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Abstract

For tasks involving language and vision, the current
state-of-the-art methods do not leverage any additional in-
formation that might be present to gather privileged knowl-
edge. Instead, such an ability is inferred during the learning
phase. One such task is that of Visual Question Answering,
where large diagnostic datasets have been proposed to test
a system’s capability of reasoning and answering questions
about images, which faces a similar problem. In this work,
we take a step towards integrating this additional privilege
information in the form of spatial knowledge to aid in vi-
sual reasoning. We propose a framework that combines
recent advances in knowledge distillation (teacher-student
framework), relational reasoning and probabilistic logical
languages to incorporate such knowledge in existing neural
networks for the surrogate task of fact-based Visual Ques-
tion Answering. Specifically, for a question posed against
an image, we use a probabilistic logical language to en-
code the spatial knowledge and the spatial understanding
about the question in the form of a mask that is directly pro-
vided to the teacher network. The student network learns
from the ground-truth information as well as the teacher’s
prediction via distillation. We also demonstrate the impact
of predicting such a mask inside the teacher’s network us-
ing attention. Empirically, we show that both the methods
improve the test accuracy over a state-of-the-art approach
on a publicly available dataset.

1. Introduction
Vision and language tasks such as Visual Question An-

swering (VQA) are often considered as “AI-complete” tasks
[1] since they require multi-modal knowledge beyond a sin-
gle sub-domain. Recently, the VQA1.0 dataset was pro-
posed as a representative dataset for the task of VQA [1].
This task aims to combine efforts from three broad sub-
fields of AI namely image understanding, language under-
standing and reasoning. Despite its popularity, most of its
questions focus on fobject recognition in images and natural
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language understanding. Question-Image pairs where a sys-
tem may require compositional reasoning or reasoning with
external knowledge, seem to be largely absent. To explicitly
assess the reasoning capability, several specialized datasets
have been proposed, that emphasize specifically on ques-
tions requiring complex multiple-step reasoning (CLEVR
[12], Sort-of-Clevr [24]) or questions that require reasoning
using external knowledge (F-VQA [27]).

Current state-of-the-art neural architectures do not ex-
plicitly model such external knowledge and reason with
them to solve visual reasoning tasks. Several researchers
[15, 16] in their works have pointed out the necessity of ex-
plicit modeling of such knowledge. This necessitates con-
sidering the following issues:
• What kind of knowledge is needed?
• Where and how to get them?
• What kind of reasoning mechanism to adopt for such

knowledge?

Figure 1: (a) An image and a set of questions from the
CLEVR dataset. Questions often require multiple-step rea-
soning, for example in the second question, one needs to
identify the big sphere, then recognize the reference to the
brown metal cube, which then refers to the root object, that
is, the brown cylinder. (b) An example of spatial common-
sense knowledge needed to solve a CLEVR-type question.

To understand the kind of external knowledge required,
we investigate the CLEVR dataset proposed in [12]. This
dataset explicitly asks questions that require relational and
multi-step reasoning. An example is provided in Fig. 1(a).



In this dataset, the authors create synthetic images con-
sisting of a set of objects that are placed randomly within
the image. Each object is created randomly by varying its
shape, color, size and texture. For each image, 10 com-
plex questions are generated. Each question inquires about
an object or a set of objects in the image. To understand
which object(s) the question is referring to, one needs to de-
cipher the clues that are provided about the property of the
object or the spatial relationships with other objects. This
can be a multiple-step process, that is: first recognize ob-
ject A, that refers to object B, which refers to C and so on.
There have been multiple architectures proposed to answer
such complex questions. Authors in [9] attempt to learn
a structured program from the natural language question.
This program acts as a structured query over the objects and
relationship information provided as a scene graph and can
retrieve the desired answer. More interestingly, the authors
in [24] model relational reasoning explicitly in the neural
network architecture and propose a generic relational rea-
soning module to answer questions. This is one of the first
known attempt to formulate a differentiable function to em-
body a generic relational reasoning module that is tradition-
ally formulated using logical reasoning languages. The fail-
ure cases depicted by this work, often points to the lack of
complex commonsense knowledge such as, the front of cube
should consist of front of all visible side of cubes. These ex-
amples point that spatial commonsense knowledge might
help answer questions such as in Fig. 1(b). Even though
procuring such knowledge explicitly is difficult, we observe
that parsing the questions and additional scene-graph infor-
mation can help “disambiguate” the area of the image on
which a phrase of a question focuses on.

In this work, to the best of our knowledge, we make the
first attempt of incorporating such additional information
in the form of spatial knowledge into existing architectures
for vision and language tasks. Specifically, we concentrate
on the task of VQA for questions that require multiple-step
(relational) reasoning, and we explore how a recently pro-
posed relational reasoning based architecture [24] can be
improved further with the aid of additional spatial knowl-
edge extracted from the image using the question and the
scene-graph information. This is an important avenue, as
humans often use a large amount of external knowledge to
solve tasks that they have acquired through years of ex-
perience1. To extract such spatial knowledge in a form
that can be integrated and reasoned with, we take inspi-
ration from techniques from the field of Knowledge Rep-
resentation and Reasoning (KR&R) and utilize a reason-
ing engine viz. Probabilistic Soft Logic (PSL) [2]. In

1The authors in [15] quoted a reviewer’s comment: “Human learners -
unlike DQN and many other deep Learning systems - approach new prob-
lems armed with extensive prior experience.”. The authors also ask “How
do we bring to bear rich prior knowledge to learn new tasks and solve new
problems?”.

practice, these languages and their available implementa-
tions are often susceptible to the high amount of noises
in real-world datasets and hence, their direct applications
have been somewhat limited. One can assume, that in order
to provide robust, interpretable and accurate solutions, one
needs to leverage both the robustness and interpretability of
declarative logical reasoning languages and the high-level
representation learning capability of deep learning.

We rely on the knowledge distillation paradigm [8] in
order to integrate the extracted spatial knowledge with the
relational reasoning architecture. Knowledge distillation
aims to transfer the predictions learned by a complex model,
often regarded as a teacher model, to that of a simpler
model, usually deemed as a student model, via distillation
[8]. There are various flavours of the knowledge distillation
paradigm depending upon the complexity of the teacher’s
model as well as the amount of information it has access to
relative to the student’s model.

Thus to solve our task, we propose a student-teacher net-
work based architecture, where the teacher has access to
privileged information. For the VQA, this priveledged in-
formation is the spatial knowledge required to answer the
question in the form of an attentive image mask based on
the question and the scene-graph information. The student
network is the existing architecture we want to distill this
knowledge into. We provide two methods for calculating
the mask; i) in case, where the object and relationships are
provided for an image, one can calculate a mask using prob-
abilistic reasoning, and ii) if such data is not available, such
a mask can be calculated inside the network using atten-
tion. We experiment on the Sort-of-Clevr dataset, and em-
pirically show that both these methods outperform a state-
of-the-art relational reasoning architecture. We observe that
the teacher model (using the spatial knowledge inferred by
PSL inference) achieves a sharp 13.7% jump in test accu-
racy over the baseline architecture. The existing architec-
ture i.e. the student model, distilled with this knowledge,
shows a generalization boost of 6.2% as well. We also pro-
vide ablation studies of the reasoning mechanism on (ques-
tions and scene information from) the CLEVR dataset.

2. Related Work
Our work is influenced by the following thrusts of work:

probabilistic logical reasoning, spatial reasoning, reasoning
in neural networks, knowledge distillation; and the target
application area of Visual Question Answering.

Recently, researchers from the KR&R community, and
the Probabilistic Reasoning community have come up with
several robust probabilistic reasoning languages which are
deemed more suitable to reason with real-world noisy data,
and incomplete or noisy background knowledge. Some
of the popular ones among these reasoning languages are
Markov Logic Network [23], Probabilistic Soft Logic [2],



and ProbLog [6]. Even though these new theories are con-
siderable large steps towards modeling uncertainty (beyond
previous languages engines such as Answer Set Program-
ming [4]); the benefit of using these reasoning engines has
not been successfully shown on large real-world datasets.
This is one of the reasons, recent advances in deep learn-
ing, especially the works of modeling knowledge distilla-
tion [8, 25] and relational reasoning have received signifi-
cant interest from the community.

Modeling of Spatial Knowledge and reasoning using
such knowledge in 2D or 3D space has also given rise to
multiple interesting works in both Computer Vision and
Robotics, collectively termed as Qualitative Spatial Reason-
ing (QSR). Randell et al. [22] proposed an interval logic for
reasoning about space. Cohn and Renz [5] proposed ad-
vancements over previous languages aimed at robotic navi-
gation in 2D or 3D space. In these languages, the relations
between two objects are modeled spatially. Our work is also
influenced by this series of works (such as Region Connec-
tion Calculus etc.), in the sense of what “privileged infor-
mation” we expect along-with the image and the question.
For the CLEVR dataset, the relations left, right,
front, behind can be used as a closed set of spatial
relations among the objects and that often suffices to an-
swer most questions. For real images, a scene graph that
encodes spatial relations among objects and regions, such
as proposed in [7] would be useful to integrate our meth-
ods.

Popular probabilistic reasoning mechanisms from the
statistical community often define distribution with re-
spect to Probabilistic Graphical Models. There have been
a few attempts to model such graphical models in con-
junction with deep learning architectures [31]. However,
multi-step relational reasoning, and reasoning with ex-
ternal domain or commonsense knowledge2 require the
robust structured modeling of the world as adopted by
KR&R languages. In its popular form, these reason-
ing languages often use predicates to describe the current
world, such as color(hair, red), shape(object1, sphere),
material(object1,metal) etc; and then declare rules that
the world should satisfy. Using these rules, truth values of
unknown predicates are obtained, such as ans(?x,O) etc.
Similarly, the work in [24], defines the relational reasoning
module as RN(O) = fφ

(∑
i,j gθ(oi, oj)

)
, where O de-

note all objects. In this work, the relation between a pair of
objects (i.e. gθ) and the final function over this collection of
relationships i.e. fφ are defined as multilayer perceptrons
(MLP) and are learnt using gradient descent in an end-to-
end manner. This model’s simplicity and its close resem-

2An example of multi-step reasoning: if event A happens, then B will
happen. The event B causes action C only if event D does not happen. For
reasoning with knowledge: consider for a image with a giraffe, we need to
answer “Is the species of the animal in the image and an elephant same?”

blance to traditional reasoning mechanisms motivates us to
pursue further and integrate external knowledge.

Several methods have been proposed to distill knowledge
from a larger model to a smaller model or from a model with
access to privileged information to a model without such
information. Hinton et al. [8] first proposed a framework
where a large cumbersome model is trained separately and a
smaller student network learns from both groundtruth labels
and the large network. Independently, Vapnik et al. [25]
proposed an architecture where the larger (or the teacher)
model has access to privileged information and the student
model does not. These models together motivated many
natural language processing researchers to formulate textual
classification tasks as a teacher-student model, where the
teacher has privileged information, such as a set of rules;
and the student learns from the teacher and the ground-
truth data. The imitation parameter controls how much the
student trusts the teacher’s decision. In [11], an iterative
knowledge distillation is proposed where the teacher and
the student learn iteratively and the convolutional network’s
parameters are shared between the models. In [10], the au-
thors propose to solve sentiment classification, by encoding
explicit logical rules and integrating the grounded rules with
the teacher network. These applications of teacher-student
network only exhibited success with classification problems
with very small number of classes (less than three).

In this paper, we show a knowledge distillation inte-
gration with privileged information which is applied to a
28-class classification, and we observe that it improves
by a large margin on the baseline. In [30], the au-
thors use encoded linguistic knowledge in the form of
P (pred|obj, subj) to perform Visual Relationship Detec-
tion. In this work, we apply knowledge distillation in a
visual question answering setting, that require both visual
reasoning and question understanding.

In the absence of the scene information or in cases where
such information is expensive to obtain, an attention mask
over the image can be predicted inside the network based
upon the posed question. Attention mechanism has been
successfully applied in image captioning [28, 19], machine
translation[3, 26] and visual question answering [29]. In
[29], a stacked attention network was used to predict a mask
over the image. They use the question vector separately
to query specific image features to create the first level of
attention. In contrast, we combine the question vector with
the whole image features to predict a coarse attention mask.

3. Additional Knowledge Integration Method
In this section, we explain the various components of our

proposed framework for integrating additional spatial infor-
mation with existing neural architectures. We start by for-
malizing the probabilistic reasoning mechanism which en-
ables us to extract such spatial knowledge in the presence



Figure 2: (a) The Teacher-Student Distillation Architecture. As the base of both teacher and student, we use the architecture
proposed by the authors in [24]. For the experiment with pre-processed mask generation, we pass a masked image through
the convolutional network and for the network-predicted mask, we use the image and question to predict an attention mask
over the regions. (b) We show the internal process of mask creation.

of scene information. Then, we describe the knowledge
distillation paradigm [8] that enables us to infuse this ex-
tracted knowledge into existing networks which in our case
is a relational reasoning architecture [24]. We also outline
the in-network computation required in the absence of the
scene-graph information.

3.1. Probabilistic Reasoning Mechanism

In order to reason about the spatial relations among the
objects in a scene and textual mentions of those objects in
the question, we choose Probabilistic Soft Logic (PSL) [2]
as our reasoning engine. Using PSL provides us three ad-
vantages: i) (Robust Joint Modeling) from the statistical
side, PSL models the joint distribution of the random vari-
ables using a Hinge-Loss Markov Random Field, ii) (inter-
pretability) we can use clear readable declarative rules that
(directly) relates to defining the clique potentials, and iii)
(Convex Optimization) the optimization function of PSL is
designed in a way so that the underlying function remains
convex and that provides an added advantage of faster in-
ference. We use PSL, as it has been successfully used in
Vision applications [17] in the past and it is also known to
scale up better than its counterparts [23].

3.1.1 Hinge-Loss Markov Random Field and PSL

Hinge-Loss Markov Random Fields (HL-MRF) is a general
class of continuous-valued probabilistic graphical model.
An HL-MRF is defined as follows: Let y and x be two
vectors of n and n′ random variables respectively, over the
domain D = [0, 1]n+n′ . The feasible set D̃ is a subset of
D, which satisfies a set of inequality constraints over the
random variables.

A Hinge-Loss Markov Random Field P is a probability
density overD, defined as: if (y,x) /∈ D̃, then P(y|x) = 0;

if (y,x) ∈ D̃, then:

P(y|x) ∝ exp(−fw(y,x)). (1)

PSL combines the declarative aspect of reasoning lan-
guages with conditional dependency modeling power of
undirected graphical models. In PSL a set of weighted if-
then rules over first-order predicates is used to specify a
Hinge-Loss Markov Random field.

In general, let C = (C1, ..., Cm) be such a collection
of weighted rules where each Cj is a disjunction of literals,
where each literal is a variable yi or its negation ¬yi, where
yi ∈ y. Let I+

j (resp. I−j ) be the set of indices of the
variables that are not negated (resp. negated) in Cj . Each
Cj can be represented as:

wj : ∨i∈I+j yi ← ∧i∈I−j yi, (2)

or equivalently, wj : ∨i∈I−j (¬yi)
∨
∨i∈I+j yi. A rule Cj

is associated with a non-negative weight wj . PSL relaxes
the boolean truth values of each ground atom a (constant
term or predicate with all variables replaced by constants)
to the interval [0, 1], denoted as V (a). To compute soft
truth values, Lukasiewicz’s relaxation [14] of conjunctions
(∧), disjunctions (∨) and negations (¬) are used:

V (l1 ∧ l2) = max{0, V (l1) + V (l2)− 1}
V (l1 ∨ l2) = min{1, V (l1) + V (l2)}

V (¬l1) = 1− V (l1).

In PSL, the ground atoms are considered as random vari-
ables, and the joint distribution is modeled using Hinge-
Loss Markov Random Field (HL-MRF).

In PSL, the hinge-loss energy function fw is defined as:

fw(y) =
∑
Cj∈C

wj max
{
1−

∑
i∈I+j

V (yi)−
∑
i∈I−j

(1−V (yi)), 0
}
.

(3)



The maximum-a posteriori (MAP) inference objective of
PSL becomes:

argmax
y∈[0,1]n

P (y) ≡ argmax
y∈[0,1]n

exp(−fw(y))

≡ argmin
y∈[0,1]n

∑
Cj∈C

wj max
{
1−

∑
i∈I+j

V (yi)

−
∑
i∈I−j

(1− V (yi)), 0
}
,

(4)

where the term wj×max
{

1−
∑
i∈I+j

V (yi)−
∑
i∈I−j

(1−
V (yi)), 0

}
measures the “distance to satisfaction” for each

grounded rule Cj .

3.2. Knowledge Distillation Framework

While PSL provides a probabilistic knowledge represen-
tation , as shown in Fig. 2(b), a mechanism is needed to
utilize them under the deep neural networks based systems.
We use the generalized knowledge distillation paradigm
[18], where the teacher’s network can be a larger network
performing additional computation or have access to priv-
ileged information, to achieve this integration resulting in
two different architectures i) (External Mask) teacher with
provided ground-truth mask, ii) (In-Network Mask) teacher
predicts the mask with additional computation. Here, we
provide general formulations for both methods and give an
overview of how the external mask is calculated3.

3.2.1 General Architecture

The general architecture for the teacher-student network is
provided in Fig. 2(a). Let us denote the teacher network as
qφ and the student network as pθ. In both scenarios, the
student network uses the relational reasoning network [24]
to predict the answer. The teacher network uses an LSTM
to process the question, and a convolutional neural network
to process the image. Features from the convolutional net-
work and the final output from the LSTM is used as input to
the relational reasoning module to predict an answer. Addi-
tionally in the teacher network, we predict a mask. For the
External Mask setting, the mask is predicted by a reason-
ing engine and applied to the image, and for the attention
setting, the mask is predicted using the image and text fea-
tures and applied over the output from the convolution. The
teacher network qφ is trained using softmax cross-entropy
loss against the ground truth answers for each question. The
student network is trained using knowledge distillation with
the following objective:

θ = arg min
θ∈Θ

N∑
n=1

(1− π)`1(yn, σθ(xn))

+ π`2(sn, σθ(xn)),

(5)

3A detailed example of how we estimate these predicates is provided in
Supplementary material.

where xn is the image-question pair, and yn is the an-
swer that is available during the training phase; the σθ(.) is
the usual softmax function; sn is the soft prediction vector
of qφ on xn and `i denotes the loss functions selected ac-
cording to specific experiments (usually `1 is cross-entropy
and `2 is euclidean norm). π is often called the imitation
parameter and determines how much the student trusts the
teacher’s predictions.

3.2.2 External Mask Prediction
This experimental setting is motivated by the widely avail-
able scene graph information in large datasets starting from
Sort-of-Clevr and CLEVR to Visual Genome. We use the
following information about the objects and their relation-
ships in the image: i) the list of attribute, value pairs for
each object, ii) the spatial relationships between objects,
and iii) each object’s relative location in the image.

We view the problem as a special case of the bipartite
matching problem, where there is one set of textual men-
tions (M ) of the actual objects and a second set of ac-
tual objects (O). Using probabilistic reasoning we find
a matching between object-mention pairs based on how
the attribute-value pairs match between the objects and the
corresponding mentions, and when mention-pairs are con-
sistently related (such as larger than, left to, next to) as
their matched object-pairs. Using the scene graph data,
and by parsing the natural language question, we esti-
mate the value of the following predicates: attro(O,A, V ),
attrm(M,A, V ) and consistent(A,O,O1,M,M1). The
predicate attrm(M,A, V ) denotes the confidence that the
value of the attribute A of the textual mention M is
V . The predicate attro(O,A, V ) is similar and de-
notes a similar confidence for the object O. The pred-
icate consistent(R,O,O1,M,M1) indicates the confi-
dence that the textual mentions M and M1 are consistent
based on a relationship R (spatial or attribute based), if M
is identified with the object O and M1 is identified with the
object O1. Using only these two predicate values, we use
the following two rules to estimate which objects relate to
which textual mentions.
w1 : candidate(M,O)← object(O) ∧mention(M)

∧ attro(O,A, V ) ∧ attrm(M,A, V ).

w2 : candidate(M,O)← object(O) ∧mention(M)

∧ candidate(M,O)

∧ candidate(M1, O1)

∧ consistent(A,O,O1,M,M1).

We use the grounded rules (variables replaced by constants)
to define the clique potentials and use eq. 4 to find the con-
fidence scores of grounded candidate(M,O) predicates.
Using this mention to object mapping, we use the objects
that the question refers to. For each object, we use the cen-
ter location, and create a heatmap that decays with distance



from the center. We use a union of these heatmaps and use
it as the mask. This results into a set of spherical masks
over the objects mentioned in the question, as shown in
Fig. 2(b). To validate our calculated masks, we annotate
the CLEVR validation set with the ground-truth objects, us-
ing the ground-truth structured program. We observe that
our PSL-based method can achieve a 75% recall and 70%
precision in predicting the ground-truth objects for a ques-
tion.

In Figure 3, we provide more details of the calculated
PSL predicates for the example question and image in Fig-
ure 2(b). We use this top collection of objects and their
relative locations to create small spherical masks over the
relevant objects in the images.

Figure 3: We elaborate on the calculated PSL predicates for
the example image and question in Figure 2(b). The under-
lying optimization benefits from the negative examples (the
consistent predicate with 0.0, marked in red). Hence, these
predicates are also included in the program.

3.2.3 In-Network Mask Prediction

The External Mask setting requires privileged information
such as scene graph data about the image, which includes
the spatial relations between objects. Such information is
often expensive to obtain. Hence, in one of our experiments,
we attempt to emulate the mask creation inside the network.
We formulate the problem as attention mask generation over
image regions using the image (xI ∈ R64×64×3) and the
question (xq ∈ Rw×d). The calculation can be summarized
by the following equations:

rI = conv∗(xI). qemb = LSTM(xq).

v = tanh(WIrI +Wqqemb + b).

α = exp(v)/

x∗y∑
r=1

exp(vr),

(6)

where rI is x×y regions with oc output channels, qemb ∈
Rh is the final hidden state output from LSTM (hidden
state size is h); WI(∈ Rxyoc×xy) and Wq(∈ Rxy×h) are
the weights and b is the corresponding bias. Finally, the
attention α over regions is obtained by exponentiating the
weights and then normalizing them. The attention α is then

reshaped and element-wise multiplied with the region fea-
tures extracted from the image. This is considered as a mask
over the image regions conditioned on the question vector
and the image features.

4. Experiments and Results

We propose two architectures, one where the teacher
has privileged information and the other where the teacher
performs additional calculation using auxiliary in-network
modules. We perform experiments to validate whether the
direct addition of information (external mask), or additional
modules (model with attention) improves the teacher’s per-
formance over the baseline. We also perform similar exper-
iments to validate whether this learned knowledge can be
distilled to existing neural networks (student model) . Ad-
ditionally, we conduct ablation studies on the probabilistic
logical mechanism using which we predict a ground-truth
mask from the question and the scene information.

4.1. Setup

As our testbed, we use the “Sort-of-Clevr” from [24]
and the CLEVR dataset from [12]. As the original Sort-
of-Clevr dataset is not publicly available, we create the syn-
thetic dataset as described by the authors4. We use simi-
lar specification, i.e., there are 6 objects per image, where
each object is either a circle or a rectangle, and we use 6
colors to identify each different object. Unlike the orig-
inal dataset, we generate natural language questions along
with their one-hot vector representation. In our experiments
we primarily use the natural-language question. We only
use the one-hot vector to replicate results of the baseline
Relational Network (RN)5. For our experiments, we use
9800 images for training, 200 images each for validation
and testing. There are 10 question-answer pairs for each
image. For Sort-of-Clevr, we use four convolutional layers
with 32, 64, 128 and 256 kernels, ReLU non-linearities, and
batch normalization. The questions were passed through
an LSTM where the word embeddings are initialized with
50-dimensional Glove embeddings [20]. The LSTM out-
put and the convolutional features are passed through the
RN network6. The baseline model was optimized with a
cross-entropy loss function using the Adam optimizer with

4We make the code and data available in supplementary material.
5We were unable to replicate the results of [24] on CLEVR dataset.

This is why use another baseline (Stacked Attention Network) and show
how our method improves on that baseline. The primary reason being
the original network was trained by authors on 10 parallel GPUs on 640
batch size. This was not feasible to replicate in lab setting. Based on our
experiments, the best accuracy obtained by the baseline reasoning network
is 68% with a batch-size of 640 on a single-GPU worker, after running for
600 epochs over the dataset.

6A four-layer MLP consisting of 2000 units per layer with ReLU non-
linearities is used for gθ ; and a four-layer MLP consisting of 2000, 1000,
500, and 100 units with ReLU non-linearities used for fφ.



a learning rate of 1e−4 and mini-batches of size 64. For
CLEVR, we use the Stacked Attention Network [29] with
the similar convolutional network and LSTM as above. We
get similar results with VGG-16 as the convolutional net-
work. Instead of the RN layer, we pass the two outputs
through two levels of stacked attention, followed by a fully-
connected layer. On top of this basic architecture, we define
the student and teacher networks. The student network uses
the same architecture as the baseline. We propose two varia-
tions of the teacher network, and we empirically show how
these proposed changes improve upon the performance of
the baseline network.

4.2. External Mask Prediction

In this setting of the experiment, the ground-truth mask,
as calculated in 3.2.2, is element-wise multiplied to the im-
age and then the image is passed through the convolutional
network. We experiment with both sequential and iterative
knowledge distillation. In the sequential setting, we first
train the teacher network for 100 epochs with random em-
bedding size of 32, batch size as 64, learning rate 0.0001. In
the previous attempts to use distillation in natural language
processing ([10, 13]), the optimal value of π has been re-
ported as min(0.9, 1−0.9t) or 0.9t. Intuitively, either at the
early or at the latter stages, the student almost completely
trusts the teacher. However, our experiments show differ-
ent results. For the student network, we employ a hyper-
paramter search on the value of imitation parameter π and
use two settings, where π is fixed throughout the training
and in the second setting, π is varied using min(π, 1− πt).
We vary the loss `2 among cross entropy and euclidean
norm. The results of the hyperparameter optimization ex-
periment is depicted in Fig. 5. From this experiment, it can
be observed that varying π over epochs gives better results
than using a fixed π value for training the student. We ob-
serve a sharp increase in accuracy using the π value 0.575.
This result is more consistent with the parameter value cho-
sen by the authors in [30]. We also experiment by varying
the word embedding (50-dimensional glove embedding and
32-dimensional word embedding) and learning rate. For se-
quential knowledge distillation, we get the best results with
glove embedding and learning rate as 1e−4. However, we
get huge improvements by using iterative knowledge dis-
tillation, where in each alternate epoch the student learns
from the teacher and the groundtruth data; and the teacher
learns from its original loss function and the student’s soft
prediction (similar to Eqn. 5). Both weighted loss functions
use the imitation parameter 0.9 (which remains fixed dur-
ing training). We show the gradual learning of the teacher
and the student till 800 epochs in Fig. 4 and compare it with
the RN baseline. We observe that: 1) the External Mask-
augmented Teacher network converges faster than the base-
line and 2) the Student network outperforms the baseline

after 650 epochs of training.

Figure 4: We plot validation accuracy after each epoch for
teacher and student networks for iterative knowledge distil-
lation on Sort-of-Clevr dataset and compare with the base-
line.

4.3. Larger Model with Attention

In this framework, we investigate whether the mask can
be learnt inside the network with attention mechanism. We
train the teacher network for 200 epochs with glove vectors
of size 50, batch size as 64, learning rate as 0.0001. We
have employed a hyperparamter search over learning rate,
embedding type, and learning rate decay, and found that
the above configuration produces best results. For the stu-
dent network, we employed a similar hyperparamter search
on the value of imitation parameter π and use two settings,
where π is fixed throughout the training and in the second
setting, π is varied using min(π, 1− πt). We also vary the
learning rate and the type of embedding (random with size
32 or glove vectors of size 50). The effect of the hyperpa-
rameter search is plotted in Fig. 6. We have experimented
with iterative knowledge distillation and the best accuracy
obtained for the teacher and the student networks are simi-
lar to that of sequential setting. The best test accuracies of
the student network, the teacher with larger model and the
baselines are provided in Table 1.

Figure 5: External Mask Prediction: Test Accuracy for dif-
ferent hyperparamter combination to obtain the best imi-
tation parameter (π) for student for sequential knowledge
distillation.



Baseline External Mask In-Network Mask Performance Boost Over Baseline (∆)
Teacher Student Teacher Student Teacher Student

Sort-of-Clevr 82% ([24]) 95.7% 88.2% 87.5% 82.8% 13.7% 6.2%
CLEVR 53% ([29]) 58% 55% - - 5% 2%

Table 1: Test set accuracies of different architectures for the Sort-of-Clevr (with natural language questions) and CLEVR
dataset. For CLEVR, we have used the Stacked Attention Network (SAN) [29] as baseline and only conducted the external-
mask setting experiment as it already calculates in-network attention. Our re-implementation of SAN achieves 53% accuracy
on CLEVR. Accuracy reported by [24] on SAN is 61%. The reported best accuracy for Sort-of-Clevr and CLEVR are 94%
(one-hot questions [24]) and 97.8% ([21]).

Figure 6: Model with Attention Mask: Test accuracy for the
student network for different hyperparamter combination to
obtain the best imitation parameter (π). We get the best
validation accuracy using the π as 0.9, `2 as cross entropy
loss and varying π by over epochs.

4.4. Analysis

The reported baseline accuracy on Sort-of-Clevr by [24]
is 94% for both relational and non-relational questions.
However, we use LSTMs to embed the natural language
questions. Our implementation of the baseline achieves an
overall test accuracy of 89% with one-hot question repre-
sentation and 82% with LSTM embedding of the question.
Addition of the pre-processed mask provides an increase
in test accuracy to 95.7%. In contrast, the teacher model
with attention mask achieves 87.5%. This is expected as
the mask on the image simplifies the task by eliminating
irrelevant region of image with respect to the question.

Student Learning: One may argue that adding such ad-
ditional information to a model can be an unfair compari-
son. However, in this work, our main aim is to integrate
additional knowledge (when it is available) with existing
neural network architectures and demonstrate the benefits
that such knowledge can provide. We experiment with the
knowledge distillation paradigm to distill knowledge to a
student. Extracted knowledge can be noisy, imperfect and
often costly at test time. The distillation paradigm helps in
this regard as the student network can choose to learn from
the ground-truth data (putting less weight on teacher’s pre-
dictions) during the training phase and doesn’t require the
additional knowledge during test time. For Sort-of-Clevr,
we see an accuracy of 88.2% achieved by the student net-
work (in external mask setting), whereas for CLEVR the

distillation effort increases the accuracy over the baseline
method by 2%. Lastly, we show some qualitative exam-
ples of student network’s output on the Sort-of-Clevr dataset
(Fig. 7). The qualitative results indicate that our method
can handle counting, spatial relationships well, but fails
mostly on cases relating to shapes. This observation cou-
pled with improvement in generalization validates that the
spatial knowledge has a significant role in our method.

Figure 7: Some example images, questions and answers
from the synthetically generated Sort-of-Clevr dataset.
Red-colored answers indicate failure cases.

5. Conclusion

There has been a significant increase in attempts to inte-
grate background knowledge (linguistic knowledge [30] or
commonsense rules [10]) with state-of-the-art Neural Ar-
chitectures in Computer Vision and Natural Language Pro-
cessing applications. In this work, we attempt to integrate
additional information in the form of spatial knowledge
with existing neural networks to aid Visual Reasoning. The
spatial knowledge is obtained by reasoning on the natural
language question and additional scene information using
the Probabilistic Soft Logic inference mechanism. We show
that such information can be encoded using a mask over the
image and integrated with neural networks using knowledge
distillation. Such a procedure shows significant improve-
ment on the accuracy over the baseline network.
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