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Abstract

Two of the fundamental tasks in image understanding using text are caption gen-

eration and visual question answering [1, 2]. This work presents an intermediate

knowledge structure that can be used for both tasks to obtain increased inter-

pretability. We call this knowledge structure Scene Description Graph (SDG),

as it is a directed labeled graph, representing objects, actions, regions, as well as

their attributes, along with inferred concepts and semantic (from KM-Ontology

[3]), ontological (i.e. superclass, hasProperty), and spatial relations. Thereby

a general architecture is proposed in which a system can represent both the

content and underlying concepts of an image using an SDG. The architecture

is implemented using generic visual recognition techniques and commonsense

reasoning to extract graphs from images. The utility of the generated SDGs

is demonstrated in the applications of image captioning, image retrieval, and

through examples in visual question answering. The experiments in this work

show that the extracted graphs capture syntactic and semantic content of images

with reasonable accuracy.

1. Introduction and Motivation

Image Understanding is fundamental to Computer Vision. Earlier approaches

centered on asking “what” and “where” questions about the scene in view. In

this methodology, scenes are recognized by detecting the objects within the
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scene [4, 5, 6], objects are recognized by detecting their parts or attributes5

[7, 8, 9, 10, 11, 12, 13] and activities are recognized by detecting the motions,

objects and contexts involved in the activities [14, 15, 16, 17, 18, 19].

Since then, researchers have explored multiple ways of understanding an im-

age through the modality of natural language. According to [20], the primary

reason for using natural language to ground images is that it adds interpretabil-10

ity and creates a way for human-machine interaction. The first major challenge

proposed in this area, is the problem of caption generation from images. Re-

searchers adopted the viewpoint that if a system is able to develop a semantic

understanding of a visual scene, then such a system should be able to pro-

duce natural language descriptions of such semantics. Recent developments15

[21, 22, 23, 24, 25, 26, 27] in Computer Vision have shown that deep neural nets

can be trained to generate a caption for an arbitrary scene with decent success.

However, caption generation systems only describe the salient aspects of the

image. An intelligent Image Understanding system should recognize all aspects

present in the image and where the objects are [28] and should be able to rea-20

son with the recognized aspects. Based on such notions and taking advantage

of recent powerful recognition capabilities using Neural Networks, researchers

in Computer Vision have re-visited a more general and di�cult image under-

standing task, namely Visual Question Answering [1, 29, 30, 31].

(a) (b)

Figure 1: (a) First example image and (b) second example image with corresponding

ideal SDG encoding semantic, ontological, and spatial relations.

Despite the success of end-to-end learning models ([1, 29, 30, 31]) in these25
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tasks, a few problems remain. In the Visual Question Answering problem, ques-

tions such as: Is it going to rain? (prospective), Did it rain? (retrospective), Is

the knife cutting the bowl? (in the context of Figure 1(a)), Does the man have

20-20 vision? (commonsense), all require explicit modeling of commonsense

reasoning and knowledge. In the context of the image in Figure 1(b), questions30

can range from those that require basic knowledge about the game of basketball

(Do the players in red and white belong to the same team? ) to questions re-

quiring deeper knowledge such as originating from an intuition of Physics (Will

the player on the right be able to block the player holding the ball? or In which

direction should the player holding the ball move? ). Without explicit model-35

ing of commonsense knowledge, these questions are di�cult to answer. Again,

the existing models consider a constrained set of answers, which limits their

application to real-world scenarios.

Current state-of-the-art image captioning systems have a few drawbacks such

as: 1) a brute-force image to caption mapping does not allow symbol level40

reasoning beyond simple inferences from annotated data; 2) they are language

dependent, due to the lack of concept level modeling; and 3) most importantly,

when the system produces wrong results, it is almost impossible to trace back

the error and analyze the cause.

To alleviate these problems, we seek inspiration from nature. Human per-45

ception is active, selective and exploratory ([32, 33]). We interpret visual input

by using our knowledge of activities, events and objects. When we analyze a vi-

sual scene, visual processes continuously interact with our high-level knowledge,

some of which is represented in the form of language. In some sense, perception

and language are engaged in an interaction, as they exchange information that50

leads to semantics and understanding. Thus, our problem requires at least two

modules for its solution: (a) a vision module and (b) a reasoning module that

interact with each other. In this paper we propose to model the architecture

that can support such an interaction; and we propose a corresponding knowl-

edge structure that can represent the information and the semantics extracted55

from images.

3



We present an implementation that integrates deep learning based vision

and state-of-the-art concept modeling from common-sense knowledge1 obtained

from text. We use a deep learning-based perception system to obtain the ob-

jects, scenes and constituents with probabilistic weights from an input image. To60

predict how the objects interact in the scene, we build a common-sense knowl-

edge base2 from image annotations along with a Bayesian Network of commonly

occurring objects and inferred scene constituents (the concepts that can not be

seen, but can be understood from the scene). These two pre-computed resources

help us infer the following: 1) the correct set of correlated objects based on the65

objects detected with high-confidence; 2) the most probable actions that these

objects participate in; 3) the role that the objects play in these actions. Based

on the actions, the detected objects and the inferred constituents, we output a

Scene Description Graph (SDG) that represents the semantics of the scene.

In Figure 1, we show a possible SDG for an example image. SDG is a70

directed labeled graph3 among Entities (objects, regions), Events (actions, link-

ing verbs), Traits (attributes of objects and regions) and inferred constituents.

An SDG represents semantic relations (from KM-Ontology [3]) between Entity-

Event pairs, spatial relations among Entities (objects and regions), and ontolog-

ical relations between Entity-Trait pairs. The Event nodes are connected to a75

dummy node, denoted SCENE, by an edge labeled location. The constituent

nodes are coded in a di↵erent color, to show the concepts that can be inferred

from the image. The spatial relations are inspired by [37]. These SDGs can

be used to generate captions, answer factual questions and also reason beyond

1Commonsense reasoning and commonsense knowledge can be of many types ([34]). Com-

monsense knowledge can belong to di↵erent levels of abstraction ([35, 36]). In this paper, we

focus on reasoning based on knowledge about natural scenes.
2Domain-specific commonsense and background knowledge can be extracted from text or

accessed from curated or semi-curated sources such as WordNet, ConceptNet. Here we extract

the needed knowledge from image captions.
3 Note that similar structures are also generated by Semantic parsers such as K-parser

(kparser.org).
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what can be seen in the image.80

The fundamental contributions of this work are: 1) proposing an inter-

mediate structure that captures the semantics of an image, 2) proposing an

Image Understanding architecture that combines vision and reasoning modules

to generate such structures, 3) an implementation of the architecture by com-

bining a Deep Learning based Visual module with probabilistic reasoning on85

a Commonsense Knowledge Base, 4) enhancing the Flickr8k dataset with the

observable scene constituents (actions and properties involving objects), and 5)

comparative human evaluations dataset for our approach, two popular neural

approaches ([24, 38]) and ground truth captions for three existing Captioning

Datasets (Flickr8k, Flickr30k and MS-COCO)4, which can be used to propose90

better automatic caption evalution metrics (this dataset is used in [39] to pro-

pose SPICE).

2. Related Works

Our work is influenced by various thrusts of work focusing on extracting

meaningful information from images and videos. As suggested by [24], such95

works can be categorized into 1) dense image annotations, 2) generating textual

descriptions, 3) grounding natural language in images, and 4) neural networks

in visual and language domains. Furthermore, automatic caption generation

systems, according to ([40]), may be classified into the following three cate-

gories: i) direct generation models, ii) retrieval models from visual space, and100

iii) retrieval models from multimodal space.

Caption Generation: With respect to Caption Generation tasks, we share

our roots with the works on generating textual descriptions, i.e., direct gener-

ation models. These include the works in ([41], [42],[43], [44]) which retrieve

and rank sentences from training sets given an image. Other works ([37], [45],105

4Comparison with both the neural approaches are done on MS-COCO dataset. For the

rest, comparison is done only with [24].
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[46], [47], [48]) have generated descriptions by stitching together annotations or

applying templates on detected image contents.

Following the initial keyword-based approaches, most approaches now use

Neural Network architectures. One of the first works was by Karpathy et.

al. [24], which used a combination of a Convolutional Neural Network (for110

images) and a bi-directional Recurrent Neural Network (for sentences). Subse-

quent works ([22, 49, 50, 51]) adopted di↵erent Neural Network architectures to

directly generate captions (a sentence) by training on large datasets of himage,

captioni pairs.
Our aim in this work is to construct an intermediate interpretable structure115

that represents both necessary and relevant information about the image. We

can use this interpretable structure to not only generate captions but also to

reason about images beyond the visual content.

Scene Graph: A small number of works in Computer Vision and Robot

Perception aims at producing a semantic structure from scenes that captures120

information about the objects and regions. We propose here a scene description

graph in which entities (nouns) and events (verbs) are connected by well-defined

relations. The purpose is to perform downstream spatial and event-based rea-

soning using reasoning engines. The relations in scene graphs in ([52]) are

open-ended phrases and the Spatial Graphs in ([37]) only represent the spatial125

relations between objects and regions. Reasoning directly on such structures us-

ing known logical reasoning languages (such as Answer Set Programming [53],

ProbLog [54]) is not straightforward.

Applying Commonsense in Vision: There are a few works with promis-

ing e↵orts to acquire and apply common-sense aspects to the analysis of scenes.130

The work in [55] uses abstraction to discover semantically similar images, [56]

proposes to learn all variations pertaining to all concepts, and [57] uses common-

sense to learn actions.

Question Answering: Our work is also related to the recent research in

the field of Visual Question Answering. Researchers have spent a significant135

amount of e↵ort on both creating datasets and proposing new models [1, 29,
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30, 31]. Interestingly, both [1] and [30] have adapted MS-COCO [58] images to

create an open domain dataset with human generated questions and answers.

The works [29] and [30] use recurrent networks to encode the sentence describing

an image and output the answer. There are multiple existing models which140

use a combination of attention mechanisms in a combined Convolutional and

Recurrent Neural Network architecture. However, the task of VQA also requires

a modeling of commonsense knowledge and reasoning. This is lacking in existing

architectures. In this work, we conduct case studies to show the promising

potential of the SDG for answering questions using reasoning with additional145

knowledge.

3. An Image Understanding Architecture

An image is a vast and complex source of information. To understand an

image, one needs to recognize the di↵erent components (objects, actions, scenes)

and infer higher-level events, activities, and background context. To detect and150

infer such information we need a combination of Vision modules, Reasoning

modules, and background knowledge.

In Figure 2, we present our architecture that explicitly models the desired

interactions between vision and reasoning modules. The core of the architecture

consists of the following modules: i) Visual Detection, ii) Knowledge Base, and155

iii) Logical Reasoning. The complete system also provides interfaces to: i)

Sentence Generation and ii) Question-Answering modules.

Visual Detection: The “Visual Detection” module should be able to obtain

the following basic quantities: i) Objects and Regions, such as man, basketball,

wooden floor etc.; ii) Scenes, i.e., scene classes such as indoors, stadium; iii)160

Relations including spatial ones between two objects or an object and the scene,

for example man holding basketball, man standing on floor ; iv) Properties, i.e.,

di↵erent attributes of objects and regions such as size, height, color of objects;

color, shape of region; v) Attention: In addition, in an active vision setting

([32]), the visual detection module is also expected to interact with the reasoning165
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Figure 2: An architecture for Deep Image Understanding. (The Knowledge Reasoning

Module is a part of the Reasoning Module; it is shown separately to clearly outline

the interactions).

module and hence, the former should have control over “which detector to fire

over which region of the image”.

Ideally, this detection module should consist of a large set of object and scene

detection classifiers, relationship detection classifiers, attribute (color, shape,

size) and relative attribute classifiers ([59]); and detection and Image Segmen-170

tation modules.

Knowledge Base: Di↵erent forms of background knowledge are necessary

to reason about the quantities detected and recognized by the Vision module.

In this architecture, we need commonsense knowledge5 to answer questions per-

taining to: i) the probable actions that the detected objects are participating in;175

ii) the past and future actions that could be causally connected to such actions;

iii) ontological information about the detected scenes; iv) and lastly, a holistic

background (ontological, spatial, commonsense, etc.) knowledge pertaining to

every object of the scene in view.

Reasoning System: A logical reasoning system can represent the logical180

5The type of commonsense needed here is similar to Semantic Knowledge according to

definitions in Psychology. By definition, semantic Knowledge is “general knowledge about the

world, including concepts, facts and beliefs (e.g., that a lemon is normally yellow and sour or

that Paris is in France)” ([60]).
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knowledge using a set of rules and should be able to perform deductive, induc-

tive and abductive reasoning considering both probabilistic and hard beliefs.

Traditional formalisms such as Answer Set Programming are powerful represen-

tation languages; however the usage of hard rules and facts limits the usage in

many real-world applications. Probabilistic reasoning is necessary to deal with185

the uncertainty and incompleteness of the knowledge and the visual detections.

Hence, we can use a probabilistic adaptation of such logical systems in which

rules and facts are not constrained to be binary and which supports the agent’s

“incomplete” knowledge about the world. Further implementations of this ar-

chitecture might adopt languages such as Probabilistic Soft Logic ([61]), and190

Markov Logic Networks ([62]).

In many current end-to-end implementations (such as, captioning and VQA),

the visual detection module is modeled using a pre-trained Convolutional Neu-

ral Network, and the knowledge of words is encoded using Word Embeddings.

Understanding and reasoning of the language construct is modeled using a se-195

quential network, which is a variant of Recurrent Neural Networks. The in-

teraction between these modules is often modeled using attention mechanisms.

These models are then tuned in a combined fashion for specific applications.

However, current systems: i) do not explicitly model commonsense knowledge,

which is reflected in their performance on questions requiring commonsense; ii)200

do not model the knowledge needed to rectify detections in case of partially or

fully occluded objects (Figure 1(a)), which a↵ects both VQA and captioning

tasks; and iii) do not provide a way to identify the main cause in case of wrong

answers. In this work, we provide an implementation of a modular architec-

ture, that facilitates explainability and produces with reasonable accuracy an205

intermediate semantic structure of the scene.

4. Predicting Intermediate Scene Description Graphs

In this work, we develop an implementation of the above architecture to

predict Scene Description Graphs from static images. To map an image to
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a Scene Description Graph, we first robustly define the meaningful regions of210

images that capture relevant semantics. Let us assume that the fundamental

semantic components of an image (denoted as F) are the objects6 and their

observable attributes (location, shape, size, color, contour etc.), regions and their

observable attributes, and actions. To avoid further complexity, we consider only

those images, in which at least one fundamental semantic component (f 2 F)215

can be detected (by an ideal detector). In a scene, we group these components

further to form observable (that can be seen) and inferable components (that

can be understood).

Observed Scene Constituents (OSC) are descriptions of objects, actions

or regions (described in phrases or words) that can be directly grounded in the220

image7. In a phrase, individual words can identify an object, group of objects,

their observable attributes, regions or actions. For example: person wearing

shorts, person skateboarding, tall person, people playing etc. are all Observed

Scene Constituents.

Inferred Scene Constituents (ISC) are concepts (activities, context,225

higher-level events) that cannot be directly grounded in the image, but can be

inferred. For example, open space and bright day are ISCs.

Based on the above definitions, a Scene then represents one (or more) ac-

tions, involving (one or more) objects; and spatial relationships among objects

and regions. The action(s) together make up a natural event which can be de-230

scribed by sentence(s), such as: a person is lying on a bench, in a park ; a person

6Objects can consist of visible, partly visible or occluded objects. If the object person is

detected, occluded objects like organs in a body, can inferred to be present using commonsense

Knowledge Bases such as ConceptNet.
7To determine if a word or a phrase is a scene constituent or not, it will be helpful to ask

ourselves the question: “can we mark a region or set of regions in the image that represents

the meaning of this word or phrase completely?”. If we can and the word or phrase is not an

object, action or region; then the word or phrase is a scene constituent. Here, we can assume

that the bounding box for an action will be the union of the bounding boxes of its participant

objects.
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is being evicted ; a bank is being robbed.

We can also interpret the above definitions as mapping meaningful compo-

nents of images to meaningful components of text8. The fundamental compo-

nents (F) can be roughly mapped to words with the following parts-of-speech235

(POS) tags: concrete nouns (object and scene classes), a subset of verbs (ac-

tions), adjectives (object attributes), adverbs (action attributes) and preposi-

tions (relations) [20]. We can describe the Observed and the Inferred Scene

Consituents using phrases. We can then describe a natural image (representing

a combination of some the above components) using sentence (s).240

4.1. Visual Detection

We use deep object recognition, deep scene (category) recognition and deep

Observed Scene Constituent recognition as the components of the Visual De-

tection module (to primarily detect the semantic components).

Object Recognition: For deep object recognition, we use the trained245

bottom-up region proposals and convolutional neural networks (CNN) object

detection method from [63]. It considers 200 common object classes (denoted

as N ). and it is trained on the ILSVRC dataset.

Scene Recognition: For deep scene (category) recognition, we use the

trained CNN scene classification method from [64]. The classification model is250

trained on 205 scene categories (denoted as S).
Constituent Recognition: For deep observed scene constituent (OSC)

recognition, we augment the Flickr 8K image dataset with human annotations

of constituents using Amazon Mechanical Turks. We specifically ask the anno-

tators to annotate not only objects, but also what the objects are doing and255

8[24]’s work (and other Neural approaches) essentially uses the neural networks to learn

a similar mapping between any region of an image to meaningful chunks of text. But this

method does not utilize the richness of the structure of text and images, and the mapping is

also independent of commonsense knowledge (which should prevent an intelligent system to

learn wrong mappings in adverserial situations).
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about the properties of objects9. We allow the labelers to use free-form text

for describing constituents to reduce the annotation e↵ort. We obtain a stan-

dardized set of constituents by performing stop-words removal, parts-of-speech

processing to retain nouns, adjectives and verbs. We use the top 1000 most

frequent phrases (denoted as C). Some of the top phrases are dog run, dog260

play, kid play, person wear shorts etc. We post-process the annotations for each

training image in a similar manner, and consider the phrases as labels if they are

among the 1000 top constituents. For each image, we then use the pre-trained

CNN model from [6] to extract a 4096 dimensional feature vector (using [65]).

We then trained a multi-label SVM to recognize constituents using these deep265

features.

The output from the detection system consists of object (P
r

(n|x)), scene
(P

r

(s|x)) and constituent (P
r

(c|x)) detection scores for the top 5 objects, top 5

scene categories, and top 10 constituents; for each image x 2 I.

4.2. Constructing SDGs from Detections270

We first pre-process the annotations and information from the training im-

ages to capture the required commonsense knowledge, which we refer to as

“Knowledge Extraction and Storage”. Then we use a rule-based reasoning al-

gorithm to infer a knowledge structure.

4.2.1. Pre-processing Phase275

Inferred Scene Constituents often have correlations with scene categories

(such as audience in stadium). In this phase, we collect a mapping (S
M

) between

scene categories and ISCs; and learn a prior belief (P (isc|scene)) for each ISC

in a scene. For example, for the scene class airport terminal, we add {waiting
room, big glass view, travelers} as the list of probable ISCs; and learn the priors280

0.7, 0.7 and 0.9 respectively for ISCs.

We use scene category detection tuples, ([c
i

, P r(c
i

|x)]5
i=1) for training images

(x 2 I), which we denote as S
T

. For detections, we use the deep Scene (category)

9We make this dataset publicly available at http://bit.ly/1MMN1wZ.
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Recognition module to detect the top 5 scene categories from each training

image. We denote the human annotations for all training images as A
tr

.285

4.2.2. Knowledge Extraction and Storage

To capture the commonsense and probabilistic knowledge about the domain,

we created a Knowledge Base K
b

and a Bayesian Network B
n

using the

pre-processed data (hS
M

,S
T

,A
tr

i). To extract knowledge from the annotations,

we extensively use a semantic parser, called K-parser ([66]).290

Figure 3: An example sentence with Stanford Dependency relations and transformed

K-parser relations. Only important Stanford Dependencies and K-parser relations are

shown. K-parser also adds semantic roles and superclass information for the Entities

(not shown in the figure).

K-Parser: K-parser (kparser.org) is a semantic parser that extracts an

Entity-Event based representation from a sentence, adding additional semantic

knowledge. For a sentence such as “A boy wearing swimming trunks jumps over

some sprinkler water in a backyard”, the K-parser extracts the Events (actions

and linking verbs) wear, jump, and their participant Entities (concrete nouns)295

boy and trunks, boy and water respectively as a set of Entity and Event-

nodes connected by meaningful relations (see Figure 3). It also extracts Traits

(attributes) swimming, sprinkler corresponding to the entities. Internally, K-

parser uses the Stanford Parser [67] to get the syntactic dependency graph from

a sentence. The K-parser then uses a rule-based mapping algorithm to map300

these dependency relations to the set of KM-Relations ([3]) and some newly

created ones (see http://bit.ly/1Wd8nGa). Some relevant properties of

the final semantic representation are: i) it is an acyclic graphical representation

of English text, ii) it follows a rich ontology ([3]) to represent semantic relations

13



(Event-Event relations such as causes, caused by, Event-Entity relations305

such as agent, and Entity-Entity relations such as related to); iii) it has

two levels of conceptual class information for words; iv) it accumulates semantic

roles of Entities based on PropBank framesets; and v) it has other features

such as Co-reference resolution, Word Sense Disambiguation and Named Entity

Tagging 10.310

Knowledge Base: The knowledge-base is mainly a knowledge-graph (G),
which is a collection of word1-relation-word2 triplets, where word1 and

word2 can be Event (actions, linking-verbs present in A
tr

), Entity (from N )

or a Trait (adjectives, qualitative-nouns from A
tr

or WordNet-superclass of a

word). The relation comes from a closed set of semantic relations from315

KM-Ontology11. The graph contains the knowledge of i) all possible Entities

(concrete nouns) participating in Events (actions and linking verbs), and ii)

possible traits (properties, such as color, semantic role-labels) that the Entities

have. Figure 4 depicts a snapshot of G.

Figure 4: Knowledge Base Creation using A Semantic Parser.

As shown in Figure 4, we use K-parser for knowledge extraction from each320

sentence of the Image Annotations. We first reconcile the Entities in the

K-parser output graph with corresponding nouns in N , using WordNet sim-

10For more details, please see [66].
11agent, recipient, location, origin, object, destination,

semantic role, superclass are some of the important relations in context of this

work. Extensive list can be found in kparser.org.
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ilarities. Then, the graphs are merged based on overlapping Events. En-

tities connected by agent, recipient, object, location, origin,

and destination relations to an Event, are retained. Causal connections be-325

tween Events are also retained. All Traits connected to the Entities are retained

as well. The merged knowledge-graph is stored as G. We store the unique se-

mantic parses of captions in C to provide contextual knowledge such as (x-r-y)

occurs along-with (y-superclass-z) in some context C 2 C. We formally

represent our Knowledge Base as K
b

= hG, Ci.330

The Bayesian Network (B
n

): Objects and scene constituents often co-

occur in a scene. Authors in [68] use such co-occurrence to classify scenes. In

this work, we capture the knowledge of naturally co-occurring objects (N ), their

siblings from WordNet (N
S

) and ISCs (C
Is

), by learning a Bayesian Network

that represents the dependencies among them. We create the training data D335

which is a collection of tuples T (where T = [t
i

]N
i=1 and N = |N |+ |N

S

|+ |C
Is

|).
Each term t

i

is binary and is set to 1 if the i

th object (or ISC) occurs in the

tuple. We use the Tabu Search algorithm to learn the structure and then we

populate the Conditional Probability Tables using the R-bnlearn package ([69]).

To create D, we process the annotations for each training image (A
tr

) to340

automatically detect Entities and ISCs. We parse the sentences using K-parser

and extract Entities. We match these Entities with objects in (N [N
S

) based

on base-forms and synonyms of the words. Some of the ISCs are detected

using rule-based techniques, for e.g., we detect the edges edge(wear, agent,

person) and edge(wear, recipient, shorts) in the K-parser semantic345

graph for ISC “people wearing shorts”. To detect ISCs seldom mentioned in

annotations, we detect the top scene class and we look-up all ISCs of the scene

category.

4.2.3. Inference through Knowledge and Reasoning

Prior to Neural approaches to image captioning, researchers from the Vision350

and Language community used keyword-based image annotations to predict the

subjects, objects and scenes from images, and they predicted correlated verbs
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or prepositions using learned language models ([47]). Inspired by these ap-

proaches, we use the commonsense knowledge hK
b

,B
n

,S
M

i and the detections

hP
r

(n|x), P
r

(s|x), P
r

(c|x)i for an image (x 2 I) to construct the di↵erent com-355

ponents of the SDG (a labeled graph) in the following way. We use Entities

to denote objects, and Events to denote actions (and linking verbs). All the

notations and terms used in this paper are summarized in Figure 5.

Figure 5: Summary of notations used in the paper. The second column shows the

terminology popularly used in Computer Vision and the third column shows the terms

introduced in this work (some of which are adopted from [66]).

I. Additional Entities and Events (from OSCs): We extract Entities

(nouns) and Events (verbs) from the top 10 constituents (based on P

r

(c|x)) and360

add to the set of detections. For example, from the constituent person wearing

sweatshirt we get an Event wear with two Entities person and sweatshirt.

II. Inferred Scene Constituents: We look-up the ISCs for the top 5

detected scenes (based on P

r

(s|x)) from S
M

, and call that collection Ĉ. Initially,

C

inf

= �, and O
x

= {n|P
r

(n|x) > ↵

h

}. We calculate

C

max

= argmax
c2Ĉ

P (s|C
inf

,O
x

) (1)

and add C

max

to C

inf

. We iterate while the entropy E keeps decreasing (or
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while number-of-iterations is less than T

12). The entropy is calculated as:

E =
X

c2Ĉ

{�P (c|C
inf

,O
x

) ⇤ logP (c|C
inf

,O
x

)} (2)

The conditional probabilities are calculated using B
n

.365

III. Noisy Objects: Next, we rectify the low-scoring Entities based on O
x

and C

inf

. For each low-scoring Entity, we get all its siblings, i.e., we get all

the children of its hypernyms from WordNet. For example, if bathing cap is

assigned a low score, the assigned superclass is cap and its children are baseball

cap, ski cap etc. We calculate the following

o

max

= argmax
o2siblings

P (o|C
inf

,O
x

) (3)

and then add o

max

to the high-scoring Entities list (O
x

).

IV. Inferring Events: Given the Entities (O
x

), we first find connecting

Events between each pair of Entities. To logically find a co-occurring Event

for a pair of Entities (e1, e2 2 O
x

), we consider the Event-nodes on the shortest

path from one Entity to another in the graph G. For example, consider the370

Entities person and swimming trunks (corresponds to the vertex trunk in K
b

).

We get Events such as sni↵, climb, wear etc., i.e., some corresponding to tree-

trunk and others to swimming-trunks. We denote the set of connected Entities

by O
ev

and set of Events by E
v

.

For filtering spurious Events, we use the semantics in K-parser edge la-375

bels and the superclass (type) of the Entities from K
b

. We retain Events

only if they are connected to the Entities using compatible edge-pairs in G.
Compatible edge-pairs are: (agent-recipient), (agent-location),

(agent-object). For example, (agent, recipient) is a compatible pair

and only an animate Entity can be an agent. Thus, the Event wear is retained380

with respect to Entities person and trunk. To filter Events such as climb, we use

12The hyper-parameters (T,↵
h

) are set based on performance on validation data. In our

experiments, we have used the values 5, 0.5 respectively.
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the superclasses of the Entities and the set of Scenes C. We retain only those

Events that are connected to Entities from the same pair of classes as e1, e2, in

at least one scene in C.
V. Inferring Scenes: Given the filtered Events and Entities (O

ev

), we385

consider a Scene in C as candidate if all edges from a detected valid Event, are

present in it. Next, we weight each candidate Scene (C
cand

) using the remaining

Entities in (O
x

\ O
ev

) and ISCs (C
inf

); i.e., increase a counter if an Entity

or ISC occurs in the graph (C
cand

). We also calculate a joint confidence-score

for each scene based on the P

r

(n|x), P
r

(s|x), P
r

(c|x) values of the object, scene390

category and constituents (OSC) present in the Scene. Based on the counters

and the joint confidence-score, we rank the Scenes.

VI. SDG Construction: If we do not find a suitable Scene in C, we con-

struct an SDG using the following rules: i) add edge(SCENE, component,

s) for all ISC s in C

inf

; ii) add edge(event, location, SCENE) for the395

top detected Events; iii) add all compatible edges related to the Events in E
v

such

as edge(wear,agent,person) and edge(wear,recipient,trunk); and

iv) for all Entities o
im

in (O
x

\O
ev

): if it is an animate Entity, add edge(o
im

,

location, SCENE); Otherwise, find the shortest path from o

im

to the top

detected Event in the K
b

and add the edges on the path to the SDG.400

5. Experiments and Results

The above approach presents two hypotheses that require empirical eval-

uation: i) SDGs carry detailed information about images (thoroughness); ii)

SDGs carry relevant semantic information about the salient aspects of the im-

age (relevance). Collecting groundtruth Scene Description Graphs are di�-405

cult, time-consuming, and expensive. Lastly, guaranteeing the reliability of the

crowdsourcing of such complex annotations is also di�cult. Instead, here we

first generate captions from these SDGs and use two end-to-end tasks (Image

Retrieval and Caption Generation) to support the hypotheses presented in this

paper. We use the Image Retrieval task that directly use the generated SDGs410
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from images and semantic parses from text (used as query). This task tests

the discriminative (image-specific) information encoded by the generated SDGs.

Caption generation is a task of generating relevant descriptive sentence(s) from

an image; relevance and thoroughness being the two distinct criteria, with which

the quality of captions can be judged. Hence, we use this task to test the rele-415

vance and thorughness of the generated SDGs.

We adopted two experiments to evaluate the generated SDGs: i) qualitative

evaluation of generated sentences and ii) image-sentence alignment evaluation.

We compare our results with [24] as it was one of the recent (and among the first)

neural approaches that produced best results over all the previous works. We420

also compare our results with another more recent Neural Captioning method by

Vinyals et. al. [38] (appeared in IEEE TPAMI 2016) which reported improved

quality of captions in comparison to [24]. This method uses the latest Inception-

V3 architecture to process images and an Long-Short Term Memory (LSTM)

model to generate captions. We first describe the testbed and the procedure for425

generating captions from the competing methods.

Testbed: In this paper, we use three image data sets, popularly referred to

as Flickr 8k, Flickr 30k and MS-COCO datasets [41]. These three datasets have

8092, 31783 and more than 160K images respectively. Every image from these

datasets is annotated with 5 sentences describing the image. For all datasets,430

we used the train-test splits from [24] and the 4000 testing images (1000 each

from Flickr 8k and Flickr 30k and 2000 from MS-COCO validation set) serve

as the testing bed for our experiments.

Generating Captions: For our system, we generate sentences from SDGs

using SimpleNLG ([70]). For example, for the edges edge(wear, agent,435

person) and edge(wear, recipient, shorts), we will generate “a per-

son is wearing shorts”. Based on the edge-labels (labels from KM-ontology)

we populate the verb, subject, object, prepositions and adjectives (including

quantitative13) of sentences using simple rules. The other rules used are: i)

13For high-scoring detections, we consider the spatial information from the bounding-boxes.
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edge( ,location,A) is mapped to “in the A”, ii) edge( ,origin,B) is440

mapped to “from the B”; and iii) all edges of the form edge(SCENE,component,B)

is converted to a sentence based on the template “the scene contains B and ...”.

For BRNN [24], we use the implementation provided by the authors to train

and generate sentences from an image. To generate captions using [38], we use

the code provided by the authors14. We initialize the network with the provided445

pre-trained Inception-V3 checkpoint, and train the model for 2-million steps.

Amazon Mechanical Turk (AMT) Evaluation of Generated Sen-

tences: Since image description generation is innately a creative process, a

metric is created by asking humans to evaluate these sentences. The evaluation

metrics: Relevance and Thoroughness, are therefore, proposed as empirical mea-450

sures. Relevance measures how much the description conveys the image content

and Thoroughness quantifies how much of the image content is conveyed by the

description. We engaged the services of AMT to judge the generated descrip-

tions based on a discrete scale ranging from 1–5 (low relevance/thoroughness to

high relevance/thoroughness)15. The average of the scores and their deviation455

are summarized in Table 1. For comparison, we asked the AMTs to also judge

one gold-standard description and the output from [24].

A Supplementary AMT study: It is often considered a good practice to

perform multiple independent AMT studies. In Table 2, we provide the results

of an independent AMT evaluation (using similar instructions as above). For460

this study we compare the sentences generated by our method, a ground-truth

sentence, the output from [24] and [38]. As previously stated, we use the 2000

For N such detections of an object obj, we generate sentences like N obj’s are in the scene.
14https://github.com/tensorflow/models/tree/master/im2txt
15We provide the following instructions to the Turkers. Relevance: the description has

no relevance (1)/ only weak relevance (2)/ some relevance (3)/ relates closely (4)/ relates

perfectly (5) to the image. Thoroughness: the description covers nothing (1)/ covers minor

aspects (2)/ covers some aspects (3)/ covers many aspects (4)/ covers almost every aspect (5)

of the image.

The human evaluations dataset is available in http://bit.ly/1MMN1wZ.
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Experiment [24] BRNN Our Method Gold Standard

R ± D(8k) 2.08 ± 1.35 2.82 ± 1.56 4.69 ± 0.78

T ± D(8k) 2.24 ± 1.33 2.62 ± 1.42 4.32 ± 0.99

R ± D(30k) 1.93 ± 1.32 2.43 ± 1.42 4.78 ± 0.61

T ± D(30k) 2.17 ± 1.34 2.49 ± 1.42 4.52 ± 0.93

R±D(COCO) 2.69 ± 1.49 2.14 ± 1.29 4.71 ± 0.67

T±D(COCO) 2.55 ± 1.41 2.06 ± 1.24 4.37 ± 0.92

Table 1: Sentence generation relevance (R) and thoroughness (T) human evaluation

results with gold standard and [24] on Flickr 8k, 30k test images and COCO validation

images. D: Standard Deviation.

MS-COCO validation images to report the results.

Experiment [38] ShowAndTell [24] BRNN Our Method Gold Standard

R±D(COCO) 3.59 ± 1.36 3.2 ± 1.3 3.11 ± 1.39 3.9 ± 1.16

T±D(COCO) 3.16 ± 1.46 3 ± 1.46 2.64 ± 1.39 3.9 ± 1.37

Table 2: Sentence generation relevance (R) and thoroughness (T) human evaluation

results with gold standard, [24] and [38] on COCO validation images. D: Standard

Deviation.

The work in [38] is one of the latest proposed methods using a state-of-

the-art variant of CNN-RNN architecture for Image Captioning. Though the465

generated sentences from the Neural approaches have a higher score, this study

shows that our method performs reaosnably well, even though it is not tuned

for a specific dataset. We also show some qualitative examples on MS-COCO

by the three competing systems in Fig. 6.

Automatic Caption Evaluation Results: In this section, we supplement470

our experiments with evaluation results using BLEU ([71]) and Meteor ([72])

scores. The BLEU scores are calculated using the original PERL script16 pro-

vided for statistical machine translation tasks. The Meteor scores are calculated

using the instructions provided by the authors in [72]17. We provide detailed

insights about Table 1, 2 and 3 in the Analysis section.475

Image-Sentence Alignment Evaluation: We evaluate the image-sentence

16BLEU Evaluation Perl Script.
17Meteor 1.5.
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(a) (b)

(c) (d)

(e) (f)

Figure 6: We provide some comparative captions generated by our system (in yel-

low box), by BRNN [24] (top blue box), by ShowAndTell [38] (in pink box). The

groundtruth captions are given in lower green boxes. Interesting human annotations

(partially or fully incorrect) are marked using question or cross mark.

22



Flickr-8k Flickr-30k COCO-2014

Experiment B-1 B-2 B-3 B-4 B-1 B-2 B-3 B-4 B-1 B-2 B-3 B-4 M

[38] ShowAndTell 63 41 27 66.3 42.3 27.7 18.3 66.6 46.1 32.9 24.6

[24] BRNN 57.5 38.3 24.5 16.0 57.3 36.9 24.0 15.7 62.5 45.0 32.1 23.0 19.5

Our Method 30.0 12.6 9.5 5.0 25.9 12.5 10.0 4.0 22.3 13.4 11.0 5.0 10.0

Table 3: Sentence generation BLEU, Meteor Scores in comparison with some of the

Existing Neural Architectures [24] and [38] on Flickr-8k (test), Flickr30k (test) and

MS-COCO validation images. B-n denotes BLEU scores that uses upto n-grams.

Meteor scores are only reported for MS-COCO as followed by other works. The scores

for Neural captioning systems are as reported in [24].

alignment quality using ranking experiments. We withhold the testing images

and use the generated sentences as queries. We process the textual query and

construct G
q

= (V
q

, E

q

) using K-parser. For each image, we take the generated

SDG G
x

= (V
i

, E

i

) and calculate similarity between the SDG and the query

using the formula:

Sim(G
q

,G
x

) =
⇣ X

vq2Vq

max
vi2Vi

sim(v
q

, v

i

)
⌘
/|V

q

|

sim(v
q

, v

i

) = 0.5 ⇤
⇣
wnsim(label(v

q

), label(v
i

))

+ Jaccard(neighbors(v
q

), neighbors(v
i

))
⌘
.

Vertex-similarity is calculated based on word-meaning similarity and neigh-

bor similarity. Here wnsim(., .) is Lin Similarity [73] between two words and

Jaccard(., .) is the standard Jaccard coe�cient similarity. Based on the above

measure, we provide the image retrieval results compared with results from [24]480

in Table 4. Additionally, we provide the results of the Show-and-Tell method[38]

for Flickr8k and Flickr30k, as provided by the authors. Interestingly, our results

for image search is better compared to this recent work for Flickr30k dataset.

5.1. Analysis

In this Section, we analyze several aspects of the conducted experiments,485

and the results, and present more insights on the added aspect of external

commonsense knowledge and interpretability.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7: The SDGs in (b), (d), (f) and (h) corresponds to images (a), (c), (e) and

(g) respectively. More examples are at http://bit.ly/1NJycKO.
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Flickr8k

Model R@1 R@5 R@10 Med r

[24] BRNN 11.8 32.1 44.7 12.4

[38] ShowAndTell 19 64 5.0

Our Method-SDG 18.1 39.0 50.0 10.5

Flickr30k

[24] BRNN 15.2 37.7 50.5 9.2

[38] ShowAndTell 17 57 7.0

Our Method-SDG 26.5 48.7 59.4 6.0

MS-COCO

[24] BRNN (1k) 20.9 52.8 69.2 4.0

Our Method-SDG (1k) 19.3 35.5 49.0 11.0

Our Method-SDG (2k) 15.4 32.5 42.2 17.0

Table 4: Image-Search Results: We report the recall@K (for K = 1, 5 and 10) and

Med r (Median Rank) metric for Flickr8k, 30k and COCO datasets. For COCO, we

experimented on first 1000 (1k) and random 2000 (2k) validation images.

Comparable Systems: There are other works in Image Retrieval ([74])

and Caption Generation ([75]) that achieve better results than shown in Table

1 and 2. However, the motivation behind our work was to propose a meaningful490

representation that provides a seamless interface between image and text and,

a framework that uses a combination of vision and reasoning to construct such

structures. We believe that from a motivational standpoint, our work is not

directly comparable with such systems. Authors in [52] propose a semantic

scene graph generation from images. However, to apply symbol-level reasoning495

on semantic structures, it is important that the relations come from a well-

defined closed set of meaningful labels, whereas the relations used in [52] are

open-ended text. To that end, other related works [76, 37, 77] have proposed a

bounded set of spatial relations between detected objects and regions (grounded

in the image) to represent a scene. However, we compare our results with two500

popular recent neural captioning approaches [24] and [38].

Human AMT and Automatic Caption Evaluation Results: In Tables

1 and 2, we present the human evaluation results of the generated captions from

our system and two competing systems. We have conducted these studies using

Amazon Mechanical Turker as it is a well-accepted crowdsourcing platform in505

the community, and studies [78] show that this platform is less noisy, error-prone
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and biased than other methods. However, the means for all the systems are

higher in Table 2 compared to Table 1. This is expected as, human evaluations

are inherently subjective, which can cause exact values from di↵erent studies to

di↵er. We note that the two independent studies are consistent in the relative510

ranking (with [24] ranking above ours). In Table 3, we present the automatic

evaluation results using BLEU and Meteor scores. According to the results,

our method fares worse in comparison to the other systems. Looking closely,

for the image in Figure 6(a), our generated sentence is scored 11.5, 0.0, 0.0, 0.0

using BLEU-1 to 4 metric; while a less informative sentence from the Neural515

architecture (BRNN) is scored 40.0, 0.0, 0.0, 0.0. In an even worse comparison,

for the image in 6(d), both generated sentences are correct in meaning. Yet,

the sentence from BRNN is rated 90.0, 83.7, 80.7, 78.3, while the caption from

our system is rated 20.0, 0.0.0.0, 0.0. Additionally for Figure 6(d), there is no

evidence that the person in the image is a man or a woman. In that sense, the520

BLEU metric overestimates the correctness of the caption from BRNN. In sum-

mary, the larger scores are expected as the Neural Captioning systems learn the

language construct and the image to language mapping from training captions.

As the train, test and validation data come from the same distribution, the vo-

cabulary and the language construct for the test images tend to be similar. In525

comparison, in our system the sentences are generated using few fixed templates

and the vocabulary is not restricted to the words in the training captions, and

more importantly the sentences are not directly optimized to be syntactically

similar to the training captions. For example, in many cases we use a collection

of short sentences to convey similar information; and many sentences begin with530

the scene contains. As the automatic metrics solely rely on the vocabulary and

language construct of the ground-truth captions, these metrics heavily penalize

these template-based sentences. This noisiness is well-known in the commu-

nity18 and more automatic caption evaluation metrics are proposed. However,

18The work in [79] shows the di↵erent automatic image captioning metrics have very little

correlation with human judgment. Notably, this work uses our Composite dataset (captions
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the task of captioning an image is a subjective task. Clearly, lower scores from535

automatic metrics that directly compare with ground-truth captions do not re-

flect that the performing system is worse, as the generated caption can match

some other caption written by a di↵erent Turker than the Turkers who anno-

tated the image. This is why we perform human evaluations of thoroughness

and relevance of the captions. It allows us to test how correctly and thoroughly540

the generated captions describe an image. As also discussed in a recent survey

[40], human evaluation measures like the one adopted in our methodology, have

many advantages, and prior to Neural approaches the majority of captioning

systems adopted such measures (cf. Table 3 of [40]).

Impact of Knowledge Base and Bayes Net: The Knowledge-Base and545

the Bayes Net encode important background knowledge which enrich the SDGs

and rectify noisy information from visual detection modules. The C (in K
b

) and

Bayes Net encodes contextual knowledge, i.e. which type of entities and events,

or entities and ISCs co-occur in common contexts. In Figure 6, the information

in sentences “the scene contains ...” are obtained from the Bayes Net.550

Additionally, the Knowledge base encodes events or actions that occur in context

of entities, for example all verbs in Figure 6 is inferred by the Knowledge Base

based on the detected entities.

Interpretability: One of the major disadvantages of many end-to-end

learning approaches (especially, the current neural network based approaches)555

is the lack of model interpretability or explicit explanations. This is one of the

fundamental motivations behind our proposed intermediate knowledge struc-

ture and our architecture. Referring to Figure 7(g), the initial top object

and scene detections are: {person, backpack, artichoke, hat with a wide brim};
{wheat field, cemetery, fountain, corn field} etc. The constituent detections560

are: {person sitting on stone, person wearing red shoes, person wearing gloves}.
An SDG combined with our architecture can facilitate explainability in the fol-

lowing ways: i) why the SDG in 7(g) contains person and backpack? They are

from SDG, [24] and AMT scores) to show the above result.
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detected by object classifiers with high probability; ii) why the SDG in 7(g)

contains erected stone? Because scene categories such as cemetery co-occurs565

with erected stone (knowledge from S
M

); iii) why the SDG in 7(g) has verb

carry, wear? Because it co-occurs with the entities (person, backpack) (knowl-

edge from K
b

). In short, explanations for the components in the SDG in 7(g)

can be tracked back to one of the knowledge sources in (hK
b

,B
n

,S
M

i) or the

Visual Detection Module.570

5.2. Question-Answering (QA) Case Studies

Using SDGs to answer a question requires development of sophisticated

probabilistic logical mechanism (or neural reasoning mechanisms) that can sift

through the noise in the generated SDG, understand the natural language ques-

tion and give an answer. Such mechanisms require further research and devel-575

opment. Instead, in this section, we motivate the use of SDGs by providing a

few examples of a Question-Answering system (with a simple reasoning module)

that can be built based on the generated Scene Description Graphs.

For the image in Figure 8(a), the Scene Description Graph is represented as

a set of has-tuples. Relying on the advantage of using meaningful relations from580

KM-ontology, we can use these as inputs to an Answer Set Program ([80]). If

we pose the question that “Is someone drinking from the fountain?” in ASP (as

shown in the figure), we can execute the program in Clingo-3 and we get the

answer as yes fountain(person1).

For the second image in Figure 8(b), we pose the question “is someone585

playing tennis”. In this case, we need additional background knowledge such

as “if someone is holding or swinging a tennis racket, then the game might be

tennis” to detect the game of tennis. Again, the question is posed in ASP, using

the generated SDG, we obtain the boolean value of tennis detector as True.

Though the above question is written in ASP without any probabilistic weight,590

one can rewrite the rules in Probabilistic Soft Logic ([81]) assigning a weight to

the rule for “tennis detector”. One can then use the semantic similarity between

“racket” and “tennis” from knowledge sources such as ConceptNet, word2vec
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Figure 8: Two example Images from Flickr 8k. Note that for both the images, the

state-of-the-art detections are quite noisy. Still, the current framework is able to detect

plausible structured graphs which can be queried upon.

to design the weights of the rules (as in [82]).

6. Conclusions595

Our work introduces a new semantic representation for Scene Analysis called

the Scene Description Graph (SDG), and an architecture that combines deep

Visual Detection and Reasoning modules to infer such structures. The SDG is

a representation of the scene, which integrates direct visual knowledge (objects

and their locations in the scene) and additional knowledge obtained using back-600

ground common sense knowledge. In addition, the SDG has a structure similar

to semantic representations of sentences, thus facilitating the interaction be-

tween Vision and Natural Language. Having built a common-sense knowledge

base related to the domain, we proposed a method of obtaining SDGs from noisy

labels using our reasoning module. Recovering the SDG of a scene not only al-605

lows the automatic creation of sentences describing the scene, but when used
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together with background knowledge, it also has potential usages in reasoning

and question-answering about the scene.

We present an implementation of the proposed architecture and demonstrate

the e↵ectiveness of the generated SDGs using Image Captioning and Image Re-610

trieval tasks. Our experiments based on the metrics of thoroughness and rel-

evance, show that the information content in the generated sentences is quiet

thorough and relevant; however, the generated sentences are not always as infor-

mative as those from existing neural approaches. We also discuss how SDGs can

be used to answer questions. Furthermore, we show how the proposed frame-615

work can be used to explain the results and analyze the sources of the errors

(visual detection, knowledge base or reasoning).
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