v)i) =
{ri}, for (f, v)i ∈ S, i ∈ {1, . . . , m−1}. If moreover r has body u, v, then Φ(e, ri) = {(u, v)i−1},

37

and Φ(e, (u, v)i−1) = {vi−1}, for i ∈ {1, . . . , m− 1}. In all other cases, Φ(a, s) = ∅.

4. poss: For each state s, poss(s) = {a ∈ A | Φ(a, s) 6= ∅}.

5. E = {r1, . . . , rm | r ∈ π}
6. S = {qm}.

7. Aag = A \ {e}.

8. exo: for all rules r ∈ π of form f ← u, v, exo(ri) = {e} for i ∈ {1, . . . , m} and exo((u, v)j) =
{e} for j ∈ {1, . . . ,m− 1}. For all other states s, exo(s) = ∅.

The transition diagram for the system constructed for π = {a ← b, c; b ←; c ←} is shown in Figure 11.
Intuitively, the state f i encodes that f can be derived from π with a proof of length at most i. This is
propagated in backward rule application. Each agent action a r selects a rule r to prove an atom f ; if the
rule has a body u, v, the exogenous action pushes the agent to prove both u (from (u, v)) and v within
decreased recursion depth.

We claim that π |= q iff there exists some 1-maintaining control K for S with respect to E in A.

Suppose first that π |= q. We then construct a 1-maintaining control K for S with respect to E as
follows. Let P = r1, . . . , rk be a proof of q from π such that, without loss of generality, all rules ri have
different heads. Set D = {qm} and iterate the following until D remains unchanged: For each f i ∈ D
resp. (u, v)i ∈ D, i ≥ 0, let rj be the rule with head f resp. u in P . Define K(f i) = {a rj} resp.
K((u, v)i) = {a rj}, and add, if rj has body u′, v′ the states (u, v)i−1 and v′i−1 to D. Since P is a
proof of q from π, the rule rj always exists, and for each state s in Closure(S, AK,exo) \ E (=D), K(s)
is defined and Φ(K(s), s) yields some state in E. Hence, K is a 1-maintaining control for S with respect
to E in A.

Conversely, suppose K is a 1-maintaining control for S with respect to E in A. Without loss of gen-
erality, K(s) is undefined for all states s ∈ E. An easy induction on i ≥ 1 shows that for each
f i ∈ Closure(S, AK,exo) resp. (u, v)i ∈ Closure(S, AK,exo), it holds that π |= f resp. π |= u and
π |= v. For i=1, suppose first K(f1) = a r. Rule r must have form f ← ; otherwise, some states
(u, v)0, v0 would be in Closure(S, AK,exo), which contradicts that K is a 1-maintaining control. Hence,
π |= f . Next suppose K((u, v)1) = a r. Then, for similar reasons, r must be of form u ←, hence
π |= u. Furthermore, v1 ∈ Closure(S,A,exo) and as already established π |= v. For i > 1, suppose
K(f i) = a r. Then either r is of form f ← and thus π |= f , or of form f ← u, v. In the latter case,
(u, v)i−1 ∈ Closure(S, AK,exo) and hence, by the induction hypothesis, π |= u and π |= v. Conse-
quently, π |= f . Similarly, if K((u, v)i) = a r, then either r is of form u ← or of form u ← u′, v′

and (u′, v′)i−1 ∈ Closure(S, AK,exo), which by the induction hypothesis implies π |= u′ and π |= v′,
thus π |= u. Since vi ∈ Closure(S, AK,exo), as already established π |= v. Consequently, π |= f . This
proves the statement for i > 1, and concludes the induction. Since qm ∈ Closure(S, AK,exo), we have
π |= q. This proves our claim.

Notice that A, S and E can be constructed in logarithmic workspace from π and q. This proves P-
hardness of 1-MAINTAINTABILITY. An easy observation is that every agent action in the system A
leads to some state in the set E described. Hence, S is 1-maintainable with respect to E in A iff S is
k-maintainable with respect to E in A for any f(A,S, E) such that f(A,S,E) ≥ 1. Hence, P-hardness
under the stated restriction follows. 2

The following result is immediate from this result and the fact that maintainability is equivalent to
k-maintainability where k = |S| is the number of states.

38

Corollary 12 MAINTAINABILITY is P-complete. The P-hardness holds even if all actions are determin-
istic and there is only one exogenous action.

The following result states a further P-complete restriction of the above problems.

Theorem 13 k-MAINTAINABILITY and MAINTAINABILITY with no exogenous actions are P-complete.

Proof. Membership in P was established above. The P-hardness follows from Theorem 11 by merging
the (single) exogenous action e into the agent actions as follows: For each state s such that e ∈ exo(s),
redefine every action a ∈ poss(s) ∩ Aag by Φ(s, a) := Φ(s, a) ∪ Φ(s, e). It is easy to see that given S
and E, S is |S|-maintainable w.r.t. E in the resulting system A′ iff S is |S|-maintainable w.r.t. E in A.
Furthermore, A′ is computable in logspace from A. This implies the result. 2

The hardness results above are at the border of the hardness frontier, in the sense that in the absence of
exogenous actions and, in case of MAINTAINABILITY also nondeterminism, the problems are no longer
P-hard. The following lemma gives a useful characterization of k-maintainability for this purpose.

Lemma 14 Given a system A = (S,A, Φ, poss), a set of agents action Aag ⊆ A, and a set of states E,
a set of states S is k-maintainable with respect to E in absence of exogenous actions (i.e., exo is void),
k ≥ 0, iff rk(s) as in (1) holds for all s ∈ S.

Proof. For the only if direction, consider any 1-maintaining control K which without loss of generality
is undefined on every s ∈ E. For every state s ∈ Closure(S, AK,exo) = Closure(S, AK), let ds be
the distance of s from E under K, i.e., the largest i such that σ = s0, s1, . . . , si ∈ Unfoldk(s,A, K)
where s0 = s. By an easy induction on ds ≥ 0, we obtain using K(s) as witness for a in (1), that
rds(s), rds+1(s), . . . , rk(s) must hold for s. Hence, rk(s) holds for every s ∈ S.

Conversely, let for each s ∈ S be is the least integer i such that ri(s) holds. If is > 0, then define
K(s) := a for some arbitrary action a ∈ Aag ∩ poss(s) witnessing (1) for i + 1 = is, otherwise
(i.e., if is = 0 or ri(s) does not hold for any i ≥ 0) let K(s) undefined. Then, K is a k-maintaining
control for S with respect to E, since by definition of the relations ri, for each s ∈ Closure(S,AK), and
σ = s0, s1, . . . , sl ∈ Unfoldk(s,A, K) such that s0 = s it holds that l ≤ k and sl ∈ E (recall that, as
tacitly assumed, Φ(a, s) 6= ∅ for each a ∈ poss(a)). Hence, S is k-maintainable with respect to E. 2

We then establish the following result.

Theorem 15 k-MAINTAINABILITY and MAINTAINABILITY for systems with only deterministic actions
and no exogenous actions are NL-complete.

Proof. In this case, deciding ri(s) for given s∈S and i≥ 0 is in NL: If s /∈E, a proper a in (1) and
s′ = Φ(s, a) can be guessed and, recursively, rk−1(s′) established, maintaining a counter i. This
is feasible in logarithmic workspace in the representation size of A. By looping through all s∈S,
it thus follows from Lemma 14 that deciding whether S is k-maintainable with respect to E, where
k ≤ |S|, is non-deterministically feasible in logarithmic workspace. This implies NL-membership of
k-MAINTAINABILITY and MAINTAINABILITY. The hardness follows from a simple reduction of the
well-known NL-complete REACHABILITY problem [57] to k- resp. MAINTAINABILITY: Given a di-
rected graph G = (V,E) and nodes s, t ∈ V , decide whether there is a directed path from s to t in G.
Define A = (S,A, Φ, poss) such that S = A = V , Φ(v, w) = w, and poss(v) = {w | v → w ∈ E}.

39

Then, for Aag = A, S = {s} is |V |-maintainable w.r.t. E = {t} in A iff there is a directed path from s
to t in G. Clearly, A is constructible in logarithmic workspace from G. This shows the NL-hardness. 2

In case of constant k, equation (1) is decidable by a straightforward deterministic recursive procedure in
logarithmic workspace, even under nondeterminism, since the recursion depth is bounded by a constant
and each recursion level requires only logarithmic work space. Hence, k-MAINTAINABILITY is decid-
able in logarithmic space. A finer grained analysis that it is within the class Πlog

k+1 of the logarithmic time
hierarchy, which is a much better upper bound and makes completeness for logspace (under suitable
reductions) fairly unlikely.

We assume that the input I of k-MAINTAINABILITY for fixed k, is a relational structure MI with uni-
verse U(MI) = S ∪ A, and relations over U(MI) for the predicates in Phi(s, a, s′), in poss(s, a),
in exo(s, a), in S (s) and in E (s) from above, and relations for the additional predicates ag act(a),
in S(s), and in A(a) representing membership a ∈ Aag, s ∈ S and a ∈ A for each s, a ∈ U(M),
respectively. The structure MI is encoded in a standard way by a bit-string [38].

Theorem 16 Problem k-MAINTAINABILITY for systems without exogenous actions is in Πlog
2k+1 (=co-

Σlog
2k+1), if k ≥ 0 is constant.

Proof. Any first-order formula ψ1 ∨ Qxψ2 (resp. ψ1 ∧ Qxψ2) such that ψ1 has no free variables and
Q∈{∃, ∀}, is logically equivalent to Qx(ψ1 ∨ ψ2) (resp. Qx(ψ1 ∧ ψ2)). Exploiting this, rk(s) in
(1) can be written, using the vocabulary from above, as a first-order formula φk(x) in prenex form
∃x1∀x2∃x3 · · ·Qkxkψ(x1, . . . , xk, x) where ψ(x1, . . . , xk, x) is quantifier-free, such that for any ele-
ment s∈U(MI) of an input structure M, the sentence in S(s) ∧ φk(s) is true on M iff rk(s) holds.
Hence, by Lemma 14, k-maintainability of S w.r.t. E in A is definable by a Πk+1 prenex sentence
∀x0∃x1 · · ·Qkxkψ

′(x0, x1, . . . , xk), where ψ′(x0, x1, . . . , xk) is quantifier-free, on the above vocabu-
lary. Whether a fixed such sentence is false on a given structure MI can be decided by an alternating
Turing machine, starting in an existential state, in logarithmic time using k alternations [11, 38]. Hence,
the problem is in co-Σlog

k+1 = Πlog
2k+1. 2

We remark that the hardness results in this section can be further strengthened to the case where only 2
agent actions are available, but leave a proof of this to the interested reader.

7.3 State variables

The following is an easy lemma, which in combination with the results in the previous subsection implies
most upper bounds in Table 2.

Lemma 17 For any instance of k-MAINTAINABILITY resp., MAINTAINABILITY in which states are
represented by variables, the corresponding instance in ordinary (enumerative) form can be generated in
polynomial workspace.

Using this lemma, we then prove the following result.

Theorem 18 Under state representation by variables, k-MAINTAINABILITY is EXP-complete. The
EXP-hardness holds under the restriction that k = f(A,S, E) is any function of A, S, and E such that
f(A,S, E)≥ 1 (in particular, for fixed k ≥ 1), even if in addition all actions are deterministic and there
is only one exogenous action.

40

Proof. Membership in EXP follows easily from Lemma 17 and Theorem 11. The EXP-hardness is
shown by a reduction from deciding inference π |= p(t) of a ground atom p(c) from a function-free
Horn logic program π with variables (i.e., a datalog program), which consists of rules of the form

p0(t0) ← p1(t1), . . . , pn(tn), n ≥ 0, (3)

where each pi is the name of a predicate of arity ai ≥ 0 and ti = ti,1, . . . , ti,n is a list of constants and
variables ti,j ; p0(t0) is the head and p1(t1), . . . , pn(tn) the body of the rule.

It holds that π |= p(c) iff there is a sequence rules ri of the form pi0(ti0) ← pi1(ti1), . . . , pin(tin) and
substitutions θi for ri, i.e., a mappings from the variables in ri to the set of constants Cπ in π, such
that {pi1(ti1θi), . . . , pin(tinθi)} ⊆ {p10(t10θ1), . . . , pi−10(ti−10θi−1)}, for all i ∈ {1, . . . , m} (thus in
particular, 1n = 0) and pm0(tm0θm) = p(c), called a proof of p(c) from π. Informally, p(c) is derived by
successive application of the rule instances r1θ1, . . . , rmθm, like in a propositional logic program.

Deciding whether π |= p(t) is well-known to be EXP-complete, cf. [22]. The construction is similar in
spirit to the one in proof of Theorem 11 but more involved.

To prove EXP-hardness of k-MAINTAINABILITY under the given restriction, we first focus on 1-
MAINTAINABILITY, and we describe how to reduce π |= p(c) in logarithmic workspace to deciding
1-maintainability of a set of states S w.r.t. a set of states E in an agent system A.

Without loss of generality, we make the following assumptions on π and p(c):

• The set of constants occurring in π, Cπ, is {0, 1};

• each rule r in π has either zero or two atoms in the body;

• all rules in r are safe, i.e., each variable X occurring in the head of a rule r also occurs in the body;

• π uses only one predicate, p;

• c = (0, 0, . . . , 0).

Any problem π |= p(c) can be transformed to an equivalent one of this form in logarithmic workspace.

Similar as in the propositional case, the idea is to represent a reversed proof rm, θm, . . . , r1θ1 of p(c)
from π through agent actions, and model backward rule applications through agent actions; note that m
ranges from 1 to 2ap , where ap is the arity of p (thus m requires ap bits). The problem here which makes
this more complex is the fact that we must, for each rule ri, also take θi into account. If ri has a nonempty
body, the candidates for θi are systematically generated by alternating agent and exogenous actions. For
each possible such θi, the derivation of the body atoms p(ti2θi) and p(ti2θi) is then explored.

More precisely, for each ground atom p(c), and m ∈ {0, . . . , 2pa}, we have a state (c,m, prove) outside
E which intuitively says that p(c) is derivable within m (0 ≤ m ≤ 2pa) steps. For each rule r in π, there
is an agent action ar, which is possible on (c,m, prove) if m > 0 and p(c) unifies with the head p(t) of
r, and it results in the state (c,m, r, apply), which is in E. For r of form p(t) ← p(t1), p(t2), two phases
are now established: (1) the selection of a substitution θ for the variables X in r, and (2) the generation
of states (c1,m−1, prove) and (c1,m−1, prove), where c1 = θ1 and c2 = θ2, for the recursive test.

As for 1) an exogenous action e pushes the agent from (c,m, r, apply) to a state (c,m, (0, 0, ..., 0),
r, sel θ). Here (0, 0, . . . , 0) is the substitution θ : X1 = 0, . . . , Xk = 0 to all variables in r. By
executing an agent action incθ on this state, this vector is incremented to (0, 0, ..., 0, 1), resulting in a state
(c,m, (0, 0, ...0, 1), r, incθ) in E, from which e pushes the agent to a state (c,m, (0, 0, ..., 1), r, sel θ),

41

(c, m, r, apply)

(c, m, (0, ..., 1), r, incθ)

(c, m, (0, ..., 2), r, incθ)

ar ee incθincθ

(c, m, prove)

(c, m, (0, ..., 0), r, selθ)

(c, m, (0, ..., 1), r, selθ)
. . .

. . .
(t2θ, m−1, do prove)

E(c, m, θ, r, chosenθ)

ee

(m, t1θ, t2θ, do split) (t2θ, m−1, prove)

(t1θ, m−1, prove)(c, m, θ, r, selθ)

incθ. . .
choose esplit

Figure 12: Schematic transition diagram for backward application of rule r : p(t) ← p(t1), p(t2) with
substitution θ to prove p(c).

where Xn = 1 in θ. Here again incθ is possible, leading to a state (c,m, (0, 0, ..., 1, 0), r, incθ) in E
from which e pushes the agent to the state (m−1, t, (0, 0, ...1, 0), r, sel θ). Here again an inc action is
possible for the agent etc.

In each state (c,m, θ, r, sel θ) such that p(tθ) = c, the agent might alternatively take the action choose,
which brings her to the state (c,m, θ, r, chosenθ) in E, which closes phase 1. The exogenous action e
pushes the agent from this state to the state (m, t1θ, t2θ, do split) out of E. From this state, e pushes
the agent further to the state (t1θ, m−1, prove), and the agent must take at (m, t1θ, t2θ, do split) the
action split, which brings her to the state (t2θ, m−1, goto prove) in E, from which e pushes the agent
to (t2θ, m−1, prove). Figure 12 gives a summary of the steps in graphical form.

In this way, the derivation of p(0, 0, . . . , 0) from π is encoded to deciding 1-maintainability of S =
{(2d, (0, 0, ..., 0), prove)} with respect to the set of states E described above. Note that to prove p(c)
from π via rule r, only one instance of rθ must be chosen; the 1-maintaining control has to single out
this θ, by proper placement of the action chosenθ. The proof of correctness is along the lines of the
respective one in Theorem 11.

Given the regular structure of the states and the easy checks and manipulations that need to be done for
determining applicability of actions and determining the successor state, respectively, it is not difficult to
see that a representation of the above 1-MAINTAINABILITY instance using state variables can be com-
piled from π and p(0, 0, . . . , 0) in logarithmic work space (in particular, that the polynomial-time proce-
dures for deciding the membership predicates in Phi(s, a, s′), in poss(s, a), in exo(s, a) in S (s), and
in E (s) can be provided in polynomial time). Note that this instance employs only deterministic actions,
and there is a single exogenous action. This establishes EXP-hardness for 1-MAINTAINABILITY.

Furthermore, for A and E as constructed, each agent action results in a state in E. Thus, k-
maintainability of S w.r.t. E in A, for any k = f(A,S, E) such that f(A,S, E)≥ 1, is equivalent to 1-
maintainability of S w.r.t. E in A. Hence, the reduction shows EXP-hardness of k−MAINTAINABILITY

under the stated restriction. 2

Corollary 19 Under state representation by variables, MAINTAINABILITY is EXP-complete. The EXP-
hardness holds even if all actions are deterministic and there is only one exogenous action.

Using Theorem 18 instead of Theorem 11, we can prove the following result similarly as Theorem 13:

Theorem 20 Under state representation by variables and in absence of exogenous actions, k-
MAINTAINABILITY and MAINTAINABILITY are EXP-complete.

For the case without exogenous actions and with only deterministic actions, we have lower complexity:

42

Theorem 21 Under state representation by variables, k-MAINTAINABILITY and MAINTAINABILITY

for systems with only deterministic actions and no exogenous actions are PSPACE-complete.

Proof. By well-known standard methods, a computation composed of a PSPACE computation A piped
into an NL computation B (which is NPSPACE in the size of the input for A) can be redesigned as an
NPSPACE computation. Since NPSPACE = PSPACE, membership of the problems in PSPACE thus
follows from Lemma 17 and Theorem 15.

The PSPACE-hardness can be shown e.g. by a straightforward reduction from propositional STRIPS
planning [16]. Rather than to introduce STRIPS here, we give for completeness sake a simple reduction
from SUCCINCT REACHABILITY [57], which is the version of REACHABILITY where G = (V,E) is
such that the nodes v are given by the binary vectors v = (v1, . . . , vn), n ≥ 1, on {0, 1} and the problem
input consists of a Boolean circuit CG with 2n inputs v1, . . . , vn, w1, . . . , wn which outputs true iff
v → w ∈ E, and s = (0, 0, . . . , 0) and t = (1, 1, . . . , 1). We construct from this an instance of k-
MAINTAINABILITY resp. MAINTAINABILITY as follows: S = V ×V , described by 2n binary variables
f1, . . . , f2n; A = {inc, arc} = Aag; Φ(v×w, inc) = v×w′ such that w′ = w + 1 modulo 2n, and
Φ(v×w, arc) = w×(0, 0, . . . , 0) if v → w in G and Φ(v×w, arc) = v×w otherwise; poss(s) = A,
for each state s. Then, the state s = (1, 1, . . . , 1)× (0, 0, . . . , 0) is |S|-maintainable with respect to
E = {(1, 1, . . . , 1)×(1, 1, . . . , 1)} in A iff (1, 1, . . . , 1) is reachable from (0, 0, . . . , 0) in G. A state
variable representation of A can be easily generated from the circuit CG in logarithmic workspace. This
implies PSPACE-hardness of the problems. 2

If the maintenance window is bounded by a constant, the problem is easier.

Theorem 22 Under state representation by variables, k-MAINTAINABILITY for systems without exoge-
nous actions and constant k ≥ 0 is co-NP-complete.

Proof. For a given s ∈ S, falsity of rk(s) can be proved by exhibiting (assuming s /∈ E), for each
a ∈ Aag ∩ poss(s) a witness w(s, a) ∈ S such that w(s, a) ∈ Φ(s, a) and rk−1(w(s, a)) is false, which
in recursion can be proved similarly. For constant k, this leads to O(|Aag|k) many guesses w(s, a),
which is polynomial in the size of the input. By Lemma 14, it thus follows that deciding the complement
of k-MAINTAINABILITY is in NP. This proves membership in co-NP.

The co-NP-hardness, for every k ≥ 0, is a simple consequence that under representation by state vari-
ables, deciding whether S ⊆ E is co-NP-complete (this can be shown, e.g., by a simple reduction from
propositional unsatisfiability). 2

8 Discussion and Conclusion

In this paper, we gave a formal characterization of maintenance goals and distinguished it from the
notions of stabilizability and temporal goals of the form 23f (over all valid trajectories). We present
several motivating examples that illustrate the need for our notion of maintainability. The basic idea
being that for certain kinds of maintenance it is important that the maintaining agent be given a window
of non-interference from the environment so that it can do the maintenance. To formalize this we need
to distinguish between the agent’s actions and the environment’s actions. In our formalization we define
the notion of k-maintainability, where k refers to the maximum window of opportunity necessary for
the maintenance. We then gave polynomial time algorithms to compute k-maintainable controls, which

43

are linear-time for small k, and we analyzed the complexity of determining k-maintainability under
various assumptions. One interesting aspect of our polynomial time algorithm is the approach that led
to its finding: the use of a SAT encoding, and complexity results regarding the special Horn sub-class of
propositional logic.

We next report on some experiments which we have carried out, and we then discuss related work,
before we conclude.

8.1 Experimental results

The different methods for constructing k-maintaining controls in the previous sections have been im-
plemented, in order to compare them on an experimental basis. More specifically, programs generating
the SAT encoding and the Horn SAT encoding, the latter written as a propositional logic program, have
been implemented in Java, and also the algorithm k-CONTROL. For SAT solving, zChaff has been em-
ployed and for evaluating the Horn SAT instances the answer set solvers DLV and Smodels plus its
preprocessor Lparse. The logic programs with variables given in Section 6 are ready for use in DLV
as described, and only minor adjustments are needed for Smodels. The encodings and implementations
are, together with the descriptions of the domains, available at http://www.public.asu.edu/
˜jzhao6/k-maintain/.

To evaluate the performance of the implementations, we conducted experiments on the buffer domain
described in Section 3, varying the size of the buffers, max, and the number k for a maintaining control.
In all experiments, there was a single goal state, (0, 0) (i.e., both buffers are empty), and a single initial
state, which in was either (1, 1) or (3, 5); note that in both cases, the smallest k for which a k-maintaining
control exists is k = 2∗max+1.

The results of the experiments are shown in Table 3. They were collected on a Dell desktop with an Intel
Pentium 4 (2.53GHz), 512MB main memory, and 753MB swap space, under Slackware 11.0 including
Linux kernel 2.4.33.3. We used a pre-release (beta-version) of DLV version 2007-10-11, 8 Lparse 1.0.17,
and Smodels 2.32. In the table, the leftmost column shows the buffer size max and the parameter k; the
rightmost column tells whether a solution exists or not. The times reported are for deciding whether a
k-maintaining control exists, i.e., computing a model, from which a control can be efficiently extracted
(in fact, in linear time); also for the genuine algorithm, output of a control in Step 4 is fast.

For the SAT and the Horn SAT encodings, the column “instance” shows the timings for generating the
respective instances in Section 6.3 from the input representation in Section 6.1, and the other columns
show the timings for solving the instances using a respective solver; the numbers in parentheses is the
total of instance generation and solving. Since Lparse, the preprocessor of Smodels, already solves the
Horn SAT instances, the call of Smodels has actually been omitted. The column “genuine algorithm”
shows the results for the implementation of Algorithm k-CONTROL, and the columns right of it the
results for the logic programming encodings, both the one for deterministic and for non-deterministic
transition function. Here the problem input was not in explicit form by facts but described by rules as in
Section 6.5. However, generating the factual representation takes only short time (between 14 and 115
ms for larger problem size) and is negligible compared to the time required for solving the instance.

The experiments show some interesting results. Among the SAT and Horn SAT solving methods, the
logic programming engines perform overall better than the SAT solver. This is explained by the fact that
generating the SAT instance for the solver takes much longer than generating the corresponding Horn
logic program. One possible reason is that the input format of the SAT solver requires that strings are

8Kindly provided by the DLV team. The official release 2007-10-11 behaves similarly.

44

start state (1,1), goal state (0,0)

Problem SAT encoding Horn SAT Genuine DLV Lparse+Smodels solution
max, k instance (zChaff) instance (Lparse+Smodels) (DLV) Algorithm det ndet det ndet yes/no
10,5 0.648 0.021 (0.669) 0.465 0.435 (0.900) 0.118 (0.583) 1.819 0.094 0.157 0.257 0.405 no
10,10 1.439 0.062 (1.501) 0.533 0.842 (1.375) 0.203 (0.736) 3.127 0.171 0.308 0.365 0.691 no
10,15 3.320 0.079 (3.399) 0.613 1.211 (1.824) 0.271 (0.884) 4.269 0.227 0.485 0.486 0.955 no
10,20 6.543 0.100 (6.643) 0.650 1.676 (2.326) 0.380 (1.030) 5.576 0.282 0.607 0.615 1.245 no
10,21 7.421 0.209 (7.630) 0.665 1.606 (2.271) 0.599 (1.264) 5.598 0.399 0.866 0.769 1.536 yes
10,25 12.335 0.276 (12.611) 0.688 1.770 (2.458) 0.743 (1.431) 6.235 0.523 1.771 0.971 1.619 yes
10,30 19.467 0.346 (19.813) 0.761 1.656 (2.417) 0.865 (1.626) 5.440 2.022 4.444 1.141 1.929 yes
10,35 26.236 0.398 (26.634) 0.801 1.809 (2.610) 1.007 (1.808) 5.412 2.916 6.664 1.284 2.226 yes
10,40 35.321 0.417 (35.738) 0.851 2.034 (2.885) 1.220 (2.071) 5.422 4.310 10.935 1.445 2.534 yes
10,45 45.195 0.463 (45.658) 0.883 2.111 (2.994) 1.455 (2.338) 5.418 5.481 14.787 1.628 2.831 yes

20,5 7.933 0.121 (8.054) 2.347 1.602 (3.949) 0.425 (2.772) 23.177 0.334 0.655 0.934 1.531 no
20,10 35.043 0.178 (35.221) 2.532 3.196 (5.728) 0.814 (3.346) 43.569 0.623 1.363 1.595 2.765 no
20,15 88.729 0.249 (88.978) 2.735 4.240 (6.975) 1.152 (3.887) 67.770 0.915 2.046 2.229 4.022 no
20,20 164.208 0.332 (164.540) 2.933 6.299 (9.232) 1.624 (4.557) 82.192 1.192 2.878 2.862 5.294 no
20,25 263.623 0.409 (264.032) 3.207 7.981 (11.188) 1.955 (5.162) 102.264 1.561 3.752 3.569 6.573 no
20,30 397.018 0.519 (397.537) 3.250 9.709 (12.959) 2.359 (5.609) 120.628 1.844 4.704 4.187 7.848 no
20,35 564.108 0.595 (564.703) 3.523 11.138 (14.661) 3.166 (6.689) 144.418 2.274 5.932 4.856 9.108 no
20,40 684.858 0.631 (685.489) 3.691 12.757 (16.448) 3.560 (7.251) 151.763 2.724 6.489 5.536 10.381 no
20,45 852.107 1.990 (854.097) 3.758 13.119 (16.877) 8.353 (12.111) 162.128 3.907 14.954 7.523 12.224 yes
20,50 1073.237 2.315 (1075.552) 3.889 13.650 (17.539) 7.885 (11.774) 172.677 24.345 22.828 8.309 13.655 yes
20,55 1323.519 2.526 (1326.045) 4.071 13.923 (17.994) 8.247 (12.318) 193.645 48.505 35.543 9.398 15.083 yes
20,60 1630.561 3.448 (1634.009) 4.353 28.818 (33.171) 8.795 (13.148) 152.911 79.994 55.327 10.496 16.530 yes

start state (3,5), goal state (0,0)

Problem SAT encoding Horn SAT Genuine DLV Lparse+Smodels solution
max, k instance (zChaff) instance (Lparse+Smodels) (DLV) Algorithm det ndet det ndet yes/no
20,5 7.646 0.125 (7.771) 2.483 1.639 (4.122) 0.432 (2.915) 22.734 0.355 0.642 1.047 1.533 no
20,10 33.814 0.174 (33.988) 2.564 3.146 (5.710) 0.860 (3.424) 41.956 0.623 1.349 1.611 2.790 no
20,15 86.259 0.248 (86.507) 2.767 4.661 (7.428) 1.206 (3.973) 59.228 0.932 2.012 2.249 4.026 no
20,20 158.087 0.328 (158.415) 2.983 6.252 (9.235) 1.656 (4.639) 78.784 1.220 2.803 2.896 5.344 no
20,25 252.355 0.398 (252.753) 3.113 7.781 (10.894) 1.925 (5.038) 95.766 1.596 3.592 3.573 6.671 no
20,30 383.141 0.468 (383.609) 3.307 9.242 (12.549) 2.319 (5.626) 115.793 1.897 4.588 4.210 7.944 no
20,35 525.430 0.547 (525.977) 3.444 10.853 (14.297) 3.115 (6.559) 132.549 2.247 5.834 4.850 9.106 no
20,40 696.514 0.643 (697.157) 3.607 13.342 (16.949) 3.388 (6.995) 150.920 2.653 6.285 5.619 10.363 no
20,45 893.684 3.417 (897.101) 3.839 13.781 (17.620) 7.721 (11.560) 161.092 3.593 13.752 7.393 12.216 yes
20,50 1072.981 2.831 (1075.812) 3.938 13.250 (17.188) 7.552 (11.490) 172.896 11.786 23.132 7.548 13.655 yes
20,55 1327.165 2.541 (1329.706) 3.981 13.547 (17.528) 7.681 (11.662) 185.470 20.229 38.767 8.924 15.047 yes
20,60 1601.926 3.335 (1605.261) 4.327 15.091 (19.418) 8.055 (12.382) 153.073 33.750 62.340 10415 16.558 yes

30,5 51.410 0.219 (51.629) 10.176 3.557 (13.733) 0.867 (11.043) 125.925 0.871 1.424 2.628 3.904 no
30,10 206.631 0.364 (206.995) 10.569 6.913 (17.482) 1.862 (12.431) 235.732 1.732 3.003 4.428 7.215 no
30,15 496.045 0.541 (496.586) 10.754 10.107 (20.861) 3.025 (13.779) 332.056 2.718 5.593 6.323 10.395 no
30,20 866.907 0.723 (867.630) 11.153 13.788 (24.941) 3.668 (14.821) 444.367 4.090 6.784 8.228 13.693 no
30,25 1388.404 0.880 (1389.284) 11.595 26.746 (38.341) 4.664 (16.259) 535.193 3.929 9.013 10.308 17.057 no
30,30 1971.139 1.065 (1972.204) 12.306 25.319 (37.625) 7.637 (19.943) 646.284 4.718 12.413 12.072 20.498 no
30,35 2685.617 1.267 (2686.884) 12.522 124.525 (137.047) 7.333 (19.855) 742.747 5.846 14634 13.823 23.927 no
30,40 3408.562 1.663 (3410.225) 13.252 665.565 (678.817) 7.675 (20.927) 863.109 7.185 16401 16.230 27.347 no
30,45 4272.727 1.818 (4274.545) 18.476 681.040 (699.516) 8.421 (26.897) 940.408 8.269 19.305 17.985 30.798 no
30,50 out of memory 31.191 593.518 (624.709) 9.450 (40.641) 1065.352 9.656 21.914 19.646 34.278 no
30,55 out of memory out of memory 1155.366 11.058 25.889 21.517 37.816 no
30,60 out of memory out of memory 1262.594 13.481 31.304 23.919 41.146 no
30,65 out of memory out of memory 1319.128 17.987 53.466 29.790 56.084 yes
30,70 out of memory out of memory 1387.423 43.161 89.959 32.501 80.523 yes

Table 3: Experimental results for deciding k-maintainability in the Buffer Domain (times in secs)

45

mapped to integers which represent propositional variables. This has been done using a hashmap with
vectors; a better design of the data structure may save some time on this translation. On the other hand,
the SAT solver needs less time to solve an instance than the LP engines. We remind, though, that the
latter are committed to compute a special model, while the SAT solver may compute an arbitrary model
of the instance.

The SAT solver scales reasonably well on the instances, and similarly DLV which is within a small
factor in most cases. Moreover, DLV also scales well regarding the overall time, while Smodels showed
some weakness here. Both SAT solving and Horn logic programs have limitations when the constructed
instances become larger, since the memory may be exhausted (however, as for memory the experimental
setting was modest).

The genuine algorithm is faster than the SAT solving method on larger instances, but slower than Horn
SAT solving. The latter may be explained by the fact that the internal Java data structures used (vectors
and maps) are not optimal. However, the implementation scales well with respect to k.

The logic programming encodings with variables behave similar to the Horn SAT encodings, and apart
from one case the timings for the non-deterministic LP encoding in Lparse+Smodels are comparable to
those for the Horn SAT method using DLV. The non-deterministic LP encoding in DLV is in many cases
faster than the one of Lparse+smodels, but shows a less smooth scaling in some cases. This discrepancy
may be explained by the different heuristics which is used by the systems in the model search. The
deterministic encodings are, in both cases, faster than the non-deterministic counterparts, but the speedup
is limited by a small factor (between 2 and 3).

We remark that extracting an actual control out of the model computed an LP engine, by adding the
rules in Section 6.2 to the program does not scale well for large k in general. The reason is that the rule
for k plus has, for each single possible transition (s,a,s′), i.e., s, s′ ∈ S and a ∈ A ∩ poss(s) such
that s′ ∈ Φ(s, a), quadratically many ground instances in k. Although only a single such instance is
relevant, the solver can not predetermine it in the grounding phase. However, this problem can be easily
circumvented by keeping the additional rules in a separate post-processing program, and feeding into it
the model computed by the main program. Then, a control is quickly output, in time which is largely
dominated by the time for model computation (in the worst case, in a few seconds).

ω-maintaining controls : We have also conducted some experiments with different methods for de-
ciding the existence of an ω-maintaining control. More specifically, following the two-phase approach in
Section 5.4, we have considered propositional logic programs, a genuine algorithm, and logic programs
with variables; note that a SAT encoding for the two phases is not straightforward, since we need to
compute transitive closure in both phases and phase 2 accesses the complement of the output of phase 1;
a simple realization requires layered use of negation for that, which is done in all logic programming
encodings (for generic programs with variables, unstratified negation is avoided using the method in
Section 6.4). Phase 2 is, in fact, realized in the logic programs via computing first the set of all states
which must be pruned, and then complementing it.

The results of our experiments are summarized in Table 4. There, s is the single start state and g the
single goal state. For each propositional LP program, both the times for creating it from the factual
representation and for solving it are shown (in ms); a dash “—” means timeout after 10,000 seconds. The
first two instances have a solution, while the latter two are not. As can be seen, the LP encodings with
variables scale well, with a linear time trend (note that the instance size of the problem is quadratic in the
buffer size). Unsurprisingly, the propositional LP encodings are evaluated faster than the LP encodings
with variables, but a lot of time is needed to construct the respective programs; in total, using non-ground

46

s; g sol method / max 10 20 30 40 50 60 70 80 90 100

propositional Lparse 0.333+0.056 1.192+0.186 4.578+0.362 10.182+0.677 23.992+1.041 52.712+2.148 102.632+3.717 181.020+5.801 297.172+9.154 446.141+13.399
(1,1); yes propositional DLV 0.333+0.018 1.192+0.104 4.578+0.270 10.182+0.439 23.992+0.693 52.712+1.054 102.632+1.134 181.020+1.694 297.172+2.134 446.141+2.535
(0,0) genuine algorithm 1.034 20.266 152.918 629.925 1835.164 4576.097 9762.176 — — —

Lparse+Smodels 0.044 0.226 0.631 1.522 3.278 6.206 10.949 17.919 28.304 42.432
DLV 0.124 0.398 0.922 1.815 4.071 5.781 8.770 12.832 17.687 23.770

propositional Lparse 0.342+0.094 1.174+0.224 4.975+0.496 10.765+0.675 25.335+1.237 55.492+2.154 102.401+3.672 180.949+5.808 301.249+8.514 445.678+12.074
(9,1); yes propositional DLV 0.342+0.065 1.174+0.136 4.975+0.330 10.765+0.456 25.335+0.672 55.492+0.984 102.401+1.172 180.949+1.534 301.249+2.103 445.678+2.446
(5,5) genuine algorithm 0.738 15.898 127.646 553.806 1315.840 2813.434 5097.606 — — —

Lparse+Smodels 0.048 0.200 0.610 1.497 3.234 7.140 10.909 19.647 28.932 43.868
DLV 0.056 0.388 0.903 1.725 3.626 5.656 8.653 12.048 17.505 23.106

propositional Lparse 0.357+0.072 1.184+0.213 4.647+0.376 10.191+0.630 23.965+1.054 52.574+2.074 102.743+3.640 180.601+6.251 302.436+8.869 445.867+12.019
(3,2); no propositional DLV 0.357+0.017 1.184+0.129 4.647+0.222 10.191+0.316 23.965+0.507 52.574+0.807 102.743+1.006 180.601+1.282 302.436+2.392 445.867+2.177
(4,4) genuine algorithm 0.698 15.702 125.848 542.273 1281.064 2772.359 8973.392 —- —- —-

Lparse+Smodels 0.049 0.180 0.591 1.503 3.384 6.553 11.122 18.343 28.787 43.159
DLV 0.040 0.259 0.617 1.322 2.414 4.035 6.286 9.292 13.152 17.803

propositional Lparse 0.345+0.090 1.101+0.217 4.588+0.374 10.173+0.688 24.085+1.162 52.655+2.092 102.092+3.633 180.900+5.771 298.540+8.529 446.833+11.969
(1,9); no propositional DLV 0.345+0.017 1.101+0.093 4.588+0.196 10.173+0.297 24.085+0.497 52.655+0.800 102.092+1.013 180.900+1.291 298.540+1.844 446.833+2.170
(7,4) genuine algorithm 0.511 12.519 112.653 498.534 1523.882 3943.009 8735.724 — — —

Lparse+Smodels 0.051 0.184 0.607 0.503 3.512 6.325 11.194 18.351 28.862 43.260
DLV 0.066 0.214 0.581 1.280 2.377 4.005 6.219 9.190 12.922 18.442

Table 4: Experimental results for deciding maintainability in the Buffer Domain (times in secs)

programs is much faster. The implementation of the genuine algorithm does not scale well, and is way
slower than the LP encodings. However, similar as in the case of k-maintainability, the implementation
does not use optimal data and storage structures and therefore has room for improvement.

We remark that the propositional LP encoding can be constructed faster (in the experiments, up to
almost four times), if one exploits that the domain is deterministic. Furthermore, a variant of the DLV
encoding with variables, in which pruning in phase 2 is focused to the states having an a-path to the goal
set (determined in phase 1), shows very similar performance.

With respect to our methodological approach, we can observe the following. Using SAT solving and
logic programming to construct k-maintaining and ω-maintaining controls is, at least in this example, not
only of theoretical interest, but also shows value to obtain some quick implementations which perform
reasonably well. Genuine algorithms that are extracted from SAT or logic programming solutions have
potential, but they require implementation and optimization efforts in order to become highly efficient
and significantly faster then the first shot methods. In particular, if the state space is not too large and
the maintenance window small, a logic programming based approach is attractive, where we may keep
in mind that further preferences or constraints may be imposed on solutions in a declarative manner.

8.2 Relation with earlier work on control synthesis

In this section, we compare our work with earlier work on control synthesis [10, 41, 49, 19, 60, 1]. We
start with the papers by Barbeau et al. [10] and Kabanza et al. [41] from the AI literature.

47

8.2.1 Relation with Barbeau et al.’s and Kabanza et al.’s work

Barbeau et al. [10] and Kabanza et al. [41] present a method to synthesize reactive plans9 based on
progressing formulas in a linear temporal logic, called Metric Temporal Logic (MTL), which allows to
specify durations in the temporal operators. If we ignore the durations of the operator then their specifi-
cation language is the linear temporal logic LTL with operators ©, 2, 3 and U . Similar to ours, they
allow actions to have non-deterministic transitions. However, [41] does not allow exogenous actions.
Although [10] allows exogenous actions, it requires that exogenous actions and agent actions be inter-
leaved. Thus to use their formulation one has to translate our formalism to theirs. For example one can
compile away exogenous actions10 from our formulation and, as mentioned earlier, introduce a fluent
interfered to remember that a transition was made immediately made due to an exogenous action. The
resulting transition function will have non-deterministic transitions and thus would need the specification
Aπ(2(φS ⇒ 2(Step[k](interfered ∨ φE)))) in the language of [9] to express k-maintainability. How-
ever, the control generation algorithm in [10, 41] is able to construct a control for all goals of the form
Aπf , where f is an LTL formula and the algorithm focuses on f .

Their algorithm is based on progressing an LTL formula. The intuition behind progression is that
given a sequence of states σ = s0, s1 . . . and an LTL formula f , the progression of f with respect to a
state si satisfies the property: (σ, i) |= f iff (σ, i + 1) |= progression(f, si).

A partial definition of progression, as needed for our illustration, is as follows:

• for a proposition p, progression(p, s) is true if p is true in s else is false.

• progression(¬f, s) = ¬progression(f, s)

• progression(f ∧ g, s) = progression(f, s) ∧ progression(g, s)

• progression(f ∨ g, s) = progression(f, s) ∨ progression(g, s)

• progression(2f, s) = progression(f, s) ∧2f

• progression(©f, s) = f

To illustrate how their algorithm works, we consider an important fragment of the LTL part of
our goal: 2(Step[k](interfered ∨ φE)). To simplify further, let ϕ denote interfered ∨ φE , and let

9Their notion of reactive plans are slightly different from our notion of control functions; in their case a state, which they
call a world state, may have many associated plan states. For our type of goal, control functions in our sense can however be
easily extracted from their “reactive plans” without a blowup.

10One compilation involves the following: (i) For each state s a new state called sint is created. The states s and sint are
equivalent with respect to all fluents except the newly introduced fluent interfered , which is false in the former and true in the
later. (ii) All edges in the original transition diagram due to agent actions are kept. (iii) If there is a transition from s to s′ due
to an agent action a in the original transition diagram, then a transition from sint to s′ due to agent action a is introduced. (iv)
For all transitions between s and s′ due to a series of exogenous actions, if there is an edge from s′′ to s due to an agent action
a, then a transition from s′′ to s′int is introduced. (v) The set of initial states is enlarged as follows: If s is an initial state and
there is a transition from s to s′ due to a series of exogenous actions then s′int is made an initial state.

However, the complexity results in Table 1, and the following discussions suggest that such a compilation has a high worst-
case effort, and is not doable in non-deterministic logspace. This remains true with respect to any other compilation where the
new k depends only on the old k.

It may be noted that with respect to our buffer example the above compilation is not linear in the size of the input; indeed,
the original transition has O(n2) many nodes and arcs (where n is the buffer size), while the compiled one has O(n2) many
nodes but Ω(n3) many arcs, which come in through transitive closure of exogenous actions. Thus, in that example doing the
compilation and then solving the LTL planning problem, to solve k-maintainability (for a fixed k), is not a linear time algorithm.

48

sϕ denote a state where ϕ is true and s¬ϕ denote a state where ϕ is not true. In the following,
let progression(f, s1, s2, . . . , sn) denote progression(progression(. . . progression(f, s1), . . .), sn). We
now illustrate how progression works with respect to the above goal:

• progression(2Step[k](ϕ), sϕ) = 2Step[k](ϕ)
= Step[k](ϕ) ∧©2Step[k](ϕ)

• progression(2Step[k](ϕ), s¬ϕ) = Step[k−1](ϕ) ∧2Step[k](ϕ)
= Step[k−1](ϕ) ∧©2Step[k](ϕ)

• progression(2Step[k](ϕ), s¬ϕ, s¬ϕ) = Step[k−2](ϕ) ∧©2Step[k](ϕ)

• progression(2Step[k](ϕ), s¬ϕ, s¬ϕ, s¬ϕ) = Step[k−3](ϕ) ∧©2Step[k](ϕ)

and so on. As evident from the above the progression may lead to k different formulas. The general
algorithm in [10, 41] introduces decomposition due to the ∨ connective in Step[k](ϕ) and can have 2k

formulas labeling a state, leading to a search space of 2k × |I|. Since one does not need to worry about
cycles, one can avoid double exponential search.

However, noticing that our goal specification does not have unbounded eventualities, one can also modify
the algorithm to avoid decomposition and thus restrict to a search space of k × |I|. After that one needs
to do an efficient search in this search space as the search algorithm given in [10, 41] does not seem to
do efficient backtracking.

In conclusion, although the algorithm in [10, 41] as presented does not find a k-maintainable control
in polynomial time, certain modifications make that algorithm more efficient. This illustrates the impor-
tance of the work [10, 41]. It suggests the research direction of exploring various sub-classes of LTL goal
specifications and identifying appropriate modifications or simplifications of the algorithms in [10, 41]
so that they lead to a more efficient control finding method. In slight contrast, our approach has been to
find an efficient algorithm for a specific goal through logical manipulations. It led us to finding efficient
and different algorithms for other goal specifications such as strong planning, strong cyclic planning and
weak planning, which we discuss in [4].

8.2.2 Relation with other work on control synthesis

Most of the other works on control synthesis dates back earlier, around the time when various temporal
logics were proposed for program specification purposes.

Clarke and Emerson [19] consider specifications in the branching time temporal logic CTL and present
an algorithm to construct synchronization skeletons of concurrent programs from scratch. The algorithm
constructs a finite model of the formula using a tableau-based procedure, and factors the control skeletons
of the individual processes out from the global flow graph defined by the model. There is no complexity
analysis given, but the authors mention that the algorithm is potentially exponential. Furthermore, the
algorithm assumes a closed system, in which neither environment actions nor specific agent actions
(which constrains the model building) are respected. However, this is crucial for the construction of a
k-maintaining control; applied to the CTL specification of such a control for S w.r.t. E, the algorithm
may return, e.g., a model which has only states corresponding to states outside S.

Independently, Manna and Wolper [49] consider the construction of the synchronization part of commu-
nicating processes from specifications in the linear time temporal logic PTL. As they mention, the main

49

differences between their approach and [19] is the usage of PTL instead of CTL, and that [19] synthesizes
shared memory programs. Manna and Wolper’s synthesis method employs a tableau-style satisfiability
algorithm, which is essentially the one in [12] restricted to linear time operators and modified to their
assumption that in each state exactly one atomic proposition is true. The algorithm either declares the
specification to be unsatisfiable or constructs a “model graph” from which all possible models of the PTL
specification can be extracted. In the construction, PTL formulas are decomposed using the identities

2f ≡ f ∧©2f, 3f ≡ f ∨©3f, and f1Uf2 ≡ f2 ∨ (f1 ∧©f1Uf2),

which enables to model a flow graph by talking about the current and the follow up state in an execu-
tion. As Manna and Wolper argue, the size of the model graph is at most exponential in the size of the
specification formula. In a final step, the control code is generated from the model graph. Special care is
here applied to so called eventuality conditions, which are conditions of the form 3f whose satisfaction
must not be indefinitely postponed (this aspect was not addressed in detail in [19]). Since like [19], the
method assumes a closed system without an environment, it is not readily applicable for constructing a
k-maintainable control.

Pnueli and Rosner [60] give an algorithm to synthesize a reactive module with input x from and output
y to an environment, where the values are from a finite domain, specified by a linear temporal formula
ϕ(x, y). The running time of the algorithm, which is constructed using automata-theoretic results, is at
most double exponential in the length of the given specification; by its nature, it is difficult to say how it
would perform for the construction of a k-maintaining control.

Abadi et al. [1] introduce a notion of realizability which is somewhat more general than the notion of
implementability in [60], since it also considers an environment whose behavior is restricted. They dis-
tinguish environment and agent activity in changes to the environment, and define specifications at an
abstract level as sets of behaviors, which are alternating sequences of states and active parties (which is
either the environment, the agent, or none of them), satisfying some conditions. Realizability is given if
a subset of the behaviors can be generated by the runs of a “computer,” which is a restricted (possibly
nonrecursive) partial function from prefixes of behaviors to states; as noted, realizability is a necessary
but not sufficient condition for the existence of a real implementation. A weaker notion of realizabil-
ity, which takes into account that the implementor knows exactly how the environment behaves (in a
deterministic manner), is considered and shown to be equivalent to realizability for an important class
of specifications. Finally, the issue of realizability for finite-state transition systems Pt (represented
by automata) equipped with a further restriction on the infinite behaviors of the systems, given by a
(finite-state) Büchi automaton Pi, is considered. As pointed out, this is different from consistency of the
behaviors of Pt and Pi. Applying, like Rosner and Pnueli, automata-theoretic results, it is argued that
deciding realizability is in EXPTIME and PSPACE-hard under logspace reductions. An important note
is that for realizability, Abadi et al. view non-deterministic transitions as optional outcomes of actions
from which an implementor of a realization can choose an arbitrary subset. For our notion of control, it
would be required that if an particular agent action is chosen at a state, then all outcomes of that action
are chosen. Since a realization must merely be compatible with the infinite behaviors, but need not man-
ifest all of them, enforcing such a choice via the infinite behaviors is infeasible. Hence, the method of
[1] seems not always applicable for constructing a k-maintaining control in our setting.

Recently there have been some works in developing polynomial time control generation algorithms (in
the size of the state space) for particular classes of LTL goals. In particular, the paper [59] presents a
cubic algorithm in the size of the state space to automatically construct controls for GR(1) goals which
are of the form (23p1 ∧ . . . ∧ 23pm) ⇒ (23q1 ∧ . . . ∧ 23qn), where pis and qjs are propositional
formulas. This complexity is still higher than our algorithm; however, it remains open to find out if our
approach can lead to a more efficient algorithm for GR(1) goals.

50

8.3 Other related work

Besides the related works we already mentioned such as stabilizability and temporal logic, the notion of
maintenance has appeared in AI in many other papers. For example, in [55], Ortiz discusses maintenance
actions. His notion of maintenance is stronger than both the notion of stabilizability and our notion as he
requires the formula that is maintained to be true throughout. The notion of maintenance is also related
to the notion of ‘execution monitoring’ which is studied in the context of robot programs in [23]. In
‘execution monitoring’ the world is monitored and if a discrepancy is found between the prediction made
by the agent and the real world, then new plans are made to recover from the discrepancy. A deliberative
architecture for maintenance can be extrapolated from the notions in [5], where an agent executes a cycle
of observe; assimilate; (re)plan from current situation; execute part of the plan.

In a series of papers [69, 28, 27], Wooldridge and Dunne have formalized the problem of constructing
agent control functions and analyzed its complexity in a rich framework, for various kinds of tasks such
as ‘achievement’ tasks (where the agent has to bring about a certain goal condition), ‘maintenance’
tasks (where the agent has to avoid that some goal condition is ever satisfied during execution), and
combinations thereof [27]. Their notion of boolean task specification allows a seamless combination of
‘achievement’ and ‘maintenance’ goals. In their notion a goal specification is a propositional formula
where each proposition corresponds to a set of states. The intuitive meaning of a goal specification p
would be to reach for sure one of the states corresponding to p. This corresponds to an achievement goal,
while a specification ¬p intuitively means that the agent should avoid any state in p. They refer to the
later as a ‘maintenance task with bad states’. Thus their notion of ‘maintenance’ differs from ours. While
we are concerned with the hinderance posed by the adversary explicitly, and take into account the number
of steps when the adversary is not interfering, they do not take exogenous actions into account explicitly.
They allow non-deterministic effect of actions, and although one can partially take exogenous actions
into account by a straightforward compilation, keeping the count of the window of non-interference is
not straightforward. Their control policies are richer than ours. In their framework, action effects and
the selection of the agent action by the control may depend on the history of the execution. Under
restriction to history-independent state transitions and reactive agents, finding controls for achievement
tasks in their framework corresponds to finding maintaining controls with an unbounded window of
opportunity in our framework. In [27] they do a comprehensive complexity analysis of agent design in
their framework. There is a natural correspondence between some of our complexity results and theirs.
In particular, our Theorems 15 and 21 correspond to the respective results in [27].

In AI planning, the seminal STRIPS approach [32] has been one of the most influential approaches. We
briefly recall that in STRIPS, states are modeled as sets of propositional atoms and actions as operators
which, given that a precondition in terms of a conjunction of literals is true on the current state, transform
it to a successor state by removing atoms from a delete list and adding atoms from an add list. A plan
for achieving a goal, described by a conjunction of atoms γ, from an initial state S0 is a sequence of
operators op1, . . . , opn which takes the agent from S0 to a state where γ holds. STRIPS planning has been
generalized in several directions, such as conditional effects, non-deterministic actions, or planning under
incomplete information and partial observability using conditional and conformant plans, respectively,
and a number of papers has considered the computation and complexity of planning in such settings, e.g.,
[16, 6, 18, 31, 64].

However, like in the framework of Wooldridge and Dunne, in none of these works agent actions and
exogenous actions are viewed separately, and thus they are best compared to our framework in absence of
exogenous functions. Furthermore, plans per se are conceived as action strategies (cf. [64]) in which, in
principle, different actions might be taken by the agent if during plan execution the same state is entered

51

again; however, such looping is a priori excluded if the goal must be achieved under all contingencies.

Daniele et al. [21] introduce the notion of strong cyclic planning which has some similarity with our
notion of maintainability. In particular, both accept the possibility that an environment can sometimes
be belligerent and in that case one needs to differentiate between an agent that is trying and an agent that
is not. However, they encode the environmental interference through nondeterminism while we allow
explicit representation of environmental actions. Daniele et al. and later Cimatti et al. [18] consider
constructing universal plans akin to our policies, with different semantics (weak, strong and strong cyclic)
for goal achievement, based on OBDD methods and algorithms. In particular, in absence of exogenous
actions our maintaining controls correspond to what they call strong solutions for a planning problem.
For further discussion, we refer to [4].

As for complexity, Theorem 21, corresponds to the classical result of Bylander [16] that deciding plan
existence in propositional STRIPS is PSPACE-complete, while Theorem 20 corresponds to Littman’s
result that conditional planning for STRIPS with non-deterministic actions is EXPTIME-complete [46,
64]. In conditional planning, via conditions on the current state branching to subplans is possible, such
that an appropriate plan is followed depending on the state evolution. Branching might be modeled by
actions and the conditional planning problem, with loops disregarded, as the problem of constructing a
maintaining control.

In other related work, Jensen et al. [39, 40] consider the somewhat dual problem of developing policies
that achieve a given goal while there are interferences from the environment. In their model, environment
actions and actions of multiple agents are combined to a joint action, by which the system is transferred
from the current state to one out of a set of possible successor states. With such non-deterministic tran-
sitions, Jensen et al. aim at modeling both an adversial environment and infrequent errors which make
an otherwise deterministic action non-deterministic. In [39], they consider constructing policies coping
with arbitrarily many interferences of the environment (but without action failure) by an extension of
OBDD-based universal planning, and in [40] they consider generating policies which tolerate up to a
given number n of errors modeled as “secondary action effects” (caused by improper action execution
or environment interference), by reducing it to a so called strong planning problem, which is solved
using OBDD based methods. For arbitrarily many environment interferences as in [39], the problem
is basically very similar to our problem of unbounded maintainability, but interference in goal states
has different significance and goal achievement is not guaranteed because of possible loops. A formal
connection between k-maintainable controls and n-fault tolerant policies, if any, remains open. Intu-
itively, n-fault tolerant plans are easier to construct, since the number of errors that have occurred can
be recorded in plan construction and when the limit n is reached, the problem boils down to an ordinary
planning problem. For k-maintaining controls, however, each environment interference (even at a goal
state) causes a restart which pushes the agent to a new initial state.

Outside of AI, our notion of k-maintenance is very closely related to the notion of self-stabilization
in [24] which is used in characterizing fault-tolerant systems. There the concern is about proving cor-
rectness of (hand developed) self-stabilization protocols and achieving self-stabilization for various dis-
tributed algorithms such as mutual exclusion. Our algorithm here can be thought of as an algorithm that
automatically generates a self-stabilization protocol. Although, this is a new dimension to the existing
work on self-stabilization, further research is needed to compare assumptions made in our formulation
and the ones in the self-stabilization literature, and overcome them. In particular, often in the self-
stabilization literature the global states are composed of local states of various distributed elements and
a particular element does not have the access to the complete global state. In those cases one can not
directly use the kind of global policies generated by the algorithm in this paper. We elaborate more on
this in the Appendix.

52

8.4 Further work and open issues

There are several directions for further research extending the work of this paper. One direction con-
cerns other classes of goal specifications, apart from k-maintainability and maintainability, for which
controls can be synthesized in polynomial time. Another direction are more general execution models,
for instance by taking action duration into account. In such a scenario, the maintenance goal may be
formulated as requirement that the agent reaches some desired state always within a given time frame, if
she is not disturbed by the environment. Preliminary investigations suggest that the results in this paper
can be extended to handle this setting, and that alternatively the algorithm of Barbeau et al. [10] and Ka-
banza et al. [41] can be used for efficient computation, as long as durations are not long (binary number
representation may lead to an increase in complexity).

The intractability results for the problems under state variable representations challenges methods and
techniques for handling the problem in practice. Suitable heuristics may therefore be researched that al-
low to solve the problems in many cases in polynomial time, and, in a refined complexity analysis, mean-
ingful tractable cases should be singled out. Furthermore, the issue of computing optimal k-maintenance
controls efficiently, in the sense that k is as small as possible (which is trivially polynomially solvable in
the enumerative setting), is an interesting issue for variable state representation.

Another issue concerns investigating computational transformations between maintenance and planning.
By the complexity results in [46] and this paper, transformations between k-MAINTAINABILITY and
conditional planning are feasible in polynomial time. It would be interesting to study different trans-
formations, and to assess possible benefits of these transformations for solving k-MAINTAINABILITY

and planning by cross-utilizing different algorithms and implementations (e.g. [18] for planning in non-
deterministic domains). In particular a transformation similar to the one in the proof of Theorem 13, with
an additional parameter that counts the number of agent actions since the last exogenous action, can11 be
used to compile out exogenous actions and transform finding k-maintainable policies to finding strong
cyclic plans [18]. On the other hand, encodings similar to the one in Section 5.2 for obtaining strong
cyclic plans through linear-time Horn logic programming can be designed. For more details and results
on the latter, we refer to [4].

Acknowledgments This work was partially supported by FWF (Austrian Science Fund) projects
P-16536-N04 and Z29-N04, the European Commission under grant IST 2001-37004 WASP, the NSF
(National Science Foundation of USA) grant numbers 0070463, and 0412000, NASA grant number
NCC2-1232, and contracts from ARDA and DTO. We would like to acknowledge W. Cushing for his
feedback on an earlier draft and S. Gupta and M. Gouda for their clarifications on self-stabilization.
Furthermore, we acknowledge comments by J. Rintanen on the ICAPS’04 paper and are grateful for his
pointers to related work. We owe special thanks to F. Kabanza for helping us understand his co-authored
papers [10, 41] and making observations regarding how the algorithms in those papers could be modified
to make them more efficient for specific goal specifications. We furthermore appreciate the constructive
comments of the reviewers to improve the presentation, the suggestion of an LTL formulation in Section
4.1 and the suggestion of a linear time algorithm for generic maintainability. Finally, we are indebted
to J. Zhao for implementing some of the algorithms and running the experiments, and appreciate the
support of the DLV team.

11This transformation increases the number of states by k times. It is unknown if there exist a transformation that can
eliminate exogenous actions without increasing the number of states, and yet is able to model the notion of k-maintainability.

53

References

[1] M. Abadi, L. Lamport, and P. Wolper. Realizable and unrealizable specifications of reactive sys-
tems. In Proc. 16th International Conference on Automata, Languages, and Programming (ICALP
89), number 372 in LNCS, pages 1–17. Springer, 1989.

[2] A. Arora and M. G. Gouda. Closure and convergence: A foundation of fault-tolerant computing.
IEEE Transactions on Software Engineering, 19(11):1015–1027, 1993.

[3] F. Bacchus and F. Kabanza. Planning for temporally extended goals. Annals of Mathematics and
Artificial Intelligence, 22:5–27, 1998.

[4] C. Baral, T. Eiter, and J. Zhao. Using SAT and LP to design polynomial-time algorithms for
planning in non-deterministic domains. In Proc. 20th National Conference on Artificial Intelligence
(AAAI ’05), pages 578–583. AAAI Press, 2005.

[5] C. Baral, M. Gelfond, and A. Provetti. Representing actions: Laws, observations, and hypothesis.
Journal of Logic Programming, 31:201–243, 1997.

[6] C. Baral, V. Kreinovich, and R. Trejo. Computational complexity of planning and approximate
planning in the presence of incompleteness. Artificial Intelligence, 122(1-2):241–267, 2000.

[7] C. Baral, V. Kreinovich, and R. Trejo. Computational complexity of planning with temporal goals.
In B. Nebel, editor, Proc. 17th International Joint Conference on Artificial Intelligence (IJCAI-01),
pages 509–514. Morgan Kaufmann, 2001.

[8] C. Baral and T. Son. Relating theories of actions and reactive control. Electronic Transactions on
Artificial Intelligence, 2(3-4):211–271, 1998.

[9] C. Baral and J. Zhao. Goal specification in presence of non-deterministic actions. In R. L.
de Mántaras and L. Saitta, editors, Proc. 16th European Conference on Artificial Intelligence (ECAI
2004), pages 273–277. IOS Press, 2004.

[10] M. Barbeau, F. Kabanza., and R. St-Denis. Synthesizing plan controllers using real-time goals.
In Proc. 14th International Joint Conference on Artificial Intelligence (IJCAI-95), pages 791–800,
1995.

[11] D. Barrington, N. Immerman, and H. Straubing. On uniformity within NC1. Journal of Computer
and System Sciences, 41:274–306, 1990.

[12] M. Ben-Ari, Z. Manna, and A. Puneli. The temporal logic of branching time. In Proc. 8th Sympo-
sium on Principles of Programming Languages, pages 164–176, 1981.

[13] P. Bertoli, A. Cimatti, and M. Pistore. Stong cyclic planning under partial observability. In ECAI,
pages 580–584, 2006.

[14] P. Bertoli and M. Pistore. Planning with extended goals and partial observability. In S. Zilberstein,
J. Koehler, and S. Koenig, editors, ICAPS, pages 270–278, 2004.

[15] R. Brooks. A robust layered control system for a mobile robot. IEEE Journal of Robotics and
Automation, 2(1):14–23, 1986.

54

[16] T. Bylander. The computational complexity of propositional strips planning. Artificial Intelligence,
69:165–204, 1994.

[17] S. Ceri and J. Widom. Deriving production rules for constraint maintenance. In P. M. G. Apers and
G. Wiederhold, editors, Proc. 15th International Conference on Very Large Data Bases (VLDB-90),
pages 566–577, 1990.

[18] A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. Weak, strong, and strong cyclic planning via
symbolic model checking. Artificial Intelligence, 147(1-2):35–84, 2003.

[19] E. Clarke and E. Emerson. Design and synthesis of synchronization skeletons using branching-
time temporal logic. In Proc. Workshop on Logic of Programs, number 131 in LNCS, pages 52–71.
Springer, 1981.

[20] E. Clarke, E. Emerson, and A. Sistla. Automatic verification of finite-state concurrent systems
using temporal logic specifications. ACM Transactions on Programming Languages and Systems,
8(2):244–263, 1986.

[21] M. Daniele, P. Traverso, and M. Vardi. Strong cyclic planning revisited. In Proc. 5th European
Conference on Planning (ECP’99), number 1809 in LNCS/LNAI, pages 35–48. Springer, 1999.

[22] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and expressive power of logic
programming. ACM Computing Surveys, 33(3):374–425, 2001.

[23] G. De Giacomo, R. Reiter, and M. Soutchanski. Execution monitoring of high-level robot programs.
In Proc. Sixth Conference on Principles of Knowledge Representation and Reasoning (KR-98),
pages 453–465, 1998.

[24] E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. CACM, 17(11):843–644,
1974.

[25] W. Dowling and J. H. Gallier. Linear-time algorithms for testing the satisfiability of propositional
Horn theories. Journal of Logic Programming, 3:267–284, 1984.

[26] M. Drummond. Situation control rules. In Proc. First International Conference on Principles of
Knowledge Representation and Reasoning (KR-89), pages 103–113, 1989.

[27] P. Dunne, M. Laurence, and M. Wooldridge. Complexity results for agent design problems. Annals
of Mathematics, Computing & Teleinformatics, 1(1):19–36, 2003.

[28] P. Dunne and M. Wooldridge. Optimistic and disjunctive agent design problems. In C. Castelfranchi
and Y. Lespérance, editors, Proc. 7th International Workshop on Intelligent Agents (ATAL VII),
volume 1986 of LNCS, pages 1–14. Springer, 2001.

[29] T. Eiter, W. Faber, N. Leone, and G. Pfeifer. Declarative problem-solving using the DLV system.
In J. Minker, editor, Logic-Based Artificial Intelligence, pages 79–103. Kluwer, 2000.

[30] E. Emerson. Temporal and modal logics. In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science, volume B, chapter 16. Elsevier, 1990.

[31] K. Erol, V. Subrahmanian, and D. Nau. Complexity, decidability and undecidability results for
domain-independent planning. Artificial Intelligence, 76:75–88, 1995.

55

[32] R. E. Fikes and N. J. Nilsson. Strips: A new approach to the application of theorem proving to
problem solving. Artificial Intelligence, 2(3-4):189–208, 1971.

[33] M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases. New
Generation Computing, 9:365–385, 1991.

[34] M. Gelfond and V. Lifschitz. Representing action in extended logic programs. In Proc. Joint
International Conference and Symposium on Logic Programming (JICSLP’92), pages 559–573.
MIT Press, 1992.

[35] M. Ghallab, D. Nau, and P. Traverso. Automated Planning – Theory and Practice. Morgan Kauf-
mann, 2004.

[36] M. L. Ginsberg. Universal planning: An (almost) universally bad idea. AI Magazine, 10(4):40–44,
1989.

[37] A. Harding, M. Ryan, and P.-Y. Schobbens. A new algorithm for strategy synthesis in ltl games. In
N. Halbwachs and L. D. Zuck, editors, TACAS, volume 3440 of Lecture Notes in Computer Science,
pages 477–492. Springer, 2005.

[38] N. Immerman. Descriptive Complexity. Springer, 1999.

[39] R. M. Jensen, M. M. Veloso, and M. H. Bowling. OBDD-based optimistic and strong cyclic adver-
sarial planning. In Proc. 6th European Conference on Planning (ECP-01), 2001.

[40] R. M. Jensen, M. M. Veloso, and R. E. Bryant. Fault tolerant planning: Toward probabilistic uncer-
tainty models in symbolic non-deterministic planning. In S. Zilberstein, J. Koehler, and S. Koenig,
editors, Proc. 14th International Conference on Automated Planning and Scheduling (ICAPS 2004),
pages 335–344, 2004.

[41] F. Kabanza, M. Barbeau, and R. St-Denis. Planning control rules for reactive agents. Artificial
Intelligence, 95(1):67–113, 1997.

[42] L. P. Kaelbling and S. J. Rosenschein. Action and planning in embedded agents. In Maes [47],
pages 35–48.

[43] C. Kuratowski. Topology I. Academic Press, New York, 1966.

[44] U. D. Lago, M. Pistore, and P. Traverso. Planning with a language for extended goals. In AAAI/IAAI,
pages 447–454, 2002.

[45] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The DLV System for
Knowledge Representation and Reasoning. ACM Transactions on Computational Logic, 7(3):499–
562, 2006.

[46] M. L. Littman. Probabilistic propositional planning: Representations and complexity. In Proc.
14th National Conference on Artificial Intelligence and 9th Innovative Applications of Artificial
Intelligence Conference (AAAI/IAAI 1997), pages 748–754, 1997.

[47] P. Maes, editor. Designing Autonomous Agents: Theory and Practice from Biology to Engineering
and Back. MIT Press, 1990.

[48] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems Specification.
Springer, 1992.

56

[49] Z. Manna and P. Wolper. Synthesis of communicating processes from temporal logic specifications.
ACM Transactions on Programming Languages and Systems, 6(1):68–93, 1984.

[50] M. Minoux. LTUR: a simplified linear time unit resolution for Horn formulae and computer imple-
mentation. Information Processing Letters, 29:1–12, 1988.

[51] M. Nakamura and C. Baral. Invariance, maintenance and other declarative objectives of triggers
- a formal characterization of active databases. In J. Lloyd et al., editor, Proc. First International
Conference on Computational Logic (CL 2000), number 1861 in LNAI, pages 1210–1224. Springer,
2000.

[52] M. Nakamura, C. Baral, and M. Bjæreland. Maintainability: A weaker stabilizability like notion
for high level control. In Proc. 17th National Conference on Artificial Intelligence and Twelfth
Conference on Innovative Applications of Artificial Intelligence (AAAI/IAAI 2000), pages 62–67.
AAAI Press, 2000.

[53] I. Niemelä, P. Simons, and T. Syrjänen. Smodels: A system for answer set programming. In
C. Baral and M. Truszczyński, editors, Proc. 8th International Workshop on Non-Monotonic Rea-
soning (NMR’2000), 2000. Available at http://xxx.lanl.gov/abs/cs.AI/0003033.

[54] R. Niyogi and S. Sarkar. Logical specification of goals. In R. K. Ghosh and D. Misra, editors, Proc.
3rd International Conference on Information Technology (CIT 2001), pages 77–82. Tata McGraw-
Hill, 2000.

[55] C. Ortiz. A commonsense language for reasoning about causation and rational action. Artificial
Intelligence, 111(2):73–130, 1999.

[56] O. Ozveren, A. Willsky, and P. Antsaklis. Stability and stabilizability of discrete event dynamic
systems. J. ACM, 38(3):7300–752, 1991.

[57] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[58] K. Passino and K. Burgess. Stability Analysis of Discrete Event Systems. John Wiley and Sons,
1998.

[59] N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of reactive(1) designs. In VMCAI, pages 364–380,
2006.

[60] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. 16th Annual ACM
Symposium on Principles of Programming Languages (POPL 1989), pages 179– 190, 1989.

[61] P. Ramadge and W. Wonham. Modular feedback logic for discrete event systems. SIAM Journal of
Control and Optimization, 25(5):1202–1217, 1987.

[62] P. Ramadge and W. Wonham. Supervisory control of a class of discrete event process. SIAM
Journal of Control and Optimization, 25(1):206–230, 1987.

[63] R. Reiter. Knowledge in Action: Logical Foundation for Describing and Implementing Dynamical
Systems. MIT Press, 2001.

[64] J. Rintanen. Complexity of planning with partial observability. In S. Zilberstein, J. Koehler, and
S. Koenig, editors, Proc. 14th International Conference on Automated Planning and Scheduling
(ICAPS 2004), pages 345–354, 2004.

57

[65] P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the stable model semantics.
Artificial Intelligence, 138:181–234, 2002.

[66] E. Sontag. Stability and stabilization: Discontinuities and the effect of disturbances. In F. Clarke
and R. Stern, editors, Proc. NATO Advanced Study Institute, pages 551–598. Kluwer, 1998.

[67] D. Weld and O. Etzioni. The first law of robotics (a call to arms). In Proc. Twelfth National
Conference on Artificial Intelligence (AAAI-94), pages 1042–1047. AAAI Press, 1994.

[68] J. Widom and S. Ceri, editors. Active Database Systems: Triggers and Rules For Advanced
Database Processing. Morgan Kaufmann, 1996.

[69] M. Wooldridge. The computational complexity of agent design problems. In Proc. Fourth Interna-
tional Conference on Multi-Agent Systems (ICMAS 2000), pages 341–348. IEEE Press, 2000.

A Appendix: Self-stabilization and Related Notions in Distributed Com-
puting

Earlier we remarked that our notion of maintainability has similarities with Dijkstra’s notion of self-
stabilization [24]. In this appendix, we elaborate on the relationship between our notions and Dijkstra’s
as well as similar notions in distributed computing [2].

A.1 Dijkstra’s notion of self-stabilization

Dijkstra considers in [24] a connected graph (in which a majority of edges are missing) with a finite
state machine placed at each node; machines placed in directed connected nodes are called each other’s
neighbors. For each node (or machine), a Boolean function over the state of the machine and the states
of its neighbors, called a “privilege”, is defined. There is a central daemon that can select one of the
“privileges” (over the whole graph) that is true. The machine whose privilege is selected can move its
state to another state based on a policy which is a function from the state of the machine and its neighbor’s
states to a move that results in a state transition in the machine under consideration. If for such a machine
more than one privilege is present, the new state may also depend on the privilege selected.

There is a global criterion, telling whether the system as a whole is in a “legitimate” state. It is
required that

(i) in each legitimate state one or more privileges will be present;

(ii) in each legitimate state each possible move will bring the system to a legitimate state;

(iii) each privilege must be present in at least one legitimate state; and

(iv) for any pair of legitimate states there exists a sequence of moves transferring the system from one
to the other.

The system is called “self-stabilizing” if and only if, regardless of the initial state and the privilege
selected each time for the next move, at least one privilege will always be present and the system is
guaranteed to find itself in a legitimate state after a finite number of moves.

58

Comparison to our notion of maintainability Our notion of a state corresponds to Dijkstra’s global
state (which is composed of the local states), and our goal states are his legitimate states. Analogous
to our actions are his “moves,” and analogous to our policies are his selections of privileges that are
present. Our policies select an action that is to be executed based on the current state. In Dijkstra’s
model, although “moves” are selected based on the current global state, the selection is finer; one of the
privileges that are present is selected. The transition due to moves is similar to our transition between
states due to action. But Dijkstra’s transition is also finer grained because the changes happen only to the
local state of the machine whose privilege is selected, and this change depends on the local state (prior to
the move) of the machine, the local state of the neighbors, and the privilege selected. We have a specific
set of initial states and we use exogenous actions to compute a closure of states that may be reached. In
Dijkstra’s definition of self-stabilization all states are possible initial states. This is the same as having
the closure to be the set of all states. Modulo the above differences, Dijkstra’s notion of self-stabilization
is the same as our notion of finite maintainability.

If one thinks in terms of global states, then essentially self-stabilization is the same as finite maintain-
ability. Our major contribution is that, unlike research in the area of self-stabilization protocols, where
such protocols are invented by people and self-stabilizability of systems using those protocols is proven,
we give a method to automatically come up with the protocols (or “policies” in our terms). Nonetheless,
a large body of research in self-stabilization is with respect to distributed systems where one does not
have access to the global state in deciding what action to take. Thus a direction for future research is to
find algorithms similar to ours that can generate protocols (policies) in the distributed domain.

A.2 Arora and Gouda’s notion of closure, convergence, and fault-tolerance

Arora and Gouda’s abstraction [2] is more closer to ours than Dijkstra’s. We start with their definitions
and terminology.

• A program consists of a set of variables and a set of processes.

• Each process consists of a set of condition-statement pairs (B, st), where B is a Boolean expres-
sion over program variables, and st updates zero or more program variables and always terminates
upon execution.

• A state of a program p is defined by the value for each variable of p.

• For any process of a program p, using the set of condition-statement pairs we can construct a map-
ping from states to sets of statements, where s maps to a set containing st iff there is a (B, st)
in the process such that B evaluates to true in s. This mapping is referred to as the policy corre-
sponding to that process. If a program has a single process, then the policy corresponding to that
process is also referred to as the policy of that program.

• A state predicate of p is a Boolean expression over the variables of p.

• A condition-statement pair (B, st) is enabled at a state iff B evaluates to true at that state.

• A process is said to be enabled at a state iff some pair (B, st) of that process is enabled at that
state.

• Closure: A state predicate S is closed in a program p iff for each pair (B, st) in each process of p,
executing st starting from a state where B ∧ S holds results in a state where S holds.

59

• A computation of p is a sequence of states that satisfies the following three conditions:

(i) for each pair of consecutive states c, d in the sequence, there exists a pair (B, st) in some
process of p such that B holds at c and executing st starting from c results in d;

(ii) the sequence is maximal, i.e., the sequence is either infinite or it is finite and no condition-
statement pair is enabled in the last state; and

(iii) if any process j of p is continuously enabled along the sequence, then eventually some action
of j is chosen for execution.

• Convergence: Let S and T be state predicates of p. T is said to converge to S in p iff

(a) S and T are closed in p and

(b) in each computation of p starting at any state where T holds, there exists a state where S
holds.

• Fault-tolerance: Let S be a closed state predicate of p and let F be a set of condition-statement
pairs on variables of p. Then p is F -tolerant of S iff there exists a state predicate T of p such that:

(a) T holds at every state where S holds;

(b) for each pair (B, st) in F , executing st starting from a state where B ∧ T holds results in a
state where T holds; and

(c) T converges to S in p.

The notions of closure, convergence, and fault tolerance of Arora and Gouda are very close to similar
notions in our definition of maintainability. We now compare their notions to ours more in detail.

Comparison to our notions Arora and Gouda’s notion of states is similar to our notion of states, and
their notion of statements is similar to our notion of actions, except that statements cause deterministic
transition between states and are executable in all states, while actions can have non-deterministic effects
and are executable in some states only. Their notion of a process (consisting of a set of condition-
statement pairs) is similar to our policy, and their notion of a program consists of a set of variables (that
define the states) and a set of processes. Their notion of closure is the same as our notion of closure
when we assume the absence of exogenous actions and the presence of a single process. (We assume the
presence of a single process in the rest of our comparison.) Their notion of a computation is similar to
our notion of a sequence of states obtained using the Unfold function, except that we have no fairness
condition, which we do not need since we have only a single policy under consideration) and that policy
dictates the execution of only one action in any state.

Arora and Gouda’s notion of “T converges to S” (when there is a single process) is similar to finite
maintainability (in the absence of exogenous actions), where T and S correspond to the closure of our
initial and final states, respectively. In their notion of fault tolerance, captured by “p is F -tolerant of S,”
the fault set F corresponds to our exogenous actions and when they can occur, S corresponds to the set
of final states, and p reflects the state-space and the policy under consideration. In Arora and Gouda’s
definition of fault tolerance, T corresponds to our closure of a set of initial states, but has the additional
requirement that the set of final states S is a subset of T . Thus “p is F -tolerant of S” corresponds to our
notion of the policy of p maintaining a set of initial states (whose closure contains S) with respect to S
in presence of exogenous actions described by F .

60

While our notion of maintainability is similar to the notion of tolerance under a class of faults in [2],
Arora and Gouda do not give an algorithm to automatically construct a policy (or process in their terms)
that will result in the tolerance, while we give algorithms which generate policies, if such policies exist,
that guarantee maintainability.

61

