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Abstract

Modeling molecular interactions in biological networks is important from various perspectives such
as predicting side effects of drugs, explaining unusual cellular behavior and drug and therapy design. Var-
ious formal languages have been proposed for representing and reasoning about molecular interactions.
The interactions are modeled as triggered events in most of the approaches. The triggering of events
is assumed to be immediate: once an interaction is triggered, it should occur immediately. Although
working well for engineering systems, this assumption poses a serious problem in modeling biological
systems. Our knowledge about biological systems is inherently incomplete, thus molecular interactions
are constantly elaborated and refined at different granularity of abstraction. The model of immediate
triggers can not consistently deal with this refinement. In this paper we propose an action language
to address this problem. We show that the language allows for refinements of biological knowledge,
although at a higher cost in terms of complexity.

1 Introduction

The living cell constantly receives and responds to signals from its environment. A signal is initiated when
some extracellular molecules are sensed by their respective cell-surface receptor. Signaling molecules in-
side the cell then interact with one another to transduce the signal into cellular responses that regulate the
introduction of different proteins, thus controlling various functions of the cell. Specific collections of inter-
actions with a common theme are often referred to as biological signaling networks. Almost any disease can
be described in terms of aberrations in these signaling networks. For example, most cancers are caused by
a breakdown in networks regulating cell growth. Modeling biological networks is thus essential for build-
ing hypotheses about functions of the cell. After experimental verifications, these hypotheses become new
knowledge that can lead to effective therapeutic strategies that correct or alter abnormal cell behaviors.

In the past action languages have been developed and applied to domains such as robots [16, 29, 37, 33,
5], agents [21], helicopters [9], and space shuttles [2, 3, 23]. Recently, an extension of action language A
with triggered actions - the language A0

T - was proposed by [38, 4] to model cellular interactions. In A0
T ,

an action theory of the cell specifies effects of actions and how actions are triggered or inhibited. Such a
specification dictates how the cell evolves (i.e. changes through time). An evolution of the cell starts from
a state which triggers certain actions. These actions change the state, which may trigger further actions
and so on. Reasoning abilities in A0

T include (i) predicting the impact of a particular action, (ii) explaining
observations, (iii) planning to make certain components of the cell behave in a particular way. Each of the
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above has ultimate significance to cell biology and medical science. For example, one might want to know
if taking a drug has a side effect in terms of if it can prevent a particular hormone from being produced thus
disrupting certain cellular and biological mechanisms. This corresponds to prediction. Another example is
that when a cell is observed to behave in an abnormal way (eg. it keeps proliferating instead of dying), one
may want to find out why that is the case. This corresponds to explanation or medical diagnosis. One might
then want to figure out a way, perhaps by introducing particular drug elements to the cell or cell membrane
at particular time instances, to make the cell behave in a particular way. This would correspond to drug
design and drug therapy.

In this paper, we address an important limitation of the model of triggered actions in A0
T . Triggered

actions in A0
T are assumed to occur immediately as soon as they are enabled. This modeling assumption

works well in artificial engineering systems such as robots or automatic controllers. It is also reasonable,
since we usually possess the complete knowledge about artificial systems. However, knowledge about
biological systems such as the cell is inherently incomplete. We often need to model biological triggers at
different granularity of time and abstraction. Finer granularity usually arises when more detailed knowledge
becomes available. For example, a biological action or trigger would be shown to consist of other actions and
triggers as sub-components. These new sub-components would change the order of events. An alternative
ordering of events would result in a different final outcome, thus leading to contradictions to a previously
formed conclusion. An action language for biological domains should allow for this type of knowledge
refinement without compromising the consistency of knowledge bases. This limitation ofA0

T is also inherent
in related models of biological networks [27, 24, 28, 13, 19, 35, 8, 14, 7, 11, 30] as well as in related action
formalisms of triggers [31, 26, 34, 20, 25, 30, 18, 14, 17, 37].

The paper is organized as follows. In Section 2 we give a brief overview of the action languageA0
T then

motivate the our language with an abstract example. In Section 3, we present the syntax and semantics of
the new language A∞T . We study monotic refinements of rules and the complexity of the language A∞T in
Section 4 and 5, respectively. The Appendix includes technical background on complexity theory (for the
analysis of the complexity of A∞T ) and the linear temporal logic (for representing queries in A∞T ).

2 Background and Motivating Example

In dynamic domains, reasoning about actions and changes is of imperative importance [22]. The objective
of action languages is to provide succinct and elaboration tolerant representation of an agent acting in a
dynamic world. Research issues in the field of reasoning about actions include:

• developing languages that allow for (a) succinct representation of the world, (b) succinct representa-
tion of causal relations between properties of the world, (c) succinct representation of the impact of
actions (and their executability) on the world, (d) succinct representation of the way the world evolves,
or the way we want the world to evolve, and (e) representation of action-plans; and

• reasoning algorithms that can answer a query expressed using (d) and (e) with respect to an action
theory composed of (a), (b) and (c).

Different kinds of queries mentioned above lead to different kinds of reasoning. For example, given a
sequence of actions a1, . . . , an and a property p, asking if p will be true during (or after) the execution of
a1, . . . , an is referred to as prediction. Now if p is given, then finding the appropriate a1, . . . , an so that p is
achieved is called planning. Finally, if a set of observations is given and one needs to find particular action
occurrences and/or facts about intermediate states of the world that explain the observations, then one does
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explanation or diagnosis. All the above kinds of reasoning may have to be done with partial or incomplete
knowledge about the world.

The action language A [12] was developed to be a high-level language for reasoning about actions and
their effects without involving details of any particular logic. Due to the simplicity and intuitiveness of A,
it has been used as the basis of the languageA0

T for triggered actions. Understanding this basis is important
for further discussion, so we will now briefly review the language A.

2.1 Action language A
An action theory in A [12] is defined over two disjoint sets, a set of actions A and a set of fluents F.

A fluent literal is a fluent (eg. f ) or the negation of a fluent (eg. ¬f ). A set of fluent literals is said to be
consistent if it does not contain both f and ¬f for some fluent f . An interpretation I of the fluents in D is
a maximal consistent set of fluent literals of D. A fluent f is said to be true (resp. false) in I if f ∈ I (resp.
¬f ∈ I). The truth value of a fluent formula in I is defined recursively over the propositional connectives
in the usual way. For example, f ∧ g is true in I if f is true in I and g is true in I . We say that a formula ϕ
holds in I (or I satisfies ϕ), denoted by I |= ϕ, if ϕ is true in I . A state is an interpretation of fluents.

A domain description is a set of statements of the form:

a causes f if f1, . . . , fn (1)

When n = 0, the above statement is simply written as a causes f .
Observations are statements about the initial state, which are of the form:

initially f

A set of observations O is said to be complete if for any fluent f , either initially f ∈ O or initially ¬f ∈ O.
Queries in A are statements of the form:

Q = f after a1, . . . , an (2)

where f is a fluent literal, and a1, . . . , an are actions. Intuitively, this statement queries whether f is true
after the sequence of actions a1, . . . , an.

A state transition is a change of one state to another state due to effects of some actions. The effect of
an action a in a state s is the set

E(a, s) = { f | a causes f if f1, . . . fn ∈ D and {f1, . . . , fn} ⊆ s }. (3)

Let ¬¬g = g and ¬E(a, s) = {¬g|g ∈ E(a, s)}. State transitions are computed by the transition function
defined as follows.

Definition 2.1. A transition function of a domain D is a function Φ from pairs of actions and states into
states such that:

• if E(a, s) is consistent, then

Φ(a, s) = (s \ ¬E(a, s)) ∪ E(a, s) ;

• otherwise Φ(a, s) is undefined.

An action theory is a pair (D,O), where D is a domain description and O is a set of observations. A
state s0 is an initial state corresponding to an action theory (D, O) if for every fluent literal g, g ∈ s0 iff
initially g ∈ O. We then say that 〈s0, Φ〉 is a model of (D, O).

An action theory (D,O) entails a query Q of the form (2), if for all models 〈s0,Φ〉 of (D,O), f holds
in the state Φ(an, Φ(an−1, . . .Φ(a1, s0) . . .). The entailment is denoted (D, O) |= Q.
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2.2 Language A0
T for triggered actions

The action language A0
T extends A with statements representing triggered actions. A domain description D

in A0
T is a set of statements of the form (1) and of the following forms:

g1, . . . , gm triggers b (4)

h1, . . . , hl inhibits c (5)

where gj , hk are fluent literals and b, c are individual actions. (4) is called a trigger rule (or simply trigger),
which says that action b is to occur if it is not inhibited and if all the literals g1, . . . , gm hold. (5) is an
inhibition rule, which says that action c can not happen if all the literals h1, . . . , hl hold.

An action a is said to be triggered by a state s, if there exists a trigger rule (4) such that all the literals
g1, . . . , gm are true in s. An action a is said to be inhibited by a state s, if there exists a inhibition rule (5)
such that all the literals h1, . . . , hl are true in s.

Since a state can trigger multiple actions, state transitions in A0
T are extended to pairs of sets of actions

and states. The direct effect of a set A of actions in a state s is the set

E(A, s) =
⋃

a∈A

E(a, s).

where E(a, s) is defined by (3). Let us denote ¬E(A, s) = {¬f | f ∈ E(A, s)}. The state Φ(A, s) resulting
from the occurrence of A in s is defined as follows.

• Φ(∅, s) = s;

• if A 6= ∅ and E(A, s) is consistent, then

Φ(A, s) = (s \ ¬E(A, s)) ∪ E(A, s) ;

• otherwise Φ(A, s) is undefined.

A transition sequence τ is a sequence of the form τ = 〈s0, A0, s1, A1, . . .〉; where si’s are states and Aj’s
are sets of actions in D, such that si+1 = Φ(Ai, si) for all i, and Aj = ∅ for all j > k if Ak = ∅.

A trajectory is a transition sequence τ = 〈s0, A0, s1, A1, . . .〉 where Ai is a the set of all actions that are
triggered but not inhibited by the state si (for all i ≥ 0). Observations are statements of the form “ f at i ” or
of the form “ a occurs at j ”, where i and j are non-negative integers. The former statement means that the
fluent literal f is observed to be true at time i. The latter means that the action a is observed to occur at time
j. A trajectory τ = 〈s0, A0, s1, A1, . . .〉 satisfies “ f at i ” iff f ∈ si. Also, τ satisfies “ a occurs at j ” iff
a ∈ Aj .

A query in A0
T has the form

Q = f after A1 at t1, . . . , An at tn (6)

where f is a fluent, A1, . . . , An are sets of actions and t1 < . . . < tn are time points. When n = 0, we
simply write Q = f .

A action theory is a pair (D,O) where D is a domain description and O is a set of observations. A
model of an action theory (D,O) is a trajectory of D that satisfies all the observations of O.

Let T = (D,O) be an action theory and Q be the query (6). Let O′ be the set of observations O′ =
O ∪ {A1 occurs at t1, . . . , An occurs at tn}. Then T entails Q, written as T |= Q, iff
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(i) (D,O′) has at least one model; and

(ii) for all trajectory models τ = 〈s0, A
′
1, s1, A

′
2 . . . A′m, sm . . .〉 of the theory (D,O′), there exists N

such that f is true in all the states sk, k > N .

It follows from the definition of trajectories and models that any action a that is triggered but not inhib-
ited by s must occur in s. We say that the triggering of actions in A0

T is immediate.

2.3 Motivating example

b

b

a’ a’

(A) (B)

a

gf

f’
g

¬ g, f’

¬ f, ¬ g ¬ g

¬ f, ¬ f’
¬ g

f’

¬ f, ¬ f’

Figure 1: More detailed knowledge leads to a different interpretation of the same process. (A) Original (assumingly)
correct interpretation, regardless the details of ¬f,¬g triggers a in dashed lines. (B) New interpretation based onA0

T

semantics.

The following hypothetical example illustrates a serious limitation of the immdediate tringgering of
actions. Let us consider the A0

T domain description:

Dafg =





¬f,¬g triggers a

a causes f

¬g triggers b

b causes g

The semantics of A0
T dictates that if an action is triggered at time t then it has to occur at time t. Assume

that f and g are false at time 0, then both a and b occur at time 0. The occurrence of a makes f become true
at time 1. No other actions after time 1, so f remains true. Thus we have informally proved that:

(Dafg, {¬f at 0,¬g at 0}) |= f

Now imagine that the rule ¬f,¬g triggers a is replaced by the following rules, which capture more detailed
knowledge:

¬f ,¬f ′ triggers a′ (7)

a′ causes f ′ (8)

f ′,¬g triggers a (9)

5



Let D′afg be the modified domain description. Intuitively, the triggering of the action a by ¬f ∧ ¬g is
mediated by some new action a′ and fluent f ′ (dashed lines in Fig. 1A). Given the same initial condition of
f and g being false at time 0, a different conclusion about the final value of f must be drawn from the refined
interaction specification (Fig. 1B). The argument goes as follows. The action b is triggered and occurs at
time 0, regardless of what value f ′ has. If f ′ is true at time 0, then a′ is not triggered. Consequently, a′

and a will not occur, so f is unchanged (remaining false). On the other hand, if f ′ is false at time 0 then
the actions a′ and b occur at time 0. Thus a′ and b cause ¬f and g at time 1. No additional action can be
triggered from time 1 onwards, so f is always false. We have informally proved that:

(D′afg, {¬f at 0,¬g at 0}) |= ¬f

Hence, the new conclusion about f contradicts the previous prediction based on the original domain descrip-
tion Dafg. Intuitively, this non-monotonicity with respect to refinement is not acceptable. Since the detailed
knowledge (i.e., (7)-(9)) is about what happens “inside” the trigger of a, the consequence of the trigger itself
should not be affected, provided everything “outside” remains intact.

We propose a new action language A∞T as a solution to the problem of immediate triggered actions. In
A∞T , an action will occur (i.e be fired) with some delay after it is triggered. We would still encounter the
same problem if this firing delay is bounded. For example, let us assume the firing delays are bounded by N .
In the domain Dafg, if the rule ¬f,¬f ′ triggers a′ (see (7)) is refined further by means of N +1 immediate
actions, then a would not be triggered thus cannot occur. Nevertheless, allowing unbounded delays would
lead to an infinite number of possible sequences of action occurrences. This will be a major issue in defining
the semantics of A∞T . Another issue is that domain descriptions contain no information about ordering of
action occurrences. This ordering information is important, as the above example illustrates. In the new
language, we will augment a domain description with information about ordering of events. We use linear
temporal logic - a natural candidate formalism - to represent the information about ordering.

To sum up, the new language would representing triggers with the following characteristics: (1) the
non-immediacy of triggering; (2) unbounded firing delays; and (3) information about ordering of events in
a linear temporal logic.

3 Language A∞
T for Non-immediate Triggers

Similar to A0
T , the language A∞T is built upon the high level language A. We extend A with new features

to represent triggers and inhibitions. Note that the domain description sub-language of A∞T is syntactically
similar to that of A0

T . But the similarity between the two languages stops there.

3.1 Syntax

3.1.1 Domain description

The mechanism of changes in the cell are captured by a domain description in A∞T . A domain description
D in A∞T is a set of statements called causal rules, triggers and inhibitors.

A causal rule is a statement of the form

a causes f if f1, . . . , fn (10)

where a is an action and f , f1, . . . , fn are fluent literals. The conjunction of f1, . . . , fn is referred to as
the precondition of the causal rule, and f is called an effect of the action a with respect to the precondition
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f , f1, . . . , fn. Intuitively, the causal rule encodes the information that f will become true if the action a
happens in a state where all the properties f1, . . . , fn hold.

A trigger rule is a statement of the form

f1, . . . , fn triggers a (11)

where f1, . . . , fn are fluent literals and a is an action. The conjunction of f1, . . . , fn is referred to as the
precondition of the trigger, and a is called a triggered action. Intuitively, the trigger encodes the information
that the action a will happen if all the properties f1, . . . , fn are true in the current state and a is not inhibited.
The inhibitions of actions are dictated by inhibitor rules.

An inhibitor rule is a statement of the form

f1, . . . , fn inhibits a (12)

where f1, . . . , fn are fluent literals and a is an action. The conjunction of f1, . . . , fn is referred to as the
precondition of the trigger. Intuitively, the inhibitor dictates that the action a is prevented from happening
in a state where all the properties f1, . . . , fn are true.

3.1.2 Observations

In reasoning about cellular behaviors, we usually start with some initial state. We can have complete or
incomplete observations about properties of the initial cellular state. A fluent observation is written in a
statement of the form

initially f

where each f is a fluent literal. An action observation is written in a statement of the form

initially a

A set of observations initially ωi (i = 1, . . . , n) will usually be shorten as

initially ω1, . . . , ωn

Intuitively, the statement “initially f” means that f is true in the initial state. The statement “initially a”
means that the action a occurs at the initial state. A set O of observations is complete, if for any fluent f ,
either “initially ¬f” or “initially f” belongs to O.

Definition 3.1. Let D be a domain description and O be a set of observations. A state s is an initial state in
D corresponding to O iff for all observation “initially f ” of the set O, f is in s.

3.1.3 Event orderings

Let D be a domain description. An event is a set of fluent literals (i.e., state event), or a set of actions (i.e.,
action event). A state event is said to happen when its elements hold. An action event is said to happen
when its elements occur. An event ordering is a statement of the form:

e restricts e1 op e2

where e, e1 and e2 are events, and op ∈ {≺ , ‖ ,¹}. Intuitively, the statement encodes that if e happens,
then the earliest happening of e1 and e2 after e must obey the ordering op. Here ≺ means earlier, ‖ means
at the same time and ¹ means either ≺ or ‖ .
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3.1.4 Queries

We are interested in queries about properties of cellular changes through time. It is natural to formulate
these queries in linear temporal logic (see Appendix Technical Background).

Definition 3.2 (Action theory). A action theory in A∞T is a triple (D, E , I), where D is an domain descrip-
tion, E is an event ordering specification, and I is a set of observations.

3.2 Semantics

We define the semantics of A∞T in the following steps. First, we define trajectories of a domain description
in A∞T . Next, we define interpretations of a theory (D, E , I): an interpretation is a trajectory with respect
to D that satisfies certain properties with respect to E and I. Finally, we show how a model of a theory is
chosen among its interpretations.

Intuitively, a domain description determines the possible trajectories, along which the cell change from
a state to another due to actions. A trajectory is a sequence of states and action occurrences. Causal laws
(statements of the form (10)) define how the cell changes from one state to another state due to an action
occurrence. Trigger and inhibitor statements (of the forms (11)-(12)) define what actions are triggered to
happen.

3.2.1 Trajectories of a domain description

A state transition is a change of one state to another state due to effects of some actions. The effect of an
action a in a state s is the set

ED(a, s) = { f | a causes f if f1, . . . fn ∈ D and {f1, . . . , fn} ⊆ s }.
The effect of a set A of actions in a state s is the set

ED(A, s) =
⋃

a∈A

ED(a, s).

Let ¬¬g = g and ¬ED(A, s) = {¬g|g ∈ E(A, s)}.
State transitions of a domain description D are computed by transition function ΦD.

Definition 3.3 (Transition function). A transition function of a domain D is a function ΦD from pairs of a
set of actions and a state into states such that:

• if ED(A, s) is consistent, then

ΦD(A, s) = (s \ ¬ED(A, s)) ∪ ED(A, s) (13)

• otherwise ΦD(A, s) is undefined. 2

We shall use the notation Φ(A, s) instead of ΦD(A, s) if there is only one domain description D in
discussion.

A transition sequence σ is a sequence of the form σ = 〈s0, A0, s1, A1, . . .〉, where si’s are states and
Aj’s are sets of actions in D, such that si+1 = Φ(Ai, si) for all i ; and Aj(σ) = ∅ for all j > i if Ai(σ) = ∅.
Given any transition sequence σ = 〈s0, A0, s1, A1, . . .〉, let us define that si(σ) = si, Ai(σ) = Ai and
σ[m,n] = 〈sm, Am, sm+1, Am+1, . . . , An−1, sn〉.
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Definition 3.4. (Length of finite transition sequence) Let D be a domain description. A transition sequence
σ of D is finite iff there exists Ai(σ) = ∅. The length of a finite transition sequence σ, denoted |σ|, is the
smallest i such that Ai(σ) = ∅. 2

Example 3.1. Let D be the domain description consisting of the rules:

f triggers a

f triggers b

b causes ¬f

Then Φ(a, {¬f}) = {¬f}, Φ(a, {f}) = {f} and Φ(b, {¬f}) = Φ(b, {f}) = {¬f}. Some infinite
transition sequences of D includes:

〈{¬f}, {a}, {¬f}, {a}, . . .〉
〈{f}, {b}, {¬f}, {b}, {¬f}, {b}, . . .〉
〈{f}, {a, b}, {¬f}, {a}, {¬f}, {b}, {¬f}, {a}, . . .〉

Some finite transition sequence of D includes:

〈{f}, {a}, {f}, {a, b}, {¬f}, ∅, . . .〉
〈{f}, {b}, {¬f}, {a}, {¬f}, ∅, . . .〉
〈{f}, {a, b}, {¬f}, {a}, ∅, . . .〉

All these transition sequences has length 2. 2

Definition 3.5 (Triggering/inhibition by state). Let D be a domain description and σ be a transition se-
quence of D. An action a is said to be inhibited by a state si(σ) in σ, if there exists an inhibitor rule
“f1, . . . , fn inhibits a ” such that all the fluent literals f1, . . . , fn hold in si(σ). An action b is said to
be triggered by a state sj(σ) in σ, if b is not inhibited by sj(σ) in σ and if there exists a trigger rule
“g1, . . . , gm triggers b ” such that all the fluent literals g1, . . . , gm hold in sj(σ). 2

Intuitively, transition sequences of a domain can be considered as its interpretations. Trajectories of a
domain can be considered as models of the domain. Similarly as with A0

T , we shall define trajectories to
be transition sequences in which an action occurs iff it is triggered. The difference inA∞T is when an action
will occur if it has been triggered. Moreover, since trajectories are models, they should be minimal in some
sense.

Definition 3.6 (Trajectory). A trajectory is a transition sequence σ that satisfies all the following conditions:

(i) For all i, for all actions a triggered by the state si(σ), there exists j ≥ i such that a ∈ Aj(σ).

(ii) For all i and for all actions a, the action a is triggered by states among the states sj(σ) (0 ≤ j ≤ i) at
least as many times as it occurs in the sets Ak(σ) (0 ≤ k ≤ i). Formally, for all i and a:

i
Σ

j=0
δ(sj(σ) triggers a) ≥ i

Σ
j=0

δ(a ∈ Aj(σ))

where δ(P ) = 1 if the proposition P is true, otherwise δ(P ) = 0. The condition (i) and (ii) are
respectively called the occurrence criterion and prefix criterion of trajectories. 2
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We shall attempt to provide some more intuitions for the conditions (i)-(ii) in Definition 3.6. The trigger
criterion is reasonable: if an action is triggered at some state then it must occur either immediately or at some
later state. The condition (ii) captures the intuition that if an action occurs then it must have been triggered. It
is called prefix criterion, since we will show later on that any finite transition sequence σ is a prefix of some
trajectory iff σ satisfies the condition (ii). Furthermore, since we now deal with non-immediate triggering,
the prefix criterion can not be substituted with the seemingly simpler and straightforward condition:

(II) For all i and for all actions a in Ai(σ): there exists some 0 ≤ j ≤ i such that the action a
is triggered by the state sj(σ).

The difference between the conditions (ii) and (II) is illustrated in the next example.

Example 3.2. Let D be a domain description of actions a, b, c, d and fluents fa, fb, fc, fd and g.

D = {¬fa triggers a; a causes fa;
a causes ¬g if g; a causes g if ¬g;
g, fa,¬fb triggers b; b causes fb;
g, fa, fb,¬fc triggers c; c causes fc;
¬g, fa, fb,¬fd triggers d; d causes fd }

To simplify notation, we represent states by their subsets of positive fluent literals. Let us consider the
transition sequences σ1 and σ2 as follows.

σ1 =〈{}, {a}, {fa, g}, {b}, {fa, fb, g}, {c}, {fa, fb, fc, g}〉
σ2 =〈{}, {a}, {fa, g}, {a, b}, {fa, fb}, {d}, {fa, fb, fd}〉

By Definition 3.6, the sequence σ1 is a trajectory but σ2 is not. If the condition (II) were used in place of the
condition (ii), then both σ1 and σ2 would be considered to be trajectories. However, the second occurrence
of a in the “trajectory” σ2 would not be supported (i.e., not be triggered). It is the first occurrence of a, not
the second occurrence that can be said to be triggered by the initial state {}. The second state {fa, g} does
not trigger a, so the second occurrence of a has not been triggered. 2

A domain description can have an infinite number of trajectories which are all finite, as shown in the
following example.

Example 3.3. Consider the domain description D in Example 3.1. There is an infinite number of trajectories
of D. The only trajectory starting from the initial state {¬f} is 〈{¬f}〉. The trajectories starting from the
initial state {f} include:

σ =〈{f}, {b}, {¬f}, {a}, {¬f}〉
σ0 =〈{f}, {a, b}, {¬f}〉
σ1 =〈{f}, {a}, {f}, {a, b}, {¬f}〉

. . . . . .

σn =〈{f}, {a}, . . . , {f}, {a}, {f}, {a, b}, {¬f}〉

for any number n. 2
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3.2.2 Interpretations and models

Intuitively, an interpretation of a theory (D, E , I) is a trajectory σ that starts from an initial state described
by I and that satisfies the set E of event orderings. Formally, an interpretation of a theory (D, E , I) is
defined as follows.

Let σ be a trajectory of a domain description D. An event e is said to happen at the ith state of the
trajectory σ if e ⊆ si(σ) ∪ Ai(σ). Given a fixed j, the smallest index i > j such that an event e happens at
the ith state of the trajectory σ is denoted first(e, σ, j).

Definition 3.7 (Interpretation). An interpretation of a theory (D, E , I) is a trajectory σ such that:

• For all observation “initially f ” of the set I where f is a fluent literal: f ∈ s0(σ).

• For all observation “initially a ” of the set I where a is an action: a ∈ A0(σ).

• For all event ordering “ e restricts e1 ≺ e2 ” in the set E , if e happens at the ith state of τ , and
first(ej , τ, i) exists (j = 1, 2), then first(e1, τ, i) < first(e2, τ, i).

• For all event ordering “ e restricts e1 ‖ e2 ” in the set E , if e happens at the ith state of τ , and
first(ej , τ, i) exists (j = 1, 2), then first(e1, τ, i) = first(e2, τ, i).

• For all event ordering “ e restricts e1 ¹ e2 ” in the set E , if e happens at the ith state of τ , and
first(ej , τ, i) exists (j = 1, 2), then first(e1, τ, i) ≤ first(e2, τ, i).

The set of all interpretations of (D, E , I) is denoted int(T ). 2

Example 3.4. Let us continue with Example 3.3. Let I = {initially f}. Then all the trajectories σ, σi

(i ≥ 0) are interpretation of the action theory (D, ∅, I). For all i ≥ 1, the trajectories σi is an interpretations
of (D, {f restricts a ≺ b}, I). The trajectory σ and σ0 is the unique interpretation of (D, {f restricts b ≺
a}, I) and of (D, {f restricts a ‖ b}, I), respectively. Finally, the action theory (D, ∅, I ∪ {initially b})
has the unique interpretation σ. 2

Recall that one of our goals in having the new languageA∞T is to capture the non-immediacy of trigger-
ing. Assume that an action theory in A∞T contains a trigger rule “f triggers a ”. If f holds in some state s,
then the occurrence of a can be delayed at length after the state s. Non-immediacy of triggering may lead
to infinite number of interpretations of the occurrence of a.

Example 3.5. Consider the action theory T = (D, ∅, I) where D is the domain description in Example 3.1
and I = {initially f}. Then all the trajectories described in Example 3.3 are interpretations of T . Thus T
has an infinite number of interpretations.

A closer look into Example 3.5 reveals that the infinite number of trajectories is caused by delays of the
occurrence of the action b. Although b is triggered at the initial state, it is allowed to occur at any time later.
A trajectory ends as soon as b occurs. Among these trajectories, σ0 seems to be the best candidate for a
model. The reason is that σ0 corresponds to the case where b occurs at the earliest possible time. Thus we
prompted to define the semantics of A∞T that captures an additional intuition of triggering: an action is to
occur as soon as possible after having been triggered. The intuition shall be formulated based on a partial
order of transition sequences.

Definition 3.8 (Ordering trajectories). Let D be a domain description. Let σ and σ′ be transition sequences
of D. Then σ < σ′ iff there exists 0 ≤ n such that σ[0, n] = σ′[0, n] and An(σ) ⊂ An(σ′). 2
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It is straightforward to verify that < is a partial order.

Proposition 3.1. Let σ, σ′ and σ′′ be transition sequences of a domain description D such that σ < σ′ and
σ′ < σ′′. Then σ < σ′′.

The order < determines a preference criterion to select models among the set of interpretations of an
action theory: a model is a maximally preferred interpretation. Intuitively, if the occurrence of an action is
“unnecessarily” delayed in an interpretation, then the interpretation cannot be a model.

Example 3.6. Let σ and σ′ be interpretations of an action theory (D, E , I). Assume that σ < σ′. Then
there exists n such that σ[0, n] = σ′[0, n] and An(σ) ⊂ An(σ′). Let a be an action of the non-empty
set An(σ′) \ An(σ). Since σ′ is a trajectory of D and a ∈ An(σ′), a is triggered at some state si(σ′)
where i ≤ n. Besides, Φ(An(σ′), sn(σ′)) is defined. Then Φ(An(σ) ∪ {a}, sn(σ)) is defined, because
An(σ) ∪ {a} ⊆ An(σ′) and sn(σ′) = sn(σ). Moreover, si(σ′) = si(σ), so a is triggered by si(σ). Thus
a could have occurred at state sn(σ) in the trajectory σ, but its occurrence has been delayed to some later
time. 2

Definition 3.9 (Model). A model of (D, E , I) is an interpretation σ of (D, E , I) such that there exists no
interpretation σ′ where σ < σ′. A theory (D, E , I) is called consistent if it has at least one model. The set
of all models of (D, E , I) is denoted mod(D, E , I). 2

Example 3.7. We continue with Example 3.4. Let us determine the models of the action theory (D, ∅, I).
All the interpretations of (D, ∅, I) are σ and σi, for all i. We have that s0(σ) = s0(σi) for all i. Besides,
A0(σ) ⊂ A0(σ0) and A0(σi) ⊂ A0(σ0) for all i > 0. By Definition 3.8, it follows that σ < σ0 and σi < σ0

for all i > 0. By Definition 3.9, the interpretation σ0 is the unique model of (D, ∅, I). 2

3.2.3 Query entailment

As in the case of A0
T , entailments in A∞T are defined only for consistent action theories. We define two

kinds of entailments: strong and weak entailment. First, we define the entailment of a query Q by a model
of an action theory.

Definition 3.10 (Entailment of query). Let T = (D, E , I) be an action theory. Let σ be a model of T , which
is of the form:

σ = 〈s0, A0, s1, A1, . . . , sn, An . . .〉
Let Iσ be the sequence of the states si’s:

Iσ = 〈s0, s1, . . . , sn, . . .〉

Then σ entails a query Q iff Iσ entails Q with respect to the standard linear temporal logic (LTL) semantics.
2

Definition 3.11. An action theory T = (D, E , I) strongly entails a query Q, denoted T |=s Q, iff T is
consistent and all the models σ of T entails Q. An action theory T = (D, E , I) weakly entails a query Q,
denoted T |=w Q, iff there exists a model σ of T that entailers Q. 2

Recall thatA∞T is motivated by the paradox of non-monotonic refinement (see Introduction section). We
shall show that the paradox can be resolved in the framework of A∞T .
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Example 3.8. Let D+
afg be the updated version of the domain Dafg in Section 2.3 (based on the rules

(7)-(9)).

D+
afg = { ¬f,¬f ′ triggers a′ ; a′ causes f ′ ;

f ′,¬g triggers a ; a causes f ;
¬g triggers b ; b causes g }

Let I+ = {initially ¬f,¬f ′,¬g}. It can be verified that the action theory T1 = (D+
afg, ∅, I+) has the

unique trajectory models
σ1 = 〈{¬f,¬f ′,¬g}, {a′, b}, {¬f, f ′, g}〉

Since σ1 |= 2 ¬f , it follows that T1 |=s 2 ¬f . Now let E be the event ordering:

E = {¬f,¬f ′,¬g} restricts a′ ≺ a

The event ordering E states that a must occur if ¬f , ¬g hold and a′ must occur before a. Intuitively, the
event ordering captures information missing from the refinement of the trigger rule “¬f,¬g triggers a ”.
The missing of this information leads to the paradox of non-monotonic refinement. Incorporating E to the
action theory T1 provides a solution for the paradox. Indeed, let T2 = (D+

afg, {E}, I). Then T2 has the
unique model σ2:

σ2 = 〈{¬f,¬f ′,¬g}, {a′}, {¬f, f ′,¬g}, {a, b}, {f, f ′, g}〉
Since σ2 |= 3 f , it follows that T2 |=s 3 f . 2

The weak entailment is motivated by the non-deterministic nature of cellular signaling networks. The
non-determinism manifests itself in a cellular signaling phenomenon called specificity [36]. In general, a
signaling network may respond to the same output in different ways. The actual output depends not only on
the structure of the signaling network but specific tissue or cell-line or physical conditions. In light of our
action formalisms, this biological phenomenon is due to incompleteness information about an initial state
or about a domain description. Consequently, there are multiple models of the action theory, each of which
corresponds to a specific biological situation.

3.3 Reasoning with Non-immediate Triggers

It is important to be able to reason about effects of external agent actions on triggered evolutions of a system;
for example, we want to know how to intervene to alter the cell behavior in desirable ways. SinceA∞T does
not represent explicit time, we cannot specify an execution of an exogenous action by explicitly setting a
time for it (e.g., exogenous actions with time steps, or implicitly setting the execution time using ordering
(e.g., a plan as a sequence of actions). However, we can combine the modeled system (e.g., an interaction
network) together with the agent control (e.g., a scientist) into one system then reason about the exogenous
actions of the agent as triggers in the combined system.
Formally, we consider external interventions as conditional actions of the form:

α = do a if f1, f2, . . . , fn,

where a is an action, and f1, f2, . . . , fn are fluent literals. Given a conditional action α of the above form,
we denote trig(α) = f1, f2, . . . , fn triggers a and act(α) = a. Intuitively, trig(α) is the translation of α
into a trigger rule. We use the same notations for sets of conditional actions. Given a set C of conditional
actions, we denote that trig(C) = {trig(α) | α ∈ C} and act(C) = {act(α) | α ∈ C}.
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An agent control can be represented as a pair (C,L), where C is a set of conditional actions and L is a
set of dynamic causal laws describing effects of the actions in act(C). Let (D, E , I) be a theory in A∞T and
(C,L) be an agent control. We can assume that the actions of act(C) are not in D. Planning for a goal Q is
to find a subset P ⊆ C such that:

(D ∪ L ∪ trig(P ), E , I) |=s Q .

4 Monotonic Refinement

4.1 Refinement of Trigger Rules

In the first section, we have provided some intuition about refinement of triggers. We presented several
examples of refinements in the p53 signaling networks. In this section, we formalize a notion of refinement
of triggers and study some of its properties. Particularly, we are interested in cases where the refinement is
monotonic.

Definition 4.1 (Refinement of trigger rule). Let r be the trigger rule f1, . . . , fn triggers a. Let Dr be a
domain description that does not contain inhibitor rules and that does not contain causal rules for the action
a. Let Ir be a set of observations in Dr. Let fa be an additional fluent symbol that is different from the
fluents of Dr. Let us denote D′

r = Dr∪{ a causes fa ; fa inhibits a } and I ′r = Ir∪{ initially f1, . . . , fn }.
Finally, let Tr be the action theory (D′

r, ∅, I ′r). The pair 〈Dr, Ir〉 is a refinement of r iff:

(i) the theory Tr is consistent and all the models of Tr are finite trajectories;

(ii) any model σr of Tr is of the form

σr = 〈s0, A0, . . . , Ai−1, si, {a}, si+1〉

where a 6∈ Aj for all 0 ≤ j ≤ i− 1; and

(iii) no action of Dr affects any fluent in {f1, . . . , fn}. 2

Intuitively, Dr and Ir give more details about how a is triggered from the precondition f1, . . . , fn. The
domain Dr and the observation set Ir can be regarded as missing knowledge which had not been available
when we formulated the trigger rule r. The condition (ii) implicates that a is “indirectly” triggered from
f1, . . . , fn. The condition (iii) captures the intuition that f1, . . . , fn are the essential conditions to trigger a.
The fluent fa and the related causal and inhibitor rule are to eliminate the infinite interpretations in which
the action a is triggered infinitely. The following example helps to clarify Definition 4.1.

Example 4.1. We describe the refinement of the trigger rule r in the motivating example (Section 2.3).
Recall that:

r = ¬f,¬g triggers a

Let Dr be the domain description:

Dr =





¬f,¬g triggers a′

a′ causes f ′

f ′,¬g triggers a
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Let Ir = {initially ¬f ′}. Then 〈Dr, Ir〉 is a refinement of r. Indeed, as in Definition 4.1, let D′
r =

Dr ∪ {a causes fa ; fa inhibits a} and I ′r = Ir ∪ {initially ¬f,¬g} = {initially ¬f,¬g,¬f ′}. Given
a fluent literal la of fa (i.e., la ∈ {fa,¬fa }), let s0 = {¬f,¬g,¬f ′, la}, s1 = {¬f,¬g, f ′, la} and
s2 = {¬f,¬g, f ′, fa }. Then s0, s1, s2 are states in D′

r. We have that: s0 triggers a′, s1 trigger a and
ΦD′r(a

′, s0) = s1, ΦD′r(a, s1) = s2. There is no action triggered in s2. It can be verified that the trajectories
σla = 〈s0, {a′}, s1, {a}, s2〉 (for la ∈ {fa,¬fa }) are all the models of the theory Tr = (Dr, ∅, Ir ∪
{initially ¬f,¬g}). Since σla |= 3 a and σla 2 (¬f∧¬g), we have that Tr |= 3 a and Tr |= 2 (¬f∧¬g).
Thus all the condition (i)-(iii) of Definition 4.1 are satisfied 〈Dr, Ir〉 2

The following proposition deals with a generalization of the refinement in Example 4.1.

Proposition 4.1. Let r be the trigger rule F,G triggers a, where F and G are sets of fluent literals, which
are not necessarily disjoint. Let Dr be the domain description:

Dr =





F, H0 triggers a′

a′ causes H1

H2, G triggers a

where His are sets of fluent literals such that

∃f : f ∈ H0 ∧ ¬f ∈ H1

H1 ⊆ H2

(F ∪G) ∩ (H0 ∪H2) = ∅
Let Ir be the set of observations

Ir = {initially f | f ∈ H0 ∪ (H2 \H1)}
Then 〈Dr, Ir〉 is a refinement of r.

Intuitively, a refinement of trigger rule introduces new interactions between actions and their effects.
Due to the new interactions, the modified action theory may have models that are different from those
of the original action theory. This difference results in contradictory entailments such as those discussed
in the motivating example (Section 2.3). Event ordering information indirectly constraints the possible
interactions. The following proposition shows that the models of the original action theory can always be
found in among the models of the modified action theory, given proper event ordering information.

Proposition 4.2. Let T be an A∞T action theory (D, E , I). Let r be a trigger rule f1, . . . fn triggers a in
the domain D. Assume that a is triggered at most once in any trajectory model of T . Let 〈Dr, Ir〉 be a
refinement of r such that the common alphabet symbols of Dr and D are the fluent symbols f1, . . . , fn and
the action symbol a. Let D+ denote the domain description:

D+ = D \ {r} ∪Dr .

If a query Q is strongly entailed by (D, E , I) then Q is weakly entailed by the theory (D+, E∪E1∪E2, I∪Ir),
with Ei being the event orderings:

E1 = { {f1, . . . , fn} restricts b1 ≺ b2 | b1 ∈ act(Dr) \ {a}, b2 ∈ act(D) }
E2 = { lit(Ir) restricts {f1, . . . , fn} ¹ b | b ∈ act(Dr) }

where act(Dr) and act(D) denote the sets of the actions in Dr and D respectively, and lit(Ir) denotes the
set of the fluent literals in Ir.
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Example 4.2. Let us apply Proposition 4.2 to the refinement of trigger in the motivating example (Section
2.3). Here we have that D = Dafg, E = ∅ and I = {initially ¬f, initially ¬g}. The trigger rule r is:

r = ¬f,¬g triggers a .

Let Q = 3 f . Then (Dafg, E , I) |=s Q. The refinement 〈Dr, Ir〉 of r has been described in Example 4.1.
We have that: act(Dr) = {a, a′} and act(D) = {a, b}. Let E1 and E2 be the event orderings in Proposition
4.2, then:

E1 = { {¬f,¬g} restricts a′ ≺ a; {¬f,¬g} restricts a′ ≺ b }
and

E2 = { {¬f ′} restricts {¬f,¬g} ¹ a; {¬f ′} restricts {¬f,¬g} ¹ a′ } .

By Proposition 4.2, we have that:

(Dafg \ {r} ∪Dr, E1 ∪ E2, I ∪ Ir) |=w 3 f .

4.2 Refinement of Causal Rules

A general causal rule r has the form “a causes f if F ”, where F is a set of fluent literals. A refinement of
r gives more details of how a affects f . It is usually the case that a has some effects (which may or may not
include f ) that triggers an immediate action b. This immediate action b in turn causes f . Thus we may also
say that a causes f indirectly through the triggering of b. The following definition captures this intuition.

Definition 4.2 (Refinement of causal rule). Let r = a causes f if F be a causal rule of a domain
description D. Let G,G1, G2 be non-empty disjoint sets of fluent literals that are not in D. Let b be an
action that is not in D. A refinement of r with respect to D is a pair (Dr, Ir) where Dr is the following set
of rules:

Dr =





a causes G if F, G1

G,G2 triggers b

b causes f

and Ir is the set of initial observations:

Ir = {initially ¬g | g ∈ G} ∪ {initially g | g ∈ G1} ∪ {initially g | g ∈ G2}
Given a refinement (Dr, Ir) of the rule r defined above, r can be refined further by means of refinements

of the trigger rule G,G2 triggers b. Proposition 4.2 helps us in maintaining the monotonicity of trigger
refinement. Thus to maintain the monotonicity of causal rule refinement, it is sufficient that we handle the
monotonicity of the refinement given in Definition 4.2. For that purpose, we have the following result.

Proposition 4.3. Let T = (D, E , I) be anA∞T theory. Let r ∈ D be a causal rule of the form “a causes f if F ”,
where F is a set of fluent literals. Let (Dr, Ir) be the refinement of r given in Definition 4.2. If a query Q is
strongly entailed by the theory (D, E , I) then Q is weakly entailed by the theory (D\{r}∪Dr, E∪E, I∪Ir),
with E being the ordering:

E = {{a} ∪ F restricts b ≺ act(D)}
where act(D) is the set of the actions in D.

An example of the refinement of causal rules can be found later in Section 4.3.3.
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4.3 Refinements in p53 Signaling Network

Before considering the biological example, let us go over the following short glossary:

protein: the major macromolecular constituent of cells.

tumor suppressor: a protein that works to prevent cells from turning into tumors.

carcinogen: substance that directly causes or facilitates cancer development.

gene expression: the production of proteins from their genes.

upregulation: the processing of increasing gene expression.

4.3.1 Overview of p53 Network

The p53 protein is a tumor suppressor that plays a key role in the regulation of the cell growth and cell death.
It is estimated that about one half of human cancers contains mutant p53. It is also hypothesized that the p53
network is affected in the majority of the remaining tumors. Normally, a wild-type (i.e., not mutant) p53
functions to prevent cancer as follows (the solid lines in Figure 2). Stimuli such as UV, ionizing radiation
or chemical carcinogens can induce DNA damage. DNA damage will lead to genomic instability, which in
turn triggers uncontrolled cell growth (i.e., tumor formation). However, the stimuli also upregulate the gene
expression of wild-type p53. The upregulated gene expression produces high levels of p53 concentration,
which suppresses abnormal cell growth thus preventing cancer [15].

4.3.2 The initial knowledge base

The p53 network can be represented in A0
T as follows.

Dp53 = { high(UV ) triggers damage(DNA)
damage(DNA) causes instable(cells)
instable(cells),¬high(p53) triggers proliferate(cells)
proliferate(cells) causes tumorous

high(UV ),¬mutant(p53) triggers upregulate(p53)
upregulate(p53) causes high(p53)}

Given that only high(UV ) is true at time 0, actions damage(DNA) and upregulate(p53) will occur at
time 0. Then instable(cells) becomes true at time 1. Because high(p53) is false, the action proliferate(cells)
is not triggered. As expected, the domain Dp53 predicts the p53 prevention of cancer (Fig. 2). Formally, let
O be the set of initial observations:

O = {initially high(UV ), initially ¬instable(cells), initially ¬tumorous, initially ¬high(p53)} (14)

then we have that:
(Dp53,O) |= ¬tumorous (15)
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Figure 2: Detailed knowledge of p53 upregulation predicts cancer.

4.3.3 Refinement of more detailed knowledge

Each of the actions damage(DNA), proliferate(cells) and upregulate(p53) represents a complex bio-
logical process. For example, let us update the network with the following refinement of the p53 upregulation
[15]. The process first starts with the upregulation of the p53 mRNA, which causes a high level of mRNA.
The high mRNA level induces translation of p53, which increases the quantity of p53 protein. Thus, to
specify at a finer level, we replace the causal rule

upregulate(p53) causes high(p53) (16)

with the set of rules:




upregulate(p53) causes high(mRNA)
high(mRNA) triggers translate(p53)
translate(p53) causes high(p53)

(The refinement is drawn in dashed lines in Figure 2).
But unlike Dp53, the updated domain description, which we refer to as D+

p53, does not predict that p53
prevents cancer. Assuming high(UV ) is true at 0, the actions occurring at 0 are damage(DNA) and
upregulate(mRNA). Then high(p53) remains false while instable(cells) becomes true at time 1. Thus
proliferate(cells) is triggered at time 1. When high(p53) becomes true at time 2, it is “too late” to block the
occurrence of proliferate(cells). The action proliferate(cells) causes tumorous to be true. It follows that:

(D+
p53,O) |= tumorous (17)

where O is the observation set in (14). This biological example illustrates that A0
T does not gracefully deal

with refinement of a causal rule.
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4.3.4 Reasoning in the presence of refinements

Let D+
p53 be the updated version of Dp53 in Let I be an initial state observation that only high(UV ) is true.

First, we have that (Dp53, ∅, I) |=s 2 ¬tumorous. This entailment “corresponds” to the entailment in
(15). Next, let H0 = (D+

p53, ∅, I). We have that

(D+
p53, ∅, I) |=w 2 ¬tumorous ,

and that
(D+

p53, ∅, I) |=w 2 tumorous .

Thus the theory H0 can predict both contradictory conclusions derived from (15) and (17).
Now let E be the event ordering

high(UV ),¬mutant(p53) restricts high(p53) ¹ instable(cells) .

This event ordering knowledge has an known biological counterpart. It is known that in a healthy cellular
environment, the upregulation of p53 is triggered rapidly in the presence of high level UV and before the
cell becomes instable.
Now let H1 = (D+

p53, E , I), then H1 |=s 2 ¬tumorous. Thus one can maintain the consistency of the
knowledge based (with respect to refinements) by incorporating event orderings.

5 Complexity Analysis

Example 3.3 gives an example of action theory that has an infinite number of trajectories, all of which are
finite trajectories. There also exists action theories that has an infinite number of infinite trajectories.

Example 5.1. Let D0,1 be the domain:

D0,1 =





f triggers a0

f triggers a1

a0 causes g

a1 causes ¬g

Let I = {f, g} and E = ∅. Then any infinite sequence of actions a0 and a1 correspond to a model of
(D, E, I). It is interesting to note that such an action sequence also correspond to the binary representation
of an irrational number in [0, 1], where a0 represents the digit 0 and a1 represents the digit 1. 2

We shall be interested in analyzing the complexity of action theories whose models have lengths bounded
by a polynomial of the size of their respective action theory.

Definition 5.1 (Size of domain description). Let D be a domain description inA∞T . The size of D, denoted
‖D‖ is the total of the number of the symbols in the alphabet of D and the number of the rules in D. 2

Definition 5.2 (Polynomial-time bounded action theory). Let T = (D, E , I) be an action theory in A∞T .
Then T is a polynomial-time bounded action theory iff there exists a polynomial p such that |E| < p(‖D‖)
and all trajectories of D have length less than p(‖D‖). We also say that T is polynomial-time bounded by
p. 2
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Theorem 5.1. To decide if (D, E , I) |=w Q is ΣP
2 -complete, where (D, E , I) is a polynomial-time bounded

action theory.

Theorem 5.2. To decide if (D, E , I) |=s Q is in ΠP
2 -complete, where (D, E , I) is a polynomial-time

bounded action theory.

6 Conclusion

We have proposed a solution to the problem of non-deterministic triggering of interactions in biological
networks. As done in [38, 4] as well as in many other related works, biological interactions can be modelled
to some extent as triggered actions. These approaches implicitly assumed that the triggering of actions
is immediate, which can not account for the inherent incompleteness of our knowledge about biological
networks. For example, if in a biological network there are the trigger “ f triggers a ” and the trigger
“ f triggers b ”, it is not always the case that in a state s where f is true both a and b immediately occur. Yet
we do not have the luxury of specifying exactly how long it takes before a trigger fires, as that information
is usually not available and it may not even be a deterministic duration. In many cases, there is insufficient
knowledge for one to say with certainty which of a and b occurs before the other. Thus a representation and
reasoning mechanism should model non-immediate triggering as well as event ordering information.

The proposed action language A∞T has three sub-languages for representing domain description, event
ordering, and observations. Given an A∞T action theory, the semantics of A∞T selects minimal models out
of possibly infinite number of interpretations. The semantics captures our intuition about non-immediate
triggered actions. We have provided evidences that A∞T can deal gracefully with the issue of knowledge
refinement. Although A∞T has the same simple syntax like A0

T , due to its semantics of non-immediate
triggering, the complexity of computing entailments in A∞T is very high. Approximations of reasoning in
A∞T have been studied and implemented using logic programming [39].

Building a knowledge base for biological networks is undeniably a challenging and important problem.
There exist a vast array of approaches to this problem with various advantages and limitations. We advocates
one approach based on logic-based methodologies for knowledge representation. Our approach as well as
many other related works are very preliminary attempts toward the ultimate solutions. A final solution
would probably involve features taken from multiple approaches. For example, differential equation based
simulation systems can be used to generate data as well as verify predictions. Experimental and/or simulated
data can be represented and processed at different levels of abstraction. Our knowledge base approach is
geared towards representation of and reasoning about very high-level knowledge, thus it would need to take
advantage of works modeling lower-level knowledge.

A deep underlying issue related to non-immediate triggering is how to formulate causality of events
in continuous-timed distributed systems. The language A∞T can be seen as an attempt for an approximate
formulation based on discrete time. As discussed in [32], a well-established formalism for reasoning about
causality in distributed system is a holy grail yet to be found.
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Technical Background

Complexity Theory

The classes ΣP
k , ΠP

k and ∆P
k of the Polynomial-time Hierarchy (PH) [1] are defined as follows:

ΣP
0 = ΠP

0 = ∆P
0

and for all k ≥ 0:

ΣP
k+1 = NPΣP

k

ΠP
k+1 = coNPΠP

k

∆P
k+1 = P∆P

k

Here PC and NPC denote the classes of problems that are solvable in polynomial time on a deterministic
(resp. nondeterministic) Turing machine with an oracle for any problem P in the complexity class C.

The complexity classes ΣP
k and ΠP

k can be characterized as follows [6]. Let Γ be an alphabet. A relation
R of dimension k over Γ∗ is a set of k-tuples 〈z1, . . . , zk〉 such that zi ∈ Γ∗ for 1 ≤ i ≤ k. We say that R is
recognizable in polynomial time if there is a polynomial time DTM that recognizes the language consisting
of exactly the k-tuples of R.

Theorem 6.1. [6] Let L ⊆ Γ be a language, with |Γ| ≥ 2. For any k ≤ 1, L ∈ ΣP
k iff there exists

polynomials p1, . . . , pk and a polynomial time recognizable relation R of dimension k +1 over Γ∗ such that
for all x in Γ∗:

x ∈ L ⇐⇒ ( ∃ y1 ∈ Γ∗ with |y1| ≤ p1(|x|) )
( ∀ y2 ∈ Γ∗ with |y2| ≤ p2(|x|) )

...

( Qk yk ∈ Γ∗ with |yk| ≤ pk(|x|) )
[ 〈x, y1, ..., yk〉 ∈ R ]

where the quantifiers alternate; and the quantifier Qk on yk is ∃ if k is odd and ∀ if k is even.

The complexity classes ΠP
k can be characterized analogously by interchanging ∃ and ∀ in Theorem 6.1.
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Theorem 6.2. [6] Let L ⊆ Γ be a language, with |Γ| ≥ 2. For any k ≤ 1, L ∈ ΠP
k iff there exists

polynomials p1, . . . , pk and a polynomial time recognizable relation R of dimension k +1 over Γ∗ such that
for all x in Γ∗:

x ∈ L ⇐⇒ ( ∀ y1 ∈ Γ∗ with |y1| ≤ p1(|x|) )
( ∃ y2 ∈ Γ∗ with |y2| ≤ p2(|x|) )

...

( Qk yk ∈ Γ∗ with |yk| ≤ pk(|x|) )
[ 〈x, y1, ..., yk〉 ∈ R ]

where the quantifiers alternate; and the quantifier Qk on yk is ∀ if k is odd and ∃ if k is even.

The lower-bound complexities for ΣP
k and ΠP

k completeness can be proved by transformation from
quantified Boolean formulas (QBFs). A QBF is an expression of the form

Φ = Q1X1Q2X2 . . . QnXk : E

where E is a Boolean expression whose atoms are from pair-wise disjoint nonempty sets of variables
X1, X2, . . . , Xk, k ≥ 1, and Qi’s (1 ≤ i ≤ k) are alternating quantifiers from {∀, ∃}. Let Pk,∃ be the
decision problem of deciding if Φ is valid given k ≤ 1 fixed and Q1 = ∃. Let Pk,∀ be the decision problem
of deciding if Φ is valid given k ≤ 1 fixed and Q1 = ∀. The following result is proven in [1] and [6].

Theorem 6.3. For all k ≤ 1, Pk,∃ is ΣP
k -complete and Pk,∀ is ΠP

k -complete.

Linear Temporal Logic

We shall use a propositional version of linear temporal logic (LTL) [10]. The language is built upon the
standard propositional logic, using future temporal modalities©, 2 , 3 and ∪. The intuitive interpretations
of the temporal modalities are:

• The modality © is read as “next”. The expression © f means that f holds at the next time point.

• The modality 2 is read as “always”. The expression 2 f means that f holds now and at all future
time points.

• The modality 3 is read as “eventually”. The expression 3 f means that f holds now or at some
future time point.

• The modality ∪ is read as “until”. The expression f ∪ g means that f holds from now until g becomes
true.

The syntax of LTL formulas is constructively defined as follows.

• A propositional formula f is a LTL formula.

• If f is a LTL formula, then © f , 2 f and 3 f are LTL formulas.

• If f and g are LTL formulas, then f ∪ g is an LTL formula.
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A model of a set of LTL formulas is a sequence of the form S = 〈M0,M1, . . . , Mi, . . .〉, where Mis are
models of the propositional sub-language. First, we define the interpretations of LTL formulas with respect
to the pairs (S,Mi). In the following, let p be a propositional formula and f , g be LTL formulas.

• (S,Mi) |= p iff p is true in the propositional model Mi .

• (S,Mi) |= ¬f iff (S, Mi) 6|= f .

• (S,Mi) |= f ∧ g iff (S, Mi) |= f and (S, Mi) |= g .

• (S,Mi) |= f ∨ g iff (S, Mi) |= f or (S,Mi) |= g .

• (S,Mi) |= © f iff (S,Mi+1) |= f .

• (S,Mi) |= 2 f iff (S,Mj) |= f for all j ≥ i .

• (S,Mi) |= 3 f iff (S,Mj) |= f for some j ≥ i .

• (S,Mi) |= f ∪ g iff there exists j ≥ i such that (S,Mk) |= f for all i ≤ k < j and (S,Mj) |= g .

Finally, the model S entails an LTL formula f , written as S |= f , iff (S, M0) |= f .
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